Supplementary Figures

Genetics

Improving genomic predictions with inbreeding and non-additive effects in two admixed maize hybrid populations in single and multi-environment contexts

Morgane Roth ${ }^{*, \dagger}$, Aurélien Beugnot ${ }^{\ddagger}$, Tristan Mary-Huard ${ }^{\ddagger}, \S$, Laurence Moreau ${ }^{\ddagger}$, Alain Charcosset ${ }^{\ddagger}$, Julie B.
Fievet ${ }^{\ddagger}$

* Present address: INRAE, GAFL, F-84143, Montfavet, France
† Plant Breeding Research Division, Agroscope, Wädenswil, Zurich, Switzerland
¥ Université Paris-Saclay, INRAE, CNRS, AgroParisTech, GQE-Le Moulon, 91190, Gif-sur-Yvette, France.
A

GY				
eur16	0.33	0.29	0.36	0.36
里家	Img17	0.62	0.40	0.51
, yon		mas17	0.47	0.53
		$\text { M } x^{\circ}$	smh16	0.49
	x^{20}		\%	smh17

B

Figure S1. Correlation plots for each trait in (A) the Het2 population and (B) the iF2 population based on the mean corrected field observations per hybrid

Figure S2. Distribution of homozygosity proportions and of kinship values in Het2 and iF2 populations.

Figure S3. Variance decomposition across environments using 10 models derived from model $M 4$ in Het2 and iF2 populations. A, ADI×Ecom_Inb model and submodels B, ADI \times Espec_Inb model and submodels. In both A and B , the error variance terms $\sigma \mathcal{E}(e) 2$ are environment specific and represented by their average value. In $B, G \times E$ variance terms $\sigma A E(e) 2 \ldots \sigma D D E(e) 2$ are environment specific and represented by their average value. FLO, flowering time; HT, plant height; GM, grain moisture; GY, grain yield.

A

B

Figure S4. Boxplot representing the distribution of predictive ability in scenario «G×E_new_env » (A) and « G×E_new_hyb » (B) obtained with 100 cross-validations in Het2 (a) and in iF2 (b) populations using M4 and submodels. Environment names refers to performances of the validation set. The color legend indicates whether results are obtained with ADI×Ecom_Inb models and submodels ("Common") or with ADI×Espe_Inb models and submodels ("Environment specific"). FLO, flowering time; HT, plant height; GM, grain moisture; GY, grain yield. Each column represents a single environment.

Figure S5. BIC values obtained for each trait and environment in variance decompositions using model M3 and submodels with and without the inclusion of a residual hybrid permanent effect.

Figure S6. Variance decomposition in each environment including a random residual hybrid permanent efect with model M3 and submodels. A, Het2 population; $\mathrm{B}, \mathrm{iF} 2$ population.

Figure S7. Predictive ability as a function of BIC values using model M2 and submodels.

Above zero means multi-env training better than single env training

Fig. S8. Difference in predictive ability between multi- and single environnement calibration (scenario GxE_new_hyb vs within-environment).

