1 **Supplementary Table S1** Resistance to Cry1Ac in the GA-RS strain of *Helicoverpa zea* based

2 on 7-day diet bioassays.

			Percentage (%)			
GA-RS generation	Concentration (µg Cry1Ac per cm ² diet)	Number of neonates tested	Dead	First instar	Second instar	≥ Third instar
2	1	48	4.2	0.0	8.3	87.5
2	10	48	18.8	22.9	47.9	10.4
12	1	3839	6.1	9.4	33.2	51.3
12	10	3712	34.9	22.8	33.7	8.6
22	1	640	11.2	16.2	36.9	35.6
22	10	1280	62.8	14.8	19.6	2.8
23	1	1274	11.1	14.4	41.1	33.4
23	10	1274	58.7	20.0	18.6	2.7
26	10	3788	63.2	17.9	16.0	3.0

3 We analyzed generation 12 using GWAS and generations 22, 23, and 26 with fine-scale

4 mapping. For control larvae reared on diet without Cry1Ac, mean survival to third instar was

5 96% (range: 91-100%, mean n = 99 control larvae per bioassay in five bioassays).

Supplementary Table S2 Primers used to amplify HRM genotyping sites. The K12 site was used to genotype at the C564T mutation causing a stop codon in *kinesin-12*.

11

Site	Forward Primer (5 ⁻ - 3 ⁻)	Reverse Primer (5 ⁻³)
1	CACAAATGTTCTGTGAGTCAAT	TAATCAAGGAAGTGTGCAAGA
2	GGTAGAAAGCTGGCAATCA	GGAAGAAGAACTCGACAGTG
3	GCCAACCAGTTCCATCTC	GCAACTTCAATCGTACTAATGT
4	TTTAAACCGACAGTAGTACAGG	CATCCGACACGCAACAA
5	GTCACCGTCCATATCTTCTTC	TGGAGAACCTTCAGTAAACAC
6	CGTTCTTATATTTCATCCGCAA	TATTACGTAAGAGACCGCAAA
7	GGTTTAGTCATTACCCGTGTT	CTCATTAGGAGCGGTAGTTTAG
8	GGAAGCTTGCCAGACAAA	CTATTTACGTAGAGAAGGCTGT
9	GCCACAATTAAATTAACGACCA	TGAATGACTATTACGACACAGC
10	CTAGACACCTTGCGAATGAC	CGCCTACAATAGGACATTACAT
11	CTGTCGAAGTTACTGTAGTTATCAT	TCTTTGTGTCATTACATTGGTG
12	TGGATGACGTAATCGTGTG	CCGTTTCAACTGAACACTTC
K12	CCGAACTTGAGGCAAGA	GTTACCCGTGCTGTCTTT

14 **Supplementary Table S3** Calculation of dominance (*h*) of resistance based on genotypes at

15 marker 4 for *H. zea* larvae from GA-RS in the F22, F23 and F26 generations.

16

	Ger	notype at mar	rker 4		
Generation	GG	GL	LL	GL/GG	h
Resistant larvae					
F22 & F23	40	17	0	0.425	
F26	16	7	0	0.438	
Total	56	24	0	0.429	
Control larvae					
F26	24	44	21	1.833	0.23
<i>Susceptible larvae</i> F22 & F23	13	24	12	1.846	0.23

¹⁷

18 G indicates the allele was more common in the resistant GA-R strain, L indicates the allele was

19 more common in the susceptible LAB-S strain. At marker 4, which is relevant here, allele G was

at 100% in GA-R and L was at 100% in LAB-S, so we can infer G originated from GA-R and L
from LAB-S (see text).

22

23 We calculated the dominance parameter h, which varies from 0 for recessive resistance to 1 for 24 dominant resistance, based on the equation from Liu and Tabashnik (1997):

25 (1) $h = (w_{12} - w_{22})/(w_{11} - w_{22})$

26 where w_{11} , w_{12} , and w_{22} are the fitness values at a particular toxin concentration for resistant

27 homozygotes, heterozygotes, and susceptible homozygotes, respectively. Typically, survival at

28 the given toxin concentration is used to estimate fitness, which is reasonable because the survival

29 of each genotype is likely to be correlated with its fitness.

30 To calculate *h*, we used the data from marker 4 to estimate survival of putative resistant

homozygotes (GG), heterozygotes (GL), and susceptible homozygotes (LL) exposed to 10

32 micrograms Cry1Ac per cm² diet. At this concentration, survival of LL was 0.

33 When survival of susceptible homozygotes = 0, equation (1) reduces to:

34 (2) $h = w_{12}/w_{11}$.

³⁵ Thus, we estimated *h* as the survival of GL relative to GG for larvae exposed to diet with 10

³⁶ micrograms Cry1Ac per cm² diet. We calculated h as the ratio of GL/GG for resistant larvae

37 (which survived on diet on with 1 microgram Cry1Ac per cm² diet) divided by the ratio of

³⁸ GL/GG for control or susceptible larvae. For resistant larvae, the number of GL relative to GG

³⁹ did not differ significantly between F22 and F23 versus F26 (Fisher's exact test, P = 1). Thus, we

40 used the ratio of GL/GG from pooling data from F22, F23, and F26 (0.429) to calculate h.

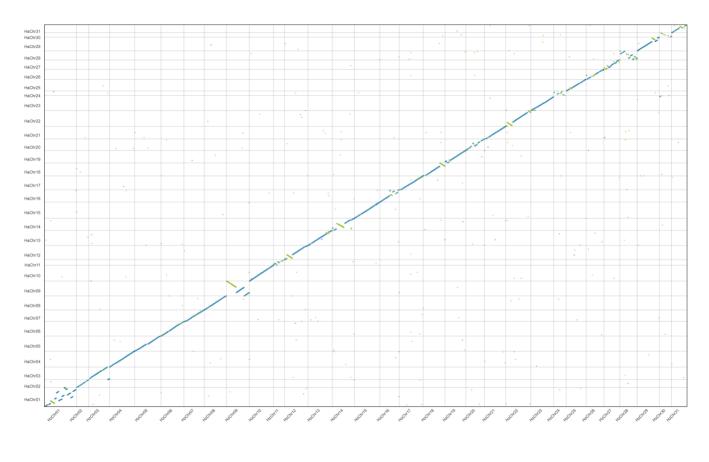
- 42 In principle, GL/GG in GA-RS is best estimated by GL/GG for control larvae, which were reared 43
- on untreated diet. However, GL/GG was similar for control larvae (1.833) and susceptible larvae 44
- (1.846), which were live first instars on diet with 1 microgram Cry1Ac per cm² diet. Therefore, 45
- the value of h was 0.23 using GL/GG in GA-RS calculated from either control or susceptible 46
- larvae. We note that the dominance of *r1* could be affected by variation in the frequency of one
- 47 or more resistance alleles at other loci.

Supplementary Table S4 Genome assembly and annotation statistics for the *de novo H. zea* genome as compared to that of Pearce *et al.* (2017).

5	1
J	1

	Current assembly	Pearce et al. 2017 assembly
Genome size (Mb)	375.2	341.1
# of scaffolds	31	2975
Scaffold N50 length (Mb)	12.9	0.2
# of contigs	32	34,676
Contig N50 length (Mb)	12.9	0.01
Gaps (Mb)	0.0001	34.1
GC content (%)	36.9	36.2
Repeat content (%)	33.0	16.0
Number of proteins	15,842	15,200
Genome BUSCO (%)		
Complete	98.9	96.6
Single copy	98.5	95.4
Duplicated	0.4	1.2
Fragmented	0.3	1.1
Missing	0.8	2.3
Proteome BUSCO (%)		
Complete	93.6	91.9
Single Copy	93.0	91.0
Duplicated	0.6	0.9
Fragmented	1.2	1.9
Missing	5.2	6.2

Supplementary Table S5 Amino acid sequence identity for the predicted kinesin-12 protein in five species of Lepidoptera relative to the LAB-S strain of *H. zea*

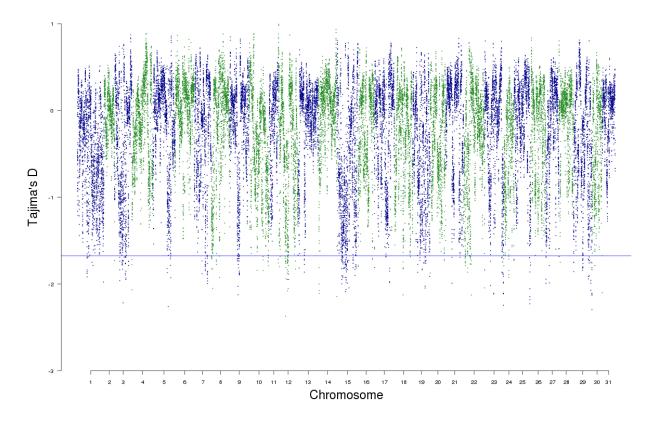

56

	Overall identity (%)	Identity upstream of C546T (%)	Identity downstream of C546T (%)
H. armigera	97	98	97
C. virescens	87	91	85
S. litura	61	74	55
M. sexta	44	44	44
B. mori	38	38	44
Mean	65	69	65

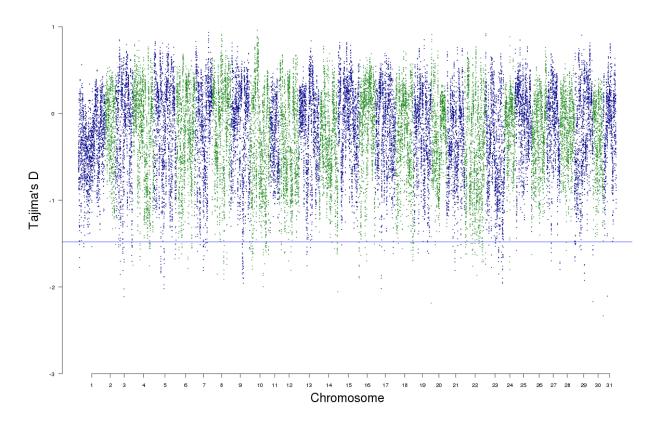
- **Supplementary Table S6** GO categories identified by DeepGOPlus to be associated with the
- kinesin-12 protein and their confidence scores. Only predictions scores above a threshold of 0.3
 are shown

GO Type	GO term	GO description	Prediction Score
Cellular Component			
	GO:0110165	cellular anatomical entity	0.453
	GO:0043226	organelle	0.412
	GO:0005622	intracellular anatomical structure	0.403
	GO:0043229	intracellular organelle	0.381
	GO:0043232	intracellular non-membrane-bounded organelle	0.381
	GO:0043228	non-membrane-bounded organelle	0.381
Molecular Function	GO:0005488	binding	0.358
Biological Process			
	GO:0009987	cellular process	0.370

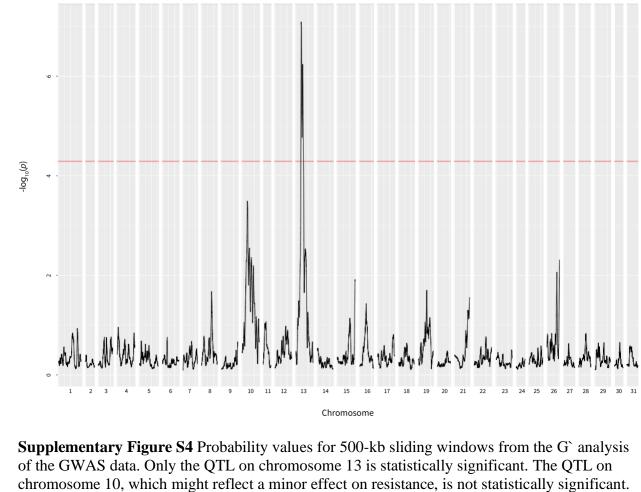
66	Supplementary Table S7 Results of differential expression for all 12,965 genes analyzed in
67	edgeR.
68	
69	Supplementary Table S8 The genes differentially expressed between GA-R and LAB-S 3 rd
70	instar midguts.
71	
72	Supplementary Table S9 The genes differentially expressed between RR and SS genotypes.
73	
71	



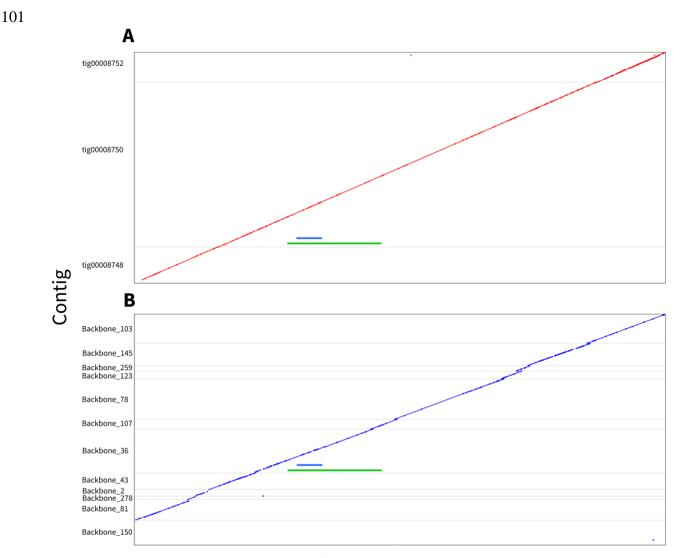
78 Supplementary Figure S1 Syntenic comparisons of chromosomes from our *de novo H. zea*


assembly (x-axis) and *H. armigera* (y-axis; Valencia-Montoya *et al.* 2020). Green lines that are

80 perpendicular to the main line in blue (from the lower left to the upper right) represent


chromosomal inversions. Chromosome 1, the Z chromosome, has one inversion (see text fordetails).

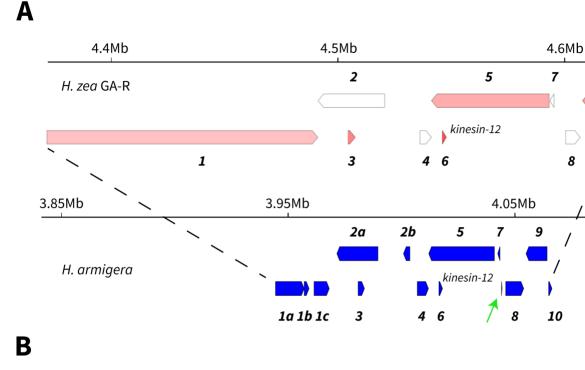
Supplementary Figure S2 Genome wide measures of Tajima's D across 50-kb sliding windows in GA-R. The blue line represents the 95% percentile of the distribution. 88

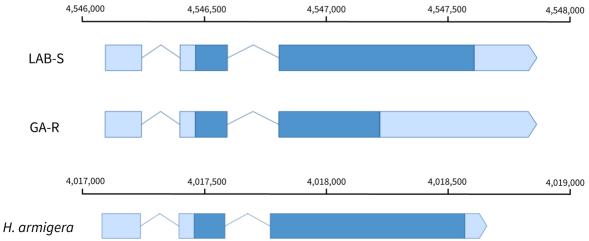


Supplementary Figure S3 Genome wide measures of Tajima's D across 50-kb sliding windows
 in LAB-S. The blue line represents the 95% percentile of the distribution.

The red line corresponds to an FDR-corrected *P*-value of 0.05.

95


H. zea chromosome 13 position


102

104 **Supplementary Figure S5** Assembled chromosome 13 contigs plotted against the broad QTL

105 (4.0 - 6.5 Mb) in green and the region within this QTL that was tightly linked with resistance

- 106 (4.3 4.6 Mb) in blue. (A) Contigs from the Canu PacBio assembly. (B) Contigs from the hybrid
- 107 DBG2OLC assembly. The narrower region was captured in a single contig in both assemblies.
- 108 The wider region was captured in a single contig in our Canu assembly. In our DBG2OLC
- assembly, all of the wider region except from 6.3 to 6.5 Mb, which was not closely linked with
- 110 resistance, was captured in a single contig.
- 111

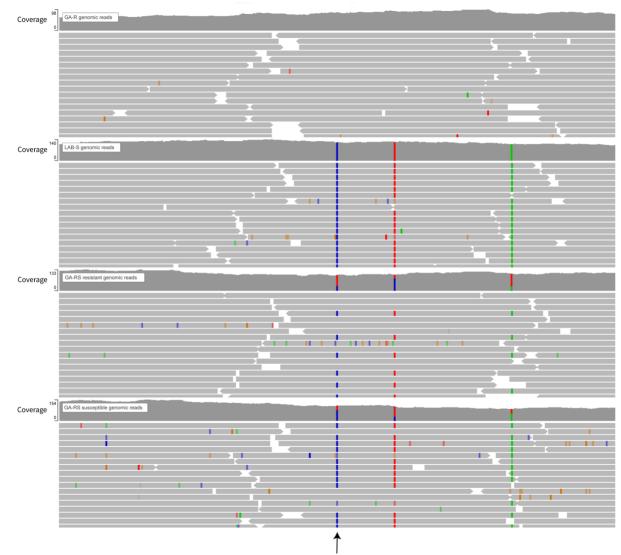
114

115 **Supplementary Figure S6** Comparison of genes between *H. zea* and *H. armigera* in the *r1* 116 region. (A) Genes in the *r1* region. Reverse strand at top, forward strand below for each species. 117 Genes that are homologous between species share the same number (from 1 to 10). For H. zea, 10 118 genes occur in the region and seven of these (shown in pink) are expressed in 3rd instar midguts 119 (Table 2). For H. armigera, 14 genes are annotated (Pearce et al. 2017; Valencia-Montoya et al. 120 2020); midgut expression data are available but not shown here. Of the four additional annotated 121 genes in *H. armigera*, three have homology to parts of annotated *H. zea* genes, which suggests 122 these differences between species reflect splitting genes in *H. armigera* versus merging them in 123 H. zea. One gene in H. armigera (marked by a green arrow) was not annotated in H. zea but is 124 only 233 bp long, and therefore unlikely to be a protein-coding gene. (B) Structure of the

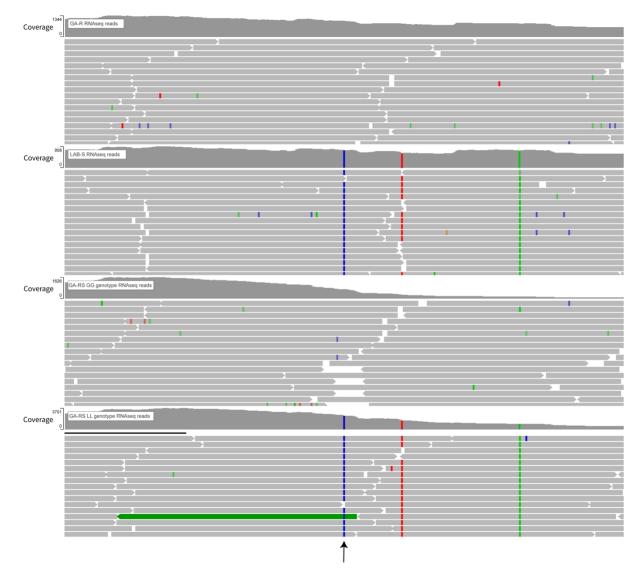
125 kinesin-12 gene in the LAB-S and GA-R strains of H. zea compared with H. armigera

9

) / 10

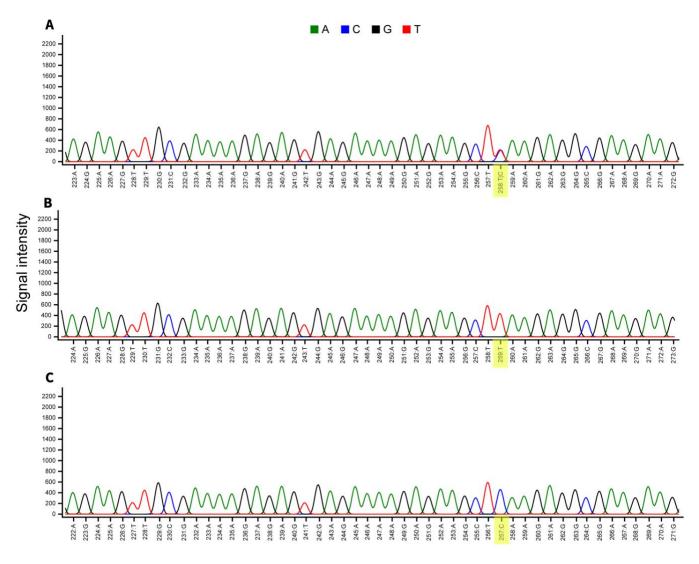

- (XM_021337566.1). Dark blue represents coding regions, light blue represents UTR. The numbers above the lines represent base pair positions on chromosome 13.

H_zea_GA-R H_zea_LAB-S H_armigera C_virescens S_litura M_sexta B_mori	.MFKFGFKASLNFYNGS.RKSKKERDDIGAISSVTGAYRTNRDEFFGHNYSETQRKSTPLN.ASVPNLDQPTP .MFKFGFKASLNFYNGS.RKSKKERDDIGAISSVTGAYRTNRDEFFGHNYSETQRKSTPLN.ASVPNLDQPTP .MFGFKARLNFYNGS.RKSKKERDDIGAISSVTGAYRTNRDEFFGHNYTETQRKSTPLN.ASVPNLDQPTP .MFKFGFKASLNFYSGGRRKSKKEHDDIGAISSVTGAYRTNRDEFFGNN.ETHRKSTPLN.ASVTNLDQPTP .MFGFKASLNFYNGSRRKSKKEHDDIGAISSVTGAYRTNRDEFFGNN.ETHRKSTPLN.ASVTNLDQPTP .MFGFKASLNFYNGSRRKSKKERAEIGAVLSVTGAYRTNRDEFFGNNYPEM.RKSTPALYNQPPAAAPPVR MMKLGGFKASLNFNGSRRKSKKERAEIGAVLSVTGAYRTNRDEYFGNDRVYEPPKKLTPSMVKLPRSHETS MLKFG <mark>GFKASLN</mark> IFNSKRH.SKEHAEFEPGLCITGAYRTNRD	70 70 68 69 70 70 72		
H_zea_GA-R H_zea_LAB-S H_armigera C_virescens S_litura M_sexta B_mori	PMRKNKSTSDLVKNKNLPPNLRQENPGVSQDPRGAEQDIRSKNPPDSERKLDAQRRVEKQRLEEQKKIEKQ PMRKNKSTSDLVKNKNLPPNLRQENPGVSQDPRGAEQDIRSKNPPDSERKLDAQRRVEKQRLEEQKKIEKQ PMRKNKSTSDLVKNKNLPPNLRQENPGVSQDPRGAEQDIRNKNPPD.SERKLDAQRRVEKQRLEEQKKIEKQ PMRKIKSTSDLIKNKNLPPNLRQENPGVSQDPRGAEQDIRNKNPPD.SERKLDAQRRVEKQRLEEQKKIEKQ PMRKIKSTSDLIKNKNLPPNLRQENPGVSQDPRGAEKDIRNKNPPD.SERKLDAQRRVEKQRLEEQKKIEKQ PMRQAKSTSNLILDKNLPPNLRQENPGVSKDPRGAEQDPRNNRIPDKSKERKLDAQIRVDKQRLEEQKKIEKQ PMRQAKSTSNLILDKNLPPNLRPENPGVSKDPRGAEQDPRNNRIPDKSKERKLDAQIRVDKQRLEEQKKIEKQ EIRPTKSTSDLTKTNN.LPTHLRHSTPTVSLDPRGEEQRAPVNSTNGVTT.VV.PNAK TTRPTKSLGNLTLATSSTMKAVPNQNTTDVSTDPRGDGDRDIKNP.SHKQ	141 141 139 140 143 125 121		
H_zea_GA-R H_zea_LAB-S H_armigera C_virescens S_litura M_sexta B_mori	C546T	183 202 200 198 218 196 181		
H_zea_GA-R H_zea_LAB-S H_armigera C_virescens S_litura M_sexta B_mori	PLAQATASTSNNPLCQGSRQMAHSTNTLDSSISKSSGPPPYTDVQ.EGEKDSTGNVTYAKPIDTGSW PLAQATASTSNNPLCQGSRQMAHSTNTLDSSISKSSGPPPYTAVQ.EGEKDSTGNVTYAKPVDTGSW PLAQA.STSNNPLAQGSRQMSHSTNTLDSSISKSSGPPPYSAVPNGEGEKDSTGNVTYAKPVDTGSW PVAQLRQQPQPSTSNAQPAQMTHSTNTLESSISKSSGPPPYSAS.RPEGEKDATGNVIYTKPDEEDSW PTSNIAQQRSANPLSQPANYPTNTLDSSISRSSGPPPYTEVPKTVPKQEPATKQNHGTGDVIFIEPIDTGSW VPSLGHGSAKYSINTLDSSISRSTGPPPYSETATELVTLDASDATRDVSFGKPIDTGTW	183 268 266 264 285 268 240		
H_zea_GA-R H_zea_LAB-S H_armigera C_virescens S_litura M_sexta B_mori	DMISQHRENIKRPVNVGAAATKQKVMDLNYKMDDGNRENSEA 183 DMISQHRENIKRPVNVGAAATKQKVMDLNYKMDDGNRENSEA 308 DMISQHRENIKRPVNVRPAATKQTVMDLNYKMEDGNKENSEA 308 DMISQHRENIKRPVNVRPAATKQTVMDLNYKMEDGNKENSEA 306 DMISQHRENIKRPVNVRPAATKQTVMDLNYKMEDGNKENSEA 306 DMISQHRQVSKSTKTTPAATKQTVMDLNYKMEDGNKENSEA 306 DMISCHRENNRAAAAAAAAAAAAKSAKQTVMDLNYKKKGDDSKDNSEA 333 DMVSQHRQQVSKSTKTTEVSNKQRVMDLNYNKKKEKNNTDA. 309 DIVAEHREQLNRTTHAVDKNDKQTVIDLNY 282			
Supplementary Figure S7 Alignments of kinesin-12 including both forms from <i>H. zea</i> , <i>H. armigera</i> (XP_021193241.1), <i>Chloridea virescens</i> (PCG76683.1), <i>Spodoptera litura</i> (XP_022828947.1), <i>Manduca sexta</i> (KAG644083.1), and <i>Bombyx mori</i> (XP_004927959).				

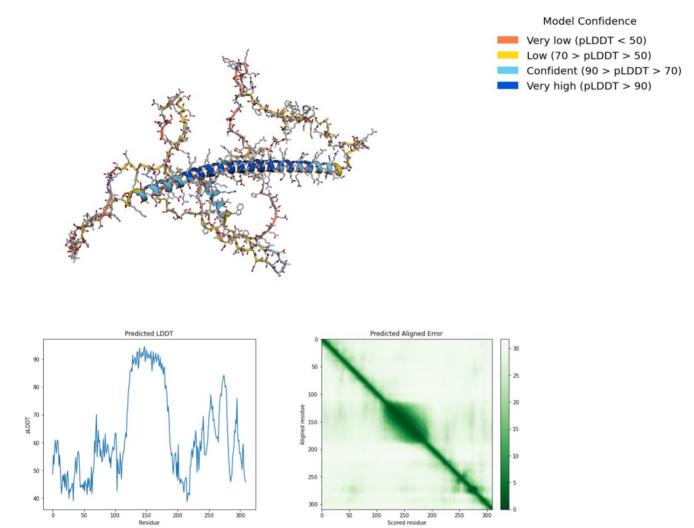

133 (XP_022828947.1), *Manduca sexta* (KAG644083.1), and *Bombyx mori* (XP_004927959).
134 Consensus amino acids are highlighted. The location of the stop-codon mutation is marked as

135 C546T. The annotated sequence in *B. mori* contained extra amino acids at the start of the protein,

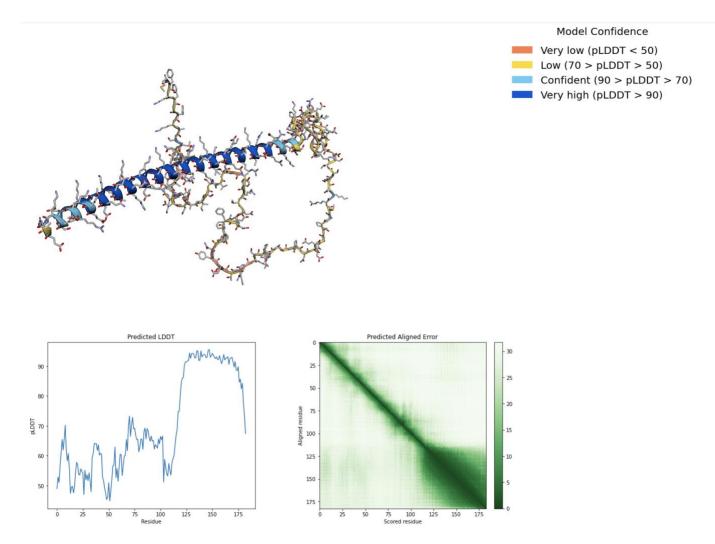
136 which we removed for this alignment to match the other six sequences.



- Supplementary Figure S8 Mapped genomic reads from GA-R, LAB-S, resistant and
- 140 susceptible GA-RS samples, with the arrow pointing to the *kinesin-12* stop codon mutation.
- 141 Colored bars indicate reads containing SNPs different from the GA-R reference.


144 Supplementary Figure S9 Mapped RNA-seq reads from GA-R, LAB-S, GG, and GL samples,

145 with the arrow pointing to the *kinesin-12* stop codon causing mutation.


Position in Sanger sequence

- **Supplementary Figure S10** Sanger sequencing chromatograms for showing the position of the
- *kinesin-12* stop codon mutation highlighted in yellow. (A) A GA heterozygote sample. (B) A GA
- 150 sample homozygous for the stop codon. (C) A Tifton, GA field sample homozygous for the wild
- 151 type allele with no stop codon.

154 Supplementary Figure S11 Predicted protein structure of the full-length (LAB-S) H. zea

- kinesin-12 from AlphaFold.

159 Supplementary Figure S12 Predicted protein structure of the truncated (GA-R) *H. zea* kinesin-

- 160 12 from AlphaFold.