SUPPLEMENTAL INFORMATION

Distinct *Wolbachia* localization patterns in oocytes of diverse host species reveal multiple strategies of maternal transmission

Yonah A. Radousky^{1,*}, Michael T.J. Hague^{2,*,†}, Sommer Fowler¹, Eliza Paneru¹, Adan Codina¹, Cecilia Rugamas¹, Grant Hartzog¹, Brandon S. Cooper², William Sullivan¹

¹Department of Molecular, Cell, and Developmental Biology, University of California Santa Cruz, Santa Cruz, California, United States of America

²Division of Biological Sciences, University of Montana, Missoula, Montana, United States of America

*Co-first authors

[†]Corresponding Author: Michael T.J. Hague Division of Biological Sciences, University of Montana 32 Campus Dr. HS 104, Missoula, MT 59812 <u>michael.hague@mso.umt.edu</u> **Supplemental Figure 1.** (A) Estimated Bayesian phylogram of host species based on 20 nuclear loci. All nodes have posterior probabilities >0.95. (B) Bayesian phylogram estimated using similar methods, but with a constrained topology to account for previously resolved relationships among subgroups within the *melanogaster* species group ((*montium*, *melanogaster*) *ananassae*) based on Turelli et al., (2018) and Suvorov et al., (2022). (C) Mean estimates of *Wolbachia* abundance (log-transformed CTCF) in the whole oocyte, posterior region, and the posterior cortex. For *D. simulans*, the mean values include both *w*Ri- and *w*Ha-infected individuals.

Supplemental Figure 2. Illustrations of the homology models for the *Wolbachia* surface proteins WD_1085 and WD_0501.

Supplemental Figure 3. (A) Representative image of the reduction of *w*Mel *Wolbachia* titer between stages 4/5 and 6 in *D. melanogaster* oogenesis. *Wolbachia* stained with anti-FtsZ shown in pink. Scale bars set at 25 uM. (B) Greyscale DAPI channel. (C) Greyscale of anti-FtsZ channel. (A'-C') 5X zoom around the nucleus of the oocyte during stage 4 shown for each channel. (A''-C'') 4X zoom around the nucleus during stage 6 for each respective channel seen above. At least 10 oocytes across 3 slides were imaged with Z-stacks for a visual description of this trend.

Supplemental Figure 4. Bayesian phylograms depicting the evolutionary relationships among *Wolbachia* strains diverged up to 46 million years (left) and *Drosophila* host species diverged up to 50 million years (right). *w*Mel- and *w*Ri-like clades of closely related *Wolbachia* are labeled on the left. Grey lines pair *Wolbachia* strains with their *Drosophila* host species, which highlights patterns of topological discordance due to introgressive and horizontal transfer of *Wolbachia* among host species. The *Wolbachia* phylogram was estimated using 66 full-length and single-copy genes (43,275 bp) of equal length. All nodes have posterior probabilities >0.95. The host phylogram was estimated using 20 conserved single-copy genes (see Materials and Methods regarding host tree topology). *Wolbachia* and host divergence times in millions of years (MYA) are reproduced from Meany et al. (2019) and Suvorov et al. (2022), respectively.

Supplemental Figure 5. Representative images of *Wolbachia* posterior localization patterns. Confocal micrographs of *Drosophila* oocytes DNA-stained with PI (red) and actin-stained with phalloidin (green) show representative examples of infected *Drosophila* species with different *Wolbachia* localization classes. Second columns depict single greyscale channel images of PI staining. Third columns depict an enlarged PI-stained image of the posterior region of each oocyte. Panels A, B and C are grouped into *Wolbachia* strains that exhibit a Posteriorly Localized, Posteriorly Clumped, or Dispersed localization pattern respectively. Scale bar set at 25 uM.

C

wRi D. simulans

С

Supplemental Figure 6. Cellular *Wolbachia* abundance in stage 10 oocytes measured as *Wolbachia* fluorescence due to propidium iodide (CTCF). Points are color coded by *Wolbachia* localization class (Posteriorly Clumped, Posteriorly Localized, Dispersed), with unique shapes indicating each *Wolbachia* strain and host species. Asterisks indicate significant differences among groups based on one-way ANOVAs and Tukey comparisons using *P*-values <0.05 adjusted for multiple comparisons. Above, a schematic is shown for fluorescent quantification of different regions of the oocyte using the PI greyscale channel: the whole oocyte, the posterior region, and the posterior cortex.

Supplemental Figure 7. Distribution of maximum likelihood estimates of λ from 1,000 bootstrap replicates based on the *Wolbachia* phylogram and *Wolbachia* abundance at the oocyte posterior cortex (log-transformed CTCF). The bootstrap analysis of our *Wolbachia* phylogram is shown to the left (N = 19 *Wolbachia* strains). To the right are simulated phylogenies with an increasing number of *Wolbachia* strains included (N = 25, 50). For simulated trees, character evolution was simulated with our λ estimate of 0.959 using the "sim.bdtree" and "sim.char" functions in the *Geiger* R package (Harmon et al. 2008). For each graph, fitted λ values for the original phylogenies differ slightly from $\lambda = 0.959$, because "sim.char" uses a Brownian-motion model to simulate character evolution along the phylogeny. Below each graph, the mean estimate of λ from the 1,000 replicates ($\overline{\lambda}$) is shown with associated 95% confidence intervals. Small phylogenies (e.g., N = 19) are likely to generate many near-zero λ values by chance, not necessarily because the phylogeny is unimportant for trait evolution (Boettiger et al. 2012). As the number of strains in our analysis increases (N = 25, 50), bootstrapped estimates of λ cluster around the true λ value fitted to the original phylogeny.

Supplemental Figure 8. Gene trees of *Wolbachia* surface proteins. All nodes have Bayesian posterior probabilities of >0.95 unless otherwise noted (see only *wspC*).

Supplemental Figure 9. To gain insight into WD_0501 (RS0225/p44/Msp2) and WD_1085 (RS04910/bamA) cellular function, we ectopically expressed these genes in yeast using a Galactose inducible promoter. Under normal growth conditions, ectopic expression of both genes inhibited growth, with WD_1085 (RS04910/bamA) exhibiting a more pronounced inhibition. Growth inhibition of WD_1085 was dramatically increased when the integrity of microtubules was compromised with the yeast placed in the mad1 spindle assembly checkpoint background or the microtubules were compromised directly through the addition of benomyl. These results suggest that WD_1085 may directly or indirectly interact with host microtubules.

Supplemental Figure 10. Full amino acid alignment of *wspB* (WD_0009) homologs in *w*Mel and the *Wolbachia* strains with a putatively pseudogenized version of the surface protein. Stop codons are indicated by asterisks and insertions of varying length are indicated by "XXX".

wMel_reference wHa wBai wBoc wLeo wBic	MISKKTLAVTAFALLLSQQSFASETEGFYFGSGYYGQYLNNTSVLKTSTTGIKNLSINDR MISKKTLAVTAFALLLSQQSFASETEGFYFGSGYYGQYLNNTSVLKTSTTGIKNLSINDR MISKKTLAVTALALLLSQQSFASETEGFYFGSGYYGQFFNGMGELKTSTTDIKNLSINDR MISKKTLAVTALALLLSQQSFASETEGFYFGSGYYGQFFNGMGELKTSTTDIKNLSINDR MISKKTLAVTALALLLSQQSFASETEGFYFGSGYYGQFFNGMGELKTSTTDIKNLSINDR	60 60 60 60 60
WMel_reference WHa WBai WBoc WLeo WBic	GAQNTEGQSLSEYKGDYNPPFAANVAFGYTGELGNNSYRAELEGMYSSVKVDNIGLT GAQNTEGQSLSEYKGDYNPPLLQMWHLVTQENWVTTAIGLNWKGCILL*KWIILV*Q DAQNTKGQSLSEYKGDYNPPLVIQGNWVTTAIGLNWKGCILL*KWIILV*Q GAQNTKGQSLSKYKGDYNPPFAANVALGYTGELGNNSCRAELEGMYSSVKVDXXXILV*Q GAQNTKGQSLSKYKGDYNPPFAANVALGYTGELGNNSCRAELEGMYSSVKVDNIGLT	117 117 111 120 120 117
wMel_reference wHa wBai wBoc wLeo wBic	SSQITVSYLKETGEDPDKETYLYSAAVSHDQIENISVMANVYHHWKSDRFSFSPYVGIGI VAK*LFHT*RRLVRILIKKLISIVLQLVMTKLRTYL*WQMFIIIGKVTVSLFLLTLVLGS VAK*LFHI*RTLVRMLIKKLISIVLQLIMTKLRTYL*WQMFIIIGKVTVSLFLLTLVLES VVK*LFHT*RTLVRMLVKKLVSIVLQLIMTKLKTCL*WQMFIIIGRVTVSLFLLMLGLES SSQITVSYLKETGEDPNKETYLYSAAVSHDQIENISVMANVYHNWKSDRFSFSPYVGIGI	177 177 171 180 180 177
wMel_reference wHa wBai wBoc wLeo wBic	GATRMTMFEKPSIRPAGQLKAGFDYRINEDVNMHIGYRGFGAIGSDIKLTAKRLGQV VQQE*RCLKNRQ*DPQVN*KLALTIA*TKM*ICISDIEVLVLLVAILSLQQKG*DKW VQQE*RCLKNRQ*DPQVK*KLALTIT*TKM*ICISDIEVLVLLVAILSLQQKS*DKW VQQE*QCLKNRQ*DPQVN*KLALIIT*TKM*ICISDIEVLVLLVVLLVMVLNLQRMR VQQE*QCLKNRQ*DPQVN*KLALIIT*TKM*ICISDIEVLVLLVVLLVMVLNLQRMR GATRMTMFEKPSIRPAGQLKAGFDYRINEDV*XXXCISDIEVLVLLVAILSLQQKG*DKW	234 234 228 237 237 237
wMel_reference wHa wBai wBoc wLeo wBic	VDDPNNDKKKKLNPSSGSKVTEEINIGNQLFHTHGIEAGLTFHFASKA *TTLIMIKKRSLILAQVAK*LRK*I*VINYFIHTV*RLVLLSILPAKL *TTLIMIKKRSLILAQVAKYSISHNSPNRS*EGRINSTTKGFE*RNV- LEKL*MILITGIKRSLMIRVNQQMQQKKI*I*VIHRFTHTV*RLALLSTLPAKL LEKL*MILITGIKRSLMIRVNQQMQQKKI*I*VIHRFTHTV*RLALLSTLPAKL *TTLIMIKKRSLILAQVAKYSTSRNSPNRIRYVLMAMVEQ*HIMICSD	282 282 275 291 291 285

Supplemental Figure 11. Predicted *Wolbachia* surface proteins WD_1063 (*wsp*/RS04815), WD_0009 (*wspB*/RS00060), and WD_0489 (*wspC*/RS06475) were assayed for their effect on eukaryotic cellular processes through ectopic expression in yeast. Note that galactose induction of gene expression of *wspC* kills the cells, while expression of *wsp* and *wspB* inhibits growth.

Host species	Wolbachia	Scaffold Count	N50	Total Assembly Size
D. baimaii	wBai	209	9004	1135209
D. bicornuta	wBic	140	16267	1192611
D. bocki	wBoc	227	7115	1090928
D. burlai	wBurl	128	20905	1248003
D. chauvacae	wCha	406	4802	1300201
D. tsacasi	wTsa	59	29597	1132109
D. nikananu	wNik	83	22663	1257108
D. seguyi	wSeg	201	8880	1174927
D. tristis	wTris	114	20171	1264866
D. leontia	wLeo	186	9149	1096851

Supplemental Table 1. Scaffold count, N50, and total assembly size of each new *Wolbachia* assembly.

Query name	Number	Hit	Name	Prob	E-value	Aligned cols	Target length	Query residues	Domain length
WD_1085	1	COG4775	BamA; Outer membrane protein assembly factor BamA [Cell wall/membrane/envelope biogenesis]	100	3.10E-63	733	766	25-778	753
WD_1085	2	COG0729	TamA; Outer membrane translocation and assembly module TamA [Cell wall/membrane/envelope biogenesis]	100	2.00E-42	505	594	227-778	551
WD_1085	3	COG2831	FhaC; Hemolysin activation/secretion protein [Intracellular trafficking, secretion, and vesicular transport]	100	2.90E-39	490	554	237-778	541
WD_1085	4	KOG2602	Predicted cell surface protein homologous to bacterial outer membrane proteins [General function prediction only]	100	1.00E-31	433	457	315-778	463
WD_1085	5	PF19143.3	Omp85_2; OMP85 superfamily	99.94	2.60E-23	308	360	419-778	359
WD_1085	6	COG4775	BamA; Outer membrane protein assembly factor BamA [Cell wall/membrane/envelope biogenesis]	99.93	6.20E-21	569	766	25-637	612
WD_1085	7	COG4775	BamA; Outer membrane protein assembly factor BamA [Cell wall/membrane/envelope biogenesis]	99.92	2.80E-22	310	766	93-433	340
WD_1085	8	PF01103.26	Omp85 ; Omp85 superfamily domain	99.92	5.40E-22	306	424	454-778	324
WD_1085	9	PF03865.16	ShlB ; Haemolysin secretion/activation protein ShlB/FhaC/HecB	99.87	2.10E-19	285	310	416-742	326
WD_1085	10	COG4775	BamA; Outer membrane protein assembly factor BamA [Cell wall/membrane/envelope biogenesis]	99.61	2.50E-13	232	766	24-275	251
WD_0501	1	PF05736.14	OprF; OprF membrane domain	99.78	3.00E-16	134	186	159-303	144
WD_0501	2	COG3637	LomR; Opacity protein and related surface antigens [Cell wall/membrane/envelope biogenesis]	99.75	1.20E-15	135	199	166-303	137
WD_0501	3	COG3047	OmpW; Outer membrane protein W [Cell wall/membrane/envelope biogenesis]	99.74	1.80E-15	144	213	159-303	144
WD_0501	4	PF06316.14	Ail_Lom ; Enterobacterial Ail/Lom protein	99.7	1.20E-14	179	199	3-303	300
WD_0501	5	PF19573.2	DUF6089 ; Domain of unknown function (DUF6089)	99.67	3.60E-14	186	226	4-303	299
WD_0501	6	PF13505.9	OMP_b-brl ; Outer membrane protein beta-barrel domain	99.65	8.40E-14	175	209	7-303	296
WD_0501	7	SCOP_d1p4ta_	f.4.1.1 (A:) Outer membrane protein NspA {Neisseria meningitidis [TaxId: 487]} CLASS: Membrane and cell surface protei	99.64	2.10E-13	154	155	95-303	208
WD_0501	8	PF01389.20	OmpA_membrane ; OmpA-like transmembrane domain	99.62	2.60E-13	173	202	95-303	208
WD_0501	9	SCOP_d1qjpa_	f.4.1.1 (A:) Outer membrane protein A (OMPA) transmembrane domain {Escherichia coli [TaxId: 562]} CLASS: Membrane and	99.61	4.60E-13	167	171	94-303	209
WD_0501	10	PF03922.17	OmpW ; OmpW family	99.6	3.40E-13	164	201	96-303	207

Supplemental Table 2. Summary of domain annotation results from HHPred for WD_1085 and WD_0501.

Gene	Description	Significant Phylogenetic Signal	Ectopic Expression
WD_1063 (wsp/RS04815)	surface antigen Wsp	None	Growth inhibition
WD_0009 (wspB/RS00060)	surface antigen Wsp paralog	None	Growth inhibition
WD_0489 <u>(</u> wspC/RS06475)	surface antigen, Wsp paralog	None	Lethality
WD_1085 <u>(</u> RS04910)	outer membrane protein assembly factor BamA	Oocyte posterior, posterior cortex	Growth inhibition and sensitive to microtubule checkpoints/inhibitors
WD_0501 (RS0225)	P44/Msp2 family outer membrane protein	Oocyte posterior	Slight growth inhibition
WD_1041 (RS04710)	peptidase M2	None	Not tested

Supplemental Table 3. Summary of results for *Wolbachia* surface proteins.

Locus	Whole Oocyte			Posterior				Posterior Cortex				
	λ	Lower CI	Upper CI	Р	λ	Lower CI	Upper CI	Р	λ	Lower CI	Upper CI	Р
WD_1063 (wsp)	0.000	0.000	0.578	1.000	0.945	0.000	0.993	0.071	0.000	0.000	0.633	1.000
WD_0009 (<i>wspB</i>)	0.000	0.000	0.401	1.000	0.000	0.000	0.374	1.000	0.279	0.000	0.720	0.655
WD_0489 (<i>wspC</i>)	0.210	0.000	0.947	0.659	0.000	0.000	0.845	1.000	0.000	0.000	0.811	1.000
WD_0501	0.000	0.000	0.597	1.000	0.992	0.521	1.000	0.022	0.000	0.000	0.536	1.000
WD_1041	0.000	0.000	0.692	1.000	0.000	0.000	0.555	1.000	0.000	0.000	0.484	1.000
WD_1085	0.000	0.000	0.553	1.000	0.974	0.000	0.998	0.001	0.942	0.000	0.994	0.028

Supplemental Table 4. Estimates of phylogenetic signal (Pagel's λ) with 95% confidence intervals (CI) for *Wolbachia* surface proteins.