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1 Derivation of Eq. (3)

In this section, we derive Eq. (3) of the main text, which is redisplayed below:
E[ALkz )] = Cwiz )™ {eov; [(wig), iz + ave; [covis [wi, kis]] }

where the symbols are defined as follows:

(i) o= =2 S ki) (51)
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where M is the total number of replicators, n; is the number of replicators in collective ¢, L
is the number of collectives, and

<kij> = Z Kij,

<<w2j>> = MZ

(wgz) = . Z Wig
e (52)

cov; [<ww> <sz Z <U)Zj> Cw; >>) (<k1j> <<k">>)

- :\

1
cov;; [wij, ki == - (wij —wi)) (kis — <kiz))
tj=1
1 L
ave; [COVij [wij, k?z]]] = — n; COVﬁ [wij7 kz]] .
M i=1

In each generation, a replicator is sampled M times with replacement from replicators
of the previous generation with probabilities proportional to fitness w;;, as in the Wright-
Fisher process (see the main text under “Model”). To express {k;;) in the next generation,
we introduce the following symbols. Let I; be the index of the collectlve to which the [th
sampled replicator belongs (I € {1,2,---,M}), J; be the index of the sampled replicator
within collective I;, and P(I; = i,J; = j) be the probability that replicator j in collective i
is sampled. By the definition of the Wright-Fisher process,

Pl =i, J=j)= (S3)

W
M <<w e
Moreover, let g, 5, be the effect of mutation and P(ey, ) be its probability distribution func-
tion (e, takes a value of 0 with a probability 1 — m or a value sampled from a Gaussian
distribution with mean 0 and variance o with a probability m). Finally, let E[x] denote the
expected value of = after one iteration of the Wright-Fisher process; e.g.,

L n;

Bk, + ena] = > Y P(L =i, Ji = j) fdp(ﬁfm)(’fij +€eng)- (S4)

i=1j=1

Using these definitions, we can express the expected change of ((k;;)) per generation, denoted
by E[A(k; )], as follows:

M

E[ALk;)] = [ D (kg Ewl)] = Lkiz)- (S5)

=1

Since I; and J; are independent and identically distributed for different values of [, we can
remove the summation in the above equation to obtain

E[ACKkz )] = Elkrs + er] = Kz
= E[krs] = k5,

2

(56)



where we used the fact that E[e;;] = 0 and omitted subscript .
The first term on the RHS of Eq. (S6) can be calculated as follows:

E (k1] = iip = J)kij
212 )
— Gyt — 22% ki

= <<w D ! Z nznj 2 w;jkij; (S7)
= Luyy ' — Z n; (Cwiz )kiz) + covys [wi, kijl)

- w5, (3 g ) + aves [eovy 1]

= Cw) ™" (cov; [sz;% (ki) + Cwi ki) + ave; [covis [wi, ki)
= ki + Lwzz )y~ Heov; [Cwiz), (k] + ave; [covy; [wij, kijl] }-

Substituting Eq. (S7) into Eq. (S6), we obtain Eq. (3).

2 Derivation of Eq. (4)

In this section, we derive Eq. (4) of the main text, which is redisplayed below:
E[ALK; )] = SaVa — Swy + O(s2) + 0O(s2),

where the symbols are defined as follows:

U, 1= COV; [<kw> <kw>] ]\142 (<k”> Lk >>)
Uyi 1= cov,j [kij, kij] = 1@2 (k: <kw> (S8)
Uy = ave; vm = Z T Uy -

Equation (4) is obtained by expanding (w;;) and wy; in Eq. (3), i.e.,

Alk) = Cwig )~ eov; [(wig), (i) | + Cwiz )~ ave; [covi [wiy, kij]]

as Taylor series around (k;5) = {ky;) and k;; = (k;3), respectively.



First, we obtain the first term of Eq. (4), which stems from the first term of Eq. (3). We
assume that (w;s) is an analytic function of (k;;) and that (w;) = Cwy;) for (k;z) = (ki ).
Expanding (w;;) around {k;;) = (k; ), we obtain

) = ) + S (g = Q) + S (G = ) o (69)
Dividing both sides by {w;;)), we obtain
<wz’3> -1+ 1 a<wz‘j> 1 92<wz’3>

(Cigy — k) + (Chigy — k) + -+ . (S10)

Cwzy — Lwyy ok Quwgz ) Xkiz)?

By the definition of selection strength (see the main text under “Model”),
1 Kwgs) _ 1 Xw;)

Cwig) &K | smry (<wi5> 3</fi5>)

= Sa

Chigy=Cksz (S11)

By mathematical induction, it can be shown that
1 5l+l<wij> _ < 0 N 1 8<wi3>> 1 &l<wi5>
<wz‘j> (7<kz‘j>l+1 a<kz‘j> <wi§'> 0<ki3> <wz‘j> a<kij>l
forl e {1,2,3,---}. Sinceit is assumed that 0s,/0(k;;) = 0 (see the main text under “Model”),
the above equation implies that

(S12)

1 8l<w-5>) .
: = 5. (S13)
QMQ&%V Chigy=Chizy
Given the above equation, Eq. (S10) implies that
(wz)
5= 1+ s (g — k) + O(s). (S14)

Cwi )
Therefore,

iz )~ cov [(wiz), kizy] = cov; [1 4+ sa (g — L)) + O(s2), (ki)

S15
= 8,Ua + O(5?) (515)

Second, we obtain the second term of Eq. (4), which stems from the second term of Eq. (3).
Using the same method as above, we can show that
<wi3>_lcovi3 [wij, kij] = —Swiwi + O(s2). (S16)

We assume that (w;;) and vy,; are statistically uncorrelated as i varies (this is equivalent to
assuming that (k;;) and vy, are uncorrelated). Under this assumption,

ave; [COVZ; [wj, kw]] = ave; [—<wi3> Sw Uwi + O(sfv)]
= —ave; [<w”>] Sy ave; [Uyi] + O(s2) (S17)
= _<<wij>>3vvvw + O(S?zv)'
Substituting Egs. (S15) and (S17) into Eq. (3), we obtain Eq. (4).
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3 Derivation of Eq. (8)

In this section, we derive Eq. (8), which is redisplayed below:

E[v,] = (1 =B8N [vw + mo — sy + O(s2)]
E[v)] = (1= M™") [va + Saca + O ((sw + 52)°)]
+ (BN = M) [vw + mo — syew + O(s3)]

3.1 Calculation of E[v/ ]

To calculate E[v!,], we introduce the following symbols. Let n} be the number of replicators
in collective i after one iteration of the Wright-Fisher process. Note that n} is a random
variable and can be expressed as

M
= 6ni (S18)
=1

where 07,; is the Kronecker delta (i.e., 6, = 1 if I; = 4, and 67, = 0 otherwise). Moreover,
let (ki) and {¢;;.) be the sample mean of ky,;, and ey, 5, within collective i:

1 n
Ckigy) = ﬁz i
" " (S19)
<€iJl~> = Zeflfla
=1

which are defined to be zero when n; = 0. The probability that J, = j given I; = i is

P(I=iJ="4)
P(I =)
 P(I=i,J=1)
S P(I=4,J =)
_ Ry .
Z;LZZI Mééz)]z;» (5820)
M)
niw;z)
Mz
wij

niwg) 7

P(J=j|I=i) =

where Eq. (S3) is used.
Using the symbols defined above, we can express the sample variance of k;; within collec-
tive 7 in the next generation as

=

7

(ki + € — ki) — <€iJl~>)2 ) (S21)

1

<
I
ENE

l



which is defined to be zero when n) = 0. Using v, we can express E[v] ] as follows:

wi)

[ Z nlv W@] . (S22)

In the last equation, we can separate k;;, and €;;, as follows:

(ki]l + €, — <kiJl~> - <€z‘Jl~>)2 ]

!
Sk
Ind
gk

( iJp T <kﬂz>) (EiJz - <6Ur>)2 +2 ( i T <liz>) (eiJl - <€“Z>)} ]

=E _M ;l_l (Fig — Ckig) ] [ ;Zl €, = Ceip) ]
+2FE []\14 ; l=i1 ( i — ki >) (Q’Jl - <61J5>) ] )

(523)

The last term of the final line of Eq. (S23) can be shown to be zero, as follows. With the
Kronecker delta dj,;, this term can be calculated as

3

7

S
Il
—
—
Il
—_

li|
<[~
R

( iJ, <k1J >) (eiJz - <6UZ>) ]

M=
M=

|
=
| —

I
=) -
M= ==
M= I

~
I
—
—
Il
—_

(5]”‘ (]f]lJl - <szl~>> (EUZ - <€Uz”>) ] (824)

@
Il
—
~
Il
—

E [(51”' (kIlJl - <]fle>)] E [(Q’Jl - <€iJl~>)]

=

where we used the fact that k;; and ¢;; are independent of each other. Therefore,

:E[]\ZZZZ(]{:ZJZ <k7“]> ] [ ZZ Eljl <€ZJ> ] (825)

i=110=1

To calculate the first term of Eq. (S25), we define within-collective conditional expectation
as follows:

Ejr—ilz1s] Z P(J = j|I = i)z, (S26)

j=1



Using Eq. (526), we can transform the first term of Eq. (525) as follows:

(ks </m>>]

- [AZZZ = Eoreilbas] + Bupeilhns] - <kul~>)2]
{i (ki = Egjr=ilkrs]) +g (Eppiilkrs] — kis))’
(ki — Erelbisl) (Bl — i) }]

{ 5% (b~ Enpcll)? + 1 (Eorlbns] — (i)’

— (827)
+ 2 (Egjr—ilks] = kisp) é in = Egi=ilkis]) }]
_E [J\14 2 { g (ki = Barillrs))” + 0 Brmilkns] = Chis)”
+ 2 (Egprilkrg] = ki) mi (Chis) = Egprilkrs]) }]
B [1 5 | 5% (i~ Enpcll)” = () — Eslins)’ }]

MZE[Z i — Egrzilkrs]) ] ZE[ (ki) — Eyjzilkrs]) ]

]\1/[ Z E| > (ki — Egjreilkes])” ]

1
:MZE Z (]fi]l — 2]EJ|I=i[l€IJ]kJiJl + ]EJ|]=Z'[]€]J]2) ]

Zzl . l:‘l n/ (528)
1 d d
:MZE Zkiﬁ - QEJ\I:i[kIJ]ZkiJZ + n;EJll—i[kIJ]Ql
i=1 | i=1
1 & v
:MZ {El k:Jl] —2]EJ|I i k?IJ [ZkZJl] +E ]EJ|[ 1[kIJ] }
i=1 =1



Using the Kronecker delta d;,;, we can show that

E[Z k’u,] = E[Z 5Ilik1ljl]
=1 =1

E [5IlikIsz]

I
M=

N
Il
fu

E [07:k1s]

g

Y IPU =i, J = j)k; (529)

j=1

I
SO

= MP(I =i) Y P(J = j|I = i)k;
j=1

Likewise, we can show that

ElZ kal] = ]E[Z 5,ﬂk§ﬂl]
=1
M
n; (S30)
v .

= T B}




Also, we can show that

I
M=

E[dfﬂ']

N
Il
—

I
= = 5

(S31)

3
N
8
N

<<w~~>>

Using the above results, we can transform the last line of Eq. (S28) as follows:

({5t S vt
niw

Rin

{n<w Eyp_i[k2,] — 2B yy_i[krs] <<i)w;>>

Bk }

7
i

Ejir=ilkrs] +

= \

E 1= ilkrs)?
- - o
{<< wyy =itk = 7

n<1<:;> {EJU i kIJ] ]EJ|I z[kIJ] }

The conditional expectation in the last line of Eq. (S32) can be calculated as follows:
EJ|I z[k%]] — Ejjr=ilkrs]?

J
_ L1 2
tj=1 tj=1

— ()™ (coviglwis, k3] + Cwg)kBY) = {Cwg)™ (covgluwg, kif] + Cwg)h) Y
:<wi3>_lcovi3[wij, ]+<k: =) — {<w”> lcovm[wzj7 i +<k”>}

= vi + (wi)eovgwiy, k] — {Cug) T eoviglwiy, kil — 2w covigwig, iyl
= vi + (w) " eovyg [wig, (ki — )] — {Cwid ™ covislwiy, ki)
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where we used the fact that <k:12]>—<kw>2 = Uy;. The last line of Eq. (S33) can be interpreted as
the expected variance of k;; within collective 7 after one iteration of the Wright-Fisher process
excluding the effect of random sampling. Thus, let us introduce the following symbol:

Ay = (EJ\I:i[k?J] - EJ\I—i[kIJ]z) — Uwi
= <wi3>71COVi I:wU? ( <k1j> ] {<w1]> 1COVZ] [w’LJ? kl]]}2 )

which denotes the expected change of the variance of k;; within collective ¢ due to within-
collective selection.

Combining Egs. (528), (S32), (S33), and (S34), we can transform the first term in the last
line of Eq. (S27) as follows

1 & [ ;
ZE[ (ki = Egjr=ilks]) ] 2"<w (Vs + Astns) ($35)

(S34)

Cwzp

L

7 2B [ ()~ B i)
=1

zzleﬁ B EE koj
5| i i — P J1=ilkry

(
St S]]
:AZZm;i{fxmh Em»mun}1 (536)
{

ZE[ Z le_]EJ|I=i[kIJ])2]7

lll

where we used the fact that k;; and k;;,, are independent of each other for [ # m in the final
step. Since n can be zero, the last line of Eq. (S36) needs to interpreted as follows:

18 , (o, if n} =0
n! ; ( J; JII [ IJ]) {;;Zl—ll (kiJl _ EJ\I:z‘[k[J])Q, i n; - 0. ( )
Thus,
18 0 if 0! = 0
E| =3 (kij, — ik —{7 i S38
nj & (ki ~ Eapa=ilias]) ] {Eﬂzi[k%,] — Ejroilkis]?, if nf >0, (55
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where the case for n; > 0 follows from a calculation similar to Egs. (S28) and (S32).

To calculate the last line of Eq. (S36), we separate the case wheren) > 0¥i € {1,2,3,--- , L}
and the case where n, = 0 for some i € {1,2,3,---,L}. Let S be a proper subset of
{1,2,3,---, L}, and P(S) be the probability that n; = 0Vi e S and n, > 0 Vi ¢ S. The value

of P(S) can be estimated as follows:

€S

P(S)< [1-)> P = i)]

&gy
mexp( an<w ),

where the RHS of the first inequality is the probability that n, = 0 Vie S and n, >0 Vi ¢ S.
Using these symbols and Eq. (S34), we can express the last line of Eq. (S36) as follows:

-y s >] (539)

3‘»—*
S

[ i, — Egr= kIJ]) ]7

z
=1

~

i‘»—t I\Mh

P Z EJ|I=i[k%J] - ]EJ|I:i[kIJ]2)
¢S

2
_ g ) Y (vwi + Agvyi) (S40)

¢S

<[~

1 L
= MZP 2 (Vwi + AgUyi) —Z(Uwi—i-ASUWZ’)
S i=1 €S
L
= 75 Z Vi + A vwz - Z Z Vywi + AS/UW’L')
M= M S#G i€S
where )4 is a summation over all possible S < {1,2,---, L}, and 257&@ is the same sum-

mation excluding the case where S is empty.

We assume that the second term of the last line of Eq. (S40) is negligible for the following
reasons. If n; » 1 for some i € S, then Eq. (S39) implies that P(S) ~ 0. Contrariwise, if the
statement that n; » 1 is false for all i € S, then the value of ) ,_o(vw; + Asvy;) is likely to be
small because n; is small. Under this assumption, Eq. (S40) implies that

1o L

: Z (Kig, — EJ|I:i[k7[J])2 A ]\14 Z (Vwi + AgUyi) - (S41)

=1 =1
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The second term of Eq. (S25) is calculated as follows:
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Se
N
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N
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—
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S
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=1 l#m
1 [&1 e
:ma—MIE ;n;;({%‘h]
L
=ma—MZP(S) E[e2,]
S i¢S
1
=mU—ZP(S)<ZmU—Zma)
M % i=1 i€S
m Lm + ! ZP(S)Zm
=mo — —mo + — o
M M S €S

where |S] is the number of elements in S, and we have assumed that > 4 P(S5)|S| « L in the

last step.
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Combining Egs. (525), (527), (S35), (S36), (S41), and (S42), we obtain

”z‘<wij>

Lwzz»

L L
Z UWZ+AUWZ}+<1—M)7TLU

= Lwg )~ Lcov; [<ww> Vi + A vm] + MUY ng (Vg + Agvy)

1
]E[Uév] ~ M

{Uwi + Asvwi }

~ 1M

=1 (S43)
— Mt Z nin;  {vws + Agvyi} + M1 Z ni(1 —n; Hmeo.
i=1 =1

L
- <<U) >> ICOVZ <w13>7 Uwi + ASUWZ'] + Mil Z nz<1 - n;l) (Uwi + Asvwi + ma)
=1

|
= Lwyz )~ eov; [(wiz), vwi + Agvwi| + ave; [(1—n; ") (vwi + Agvg + mo) ]
= ave; [(1 — n; ") (vwi + Agvy; + mo)]

where we have assumed in the last step that <wij> and vy,; + AUy, are statistically uncorrelated
as i varies, as we have assumed in Eq. (S17).
To enable the further calculation of Eq. (S43), we assume that

= BN~ (S44)
Under this assumption, we can transform Eq. (S43) as follows
E[v) ] ~ ave; [(1 —n; ) (Vg + mo + A vwi)]
A (1 — BN~ ) ave: [UWZ +mo + (w;z)” Lcov, [ww, (kij — {kiz)) ]
— {Cwgy~ eovswy, kig]} ] :
— (1= BN ) (v + mo + ave; [Cwg)~ eov[wi, (kg — k)]] + O(s2) ).

(S45)

where we used Eq. (516) in the last step. Expanding w;; as a Taylor series around k;; = (k;3),
we can show that

(wi)~ Leov,: wig, (ki <kw>) ] = —swewi + O(52), (S46)
where cy; := ((k;; — (k;3))?), and that
ave; [<wm> Leov;s slwig, (kij — (ki) ]] = —8yCy + O(52), (S47)
where ¢, 1= ave;[cy;]. Substituting Eq. (S47) into Eq. (S45), we obtain

Elvy] ~ (1 = BN (vw + mo — swew + O(s3)) . (548)
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3.2 Calculation of E [v/]

To calculate E [v]], we first calculate E [vf] and then use the fact that E [v)] = E [v]] —E v/ ].
We can express E [v]] as follows:

1 M M 2
]E [/Ué] == E[M Z {kIlJl + 62'][ Z kIlJl + E'LJZ } ]
=1 =1

- (1 - ]\14) E[(krs — Elks])?] + <1 — J\Z) mo,

where we used the fact that kj, 5, and ¢;, are independent of each other, as we did in Egs. (S23),
(S24), and (S25).
The first term of the last line of Eq. (S49) is calculated as follows:

(549)

E [(krs — E[krs])°]
= E[[ (kij = Egr=ilkrs] + Eqr=ilkrs] — Elkrs])

:E:(kij_EJU:i[kIJ]) | +E (EJU ilkrs] — E[kIJ]) _

— QE[ (kij — Egjr=ilkrs]) (EJ\I ilkrs] — Elkp,]) ]
=E _ (kij - EJ|I:i[kIJ])2 | + E (EJll z[kIJ] E[kIJ])
- ) ) (S50)
—23' N P(I =i, J = j) (Byr—ilkrs] — Elkrs]) (kij — Egpr=ilkrs])

i=1j=1

= E[ (kij — E]u:z‘[ku])z] + E[ (Egr=ilkrs] - E[k”])Q]

2

—2 Z P(I =) (Ejjrzilkrs] — E[krs]) Z P(J = j|I =) (kij — Ejjr=ilkrs])

- E[ (Kij — EJ|I=i[kIJ])2] + E[ (Egji=ilkrs] - E[’fIJ])Q]

14



The first term of the last line of Eq. (S50) is calculated as follows:
E| (ki — Esrailkrs])’ |
- E[k = 2B il iy + Byl )|

= Z Z P(I = j) (k3 = 2B =il krs)ki; + Eojr—ilkrs]?)

i=1j=

L 1
= > P(I = i)(Z P(J = j|I = i)k,

i=1 i=1

— 2E =il k1] Z P(J = j|lI = i)ki; + EJ|I=i[kIJ]2)

j=1
L (S51)

= 2 P(I = i) (Ej=lk7,] — Egzilkis]?)

@
)_l

ni{w;z)
Z 4 M{wsz) (Egr=ilk7,] = Eqr=ilkrs]?)

ni{w;z) . -
- 2 iy e )

= Kwy )~ Lcov; [<wm> Uwi + AUy | + M~ Z 1 (Vwi + AgUy;)

=1
= ave; [Vyi + AgVyi ,

where we used Eq.(S34) and the assumption that (w;;) and vy; + Asvy; are statistically
uncorrelated as ¢ varies, which has already been made in Eq.(S17). Using Eq. (S16) and
(547), we can transform the last line of Eq. (S51) as follows:

ave; [V + AgUyi] = Uy — Swew + O(s%). (S52)

Therefore,

E[ (l{izj — EJ‘[:i[k]J])Q] = Vw — SwCw T O(S‘QN) (S53)
The second term of the last line of Eq. (S50) is calculated as follows:

[(EJU ilkr] E[kIJ])Q]
= B [Ejjr=ilkrs)? — 2E[krs)E g =i krs] + Elkr]?]

Z Z =i,J = j) (Ejzilkrs]? = 2E[krs]E g zilkrs] + Elkrs]?)

) (S54)

I—Z EJ‘[ 1[/{]] —2E k[J ZP =1 EJ|] Z[lf[]]+E[k‘]J]

i=1 =1

[
Mh

P(I = )Ejj1=[k1s]* — Elkr,]?

Il
IMh
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The first term of the last line of Eq. (S54) is calculated as follows:

Z P(I = i)]EJ|I=i[kIJ]2

=), P =1i) Z P(J =j|I = i)kij]

P m<w-~.>’“”]

_ Z; P = 2) <ww>n, Z wij ”]

= 2 P(I =1) [<wij>_1covi5 [wij, k] + <k;lj>]2 (Sh5)

= \ <w”> w3y eov,s [w;
_Z M{w; >> [Cwi;)™ jlwij, zj]+<kzg>]

= 2]>> Z 7<w2] <U)i5>_1COVﬁ [wij7 kl]] + <k:13>]2
= gy cov; | Cwg), {Gug)~ eovglwy, ks + ki)Y |
+ ave; [{<wij>_1covi3 [wij, kij] + <k15>}2]
= gy covz [Cwg), (Chig) + Alhi))® | + aver | (g + Akg))?]

where we have used the following notation in the final step:

As<kﬁ> = <wi3>_lcov2-5 [wij, kij]. (S56)

The second term of the last line of Eq. (S54) is calculated as follows:

Blkis)? = ( )Y P =00 = j>kz-j)
= ZP ZP = JlI =1) w)
lzl , (Sh7)
- Z P(I = z')EJu:i[ku])

_ ni<wij> ' i
N ;M(wa»Em_Z[kU]I .

16



Doing the same calculation as in Eq. (S55), we can transform Eq. (S57) as follows:

O S
[ Z WEJI=1[]€IJ]]

=1

| e o
] [Z My ($57 2:055) ]

= (Qwgy~ cov; [Cwig), i) + Aslkigd] + ave; [Chid + Alhed])
Combining Eqs. (S54), (S55), and (S58), we obtain
E [(EJu:,-[k:U] - ]E[kIJ])Q]
— (w) ™ eov; [Cwg), (G + Alhi))?| + aver | (G + Achi)?]
— () eov; [Cw), Chigy + Aullig)] + ave; [Chigy + Alkip])’
= Lwi) " cov; |:<wi3>7 (ki) + As</’%3>)2] + ave; [(<ki3> + As<k@-3>)2]

— (i)~ teov; [Cwg, Ckigd + Alkizd]) — (ave; [y + Akiz])?

— 2{wz )~ eov; [Cwig), (ki) + Ak ave; [(hig) + Alkiz)]

= (w) ™ cov; [Cug), (Ch) + Alhigy — ave; [y + Ackip)])’]
— (Cuwg)~"eov; [Cwg), Chigy + Alhip])”
+ ave; [(<k2-5> + A5<kij>)z] - (a"ez [<k3¢3> + As<k3¢3>])2

= gy covi [Cwg), (Chig) + Alhig) — ave; [ + Akip])’]
— ()~ eov; [Cw), gy + Aull])
+aver | ((hg) + AgCh) — ave; [y + Alk])’|

(958)

We consider each term in the last line of Eq. (S59) in terms of the order of s, and s,,. We

begin with the first term.
Luwg ™" cov; [<w¢5>, (Chiz) + Az — ave; [Chig) + As<k¢3>])2}
gy covz [Cwg), (Chig) = Chigh + Allgy — aver [Akp)])’|
— Q)™ covi| Cwg), (Chig) = Chg)” + (Alligy — ave; [Ak])?
=2 (Chi) = Chig) (Alleg) — ave; [AGk]) |
= Q)™ covi| Cwg), (Chig) = hig))* | + O(s2)
— 2{wz )" cov; [<wz§>7 (Chigy — Lhi)) (Asli) — ave; [As(ki)]) ],

(S60)

where we used Egs.(S16) and (S17) in the last step. The last term of the last line of
Eq. (S60) is zero because Ay(k;;) is independent of (k;5) and (w;;), a fact that stems from
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the assumptions that 0sy/d(k;;) = 0 (see the main text under “Model”) and that vy, is
statistically uncorrelated with (w,;) as i varies [see Eq. (S17)]. Thus, expanding (w;;) as a
Taylor series around (k) = <<k~>> we can transform the last line of Eq. (S60) as follows

Lwi )" cov; [<wij>7 (kg — Khy)® ] +O(s%) = saca + O(s%) + O(s2), (S61)

where we introduced the following symbol:

¢y 1= ave; [(<k:w> ) ] (S62)

Next, we consider the second term of the last line of Eq. (S59). Equation (S15) implies
that

(Cu )~ cov; [Cug), gy + Alkip])* = O(s2). (563)

Finally, we consider the third term of the last line of Eq. (S59) as follows:

ave; | (Chig) + Aullig) — ave; [y + Alk])’|

— aver | (Chg) — Kkig + Allg) — aver [Aki)])’]

= aver| (i) = (k)" + (Aulhy) — ave [ALE])°

+2 (i) = b)) (Aullig) = aves [Ath)]) |

— aver| (k) — Qi) | + aves | (AuChg) — aves [Akp])* (S64)
[ (k> - <<k-->>) (3l = aves [Ag)]) |
= aver| (kg — i) | + aves | (AuChg) — aves [Akp])*

= ave;| [ (k) - <</€“>>) +0(sy),
= v, + O(s2),
where we have assumed that (k;z) and Ay(k;;) are statistically uncorrelated, an assumption

that is essentially the same as the assumption made in Eq.(S17) that vy; and (w,;) are

statistically uncorrelated.
Combining Eq. (S59), (S60), (S61), (S63), and (S64), we obtain

+ 2ave

@

E [(EJ|1:i[k,J] — Elk1s]) ] — Uy + Suca + O(s2) + O(52). (365)
Combining Eq. (S49), (S50), (S53), and (S65), we obtain
E[v]] = (1= M™") (va + SaCa + Uy — SwCw + mo + O(s2) + O(s2)) . (S66)

Substituting Egs. (S48) and (S66) into E [v] = E [v]] — E [v},], we obtain
E[v)] ~ (1 = M™") (va + SaCa + Uy — SwCyw + mo + O(s2) + O(s2))
— (1= BN (v + mo — sycw + O(s2))
= (1= M) (va + saca + O(s2) + O(s3))
+ (BN_I — M_l) (vw + MO — SyCy + O(si))

(S67)
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4 Estimation of v,

Tsimring et al. [1] have investigated the time evolution of the probability density p(r,t) of
fitness r subject to mutation and selection. In this section, we show that the results of
Tsimring et al. [1] imply C' ~ —0.25V%2, where V and C are the variance and the third
central moment of p(r,t), respectively. This implication is consistent with our postulate
ca = —7.v¥? made in Eq.(9) of the main text, where 7, was measured to be about 0.25
through simulations.

Tsimring et al. [1] have considered the following equation, which describes the time evo-

lution of p(r,t):
2

Pl 0) = 00— ) (r = ()l 1) + Do), (569

where 0(x) is the Heaviside step function, and {r) is the average fitness defined as

Sop= [ st

and D is a diffusion constant. The first term on the RHS of Eq. (S68) describes the effect
of selection; the second term, that of mutation. The Heaviside step function accounts for
the fact that the probability density p(r,t) must exceed a small threshold density p. to grow
because the size of a population is not infinite in reality. Tsimring et al. have shown that
Eq. (S68) allows a travelling-wave solution, in which the peak of the density travels toward
higher values of r, while maintaining a pulse-like shape, at a steady-state speed (denoted by
v)

v = c¢D¥3, (S69)

where the value of ¢ depends weakly on p, and is around 4 in a wide range of p. [1].
Multiplying both sides of Eq. (S68) with r or (r — (r))? and integrating over the whole
range, we get

d
%<r> = V —¢, (S70)
d

where V', C, €1, and €y are defined as follows:

Vo= =, (572)
C = Lr=m), (S73)
e = Bp.—p)(r—)°), (S74)
e2 = {O(p.—p)(r—{m)°). (S75)

In obtaining Egs. (S70) and (S71), we have assumed that the surface terms go to zero as r —
+oo; ie, lim, 400 P(r,t) = 0, lim, 400 7P(r, 1) = 0, lim, 400 7”%'; =0, and lim,_, 4 7"22—2 =

For a travelling-wave solution of Eq. (S68) with a constant speed v and shape, Eq. (S70)
implies

v=V —¢. (S76)
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Table S1: Correspondence between Kimura’s notation [2] and ours.
Kimura’s ours description
Sa among-collective selection coefficient
m mutation rate per generation from non-altruistic to altruistic allele

c

v

v m reverse mutation rate; we assumed v = v’

s’ Sw within-collective selection coefficient

m 0 among-collective migration rate
2N B~IN number of alleles per collective; Kimura considers diploid
o0 M total number of alleles

From Egs. (569) and (S76), we get

D= (V“)w. (S77)

c
Since v and € are constant, Eq. (S76) implies dV /dt = 0. Thus, Eq. (S71) implies

Equations (S77) and (S78) imply

V_ 3/2
C=-2 ( 61) + €q v =232V,
c

where we have assumed ¢; « V and ¢3 € V to obtain the last term. Since ¢ is about 4
according to Tsimring et al. [1], we get

C ~ —0.25V3/2,

5 Converting Kimura’s notation into ours

Kimura [2] has investigated a binary-trait model of multilevel selection and shown that within-
collective selection exactly balances out among-collective selection if

4N =0, (S79)

v+U+m
where the symbols are as described in Table S1 (see also the next paragraph). Equation (S79)
includes Eq. (17) of the main text as a special case. Equation (S79) appears as Eq. (27) of
Ref. [2] or Eq. (4.8) of Ref. [3] as and is derived therein under the assumption that the steady-
state frequency of the altruistic allele is identical to that in the absence of selection, an
approximation that is expected to be valid in the limit of weak selection.

To convert Kimura’s notation into ours, we assumed that the rate of mutation from a
non-altruistic to an altruistic allele is identical to the rate of mutation from the altruistic to
the non-altruistic allele, so that the direction of mutation is unbiased as in our quantitative-
trait model. Moreover, we assumed that the migration rate among collectives is zero since
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our model does not consider migration. Finally, we took account of the fact that Kimura’s
model considers diploid as follows. In Kimura’s model, each collective consists of N diploid
individuals, i.e., 2N alleles. The number of alleles per collective can be considered as the
average number of replicators per collective in our model (i.e., 37'N) because Kimura’s
model assumes no dominance.

6 Derivation of Kimura’s result through our method

In this section, we derive Eq. (17) of the main text, which gives parameter-region boundaries
of the binary-trait model, using the method developed in the main text. The most important
difference between the binary-trait and quantitative-trait models resides in the definition of
ery. Thus, we consider only terms involving € or mo as described below.

First, we show that the change in the definition of €;; does not affect the condition for
the parameter-region boundary given by Eq.(3). In the binary-trait model, €;; = 0 with
probability 1 — m and €;; = 1 — 2k;; with probability m (I and J are random variables
taking the indices of a sampled replicator, as defined in Section 1). Thus,

EIJ Z Z P ) Jdp(ﬁu)ﬁu
L n (S80)
;JZ} M<<w o Zkij)

= m(1 —2k;;)) + O(s%, + 85 + msy + ms,).
Therefore, Eq. (4) needs to be modified as follows:
E [A<<k;3>>] = Sala — Sw¥y + m(1 — 2Lkz ) + O(8% + 52 + msy + ms,). (S81)

This equation, however, becomes almost identical to Eq.(4) if the parameters are on the
parameter-region boundary, on which ((k;;) = 1/2. Thus, the condition for the parameter-
region boundary when s,, sy, and m are sufficiently small is the same as in the quantitative-
trait model.

Next, we consider Eq.(5) and show that the change in the definition of ¢;; makes a
significant difference, which explains the difference between the binary- and quantitative-trait
models. In Eq. (5), mo represents the difference between vy and the variance of kr; + ;.
In the quantitative-trait model, this difference is simply the variance of €;; because €;; and
kr; are independent of each other. In the binary-trait model, however, €;; and k;; are not
independent, and this fact affects Eq. (5), as follows. Under the assumption that s, = s, = 0,

the variance of k;; + €75 in the binary-trait model is
E[(k}J+EIJ*E[/€[J+€]J])2] = (1 *E[k]JJrE[J])QP(/{JIJJrE[J = 1) (SSQ)
+ (0—E[/€[J+€[J])2P(]€]J+€[J = 0),

where
P (kry+erg=1) = Ch) (1 —m) + (1 = Lz ) m
P (kpy +ery = 0) = (1= Ckizp) (1= m) + Lz hm (S83)
E[k[J+EIJ] = P(k[]+€[J = 1).
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Thus,
E [(k]J + €55 — E [k?[] + 6[]])2] = v + m(l - m) (1 - 2<<k?;3>>)2 s (884)

where we used the fact that vy = (k;;)(1 — (kz;)). Therefore, the expected sample variance
of the next generation is

Elv]] = (L =M [og +m(1 —m)(1 =2k »)?] - (S85)

Likewise, under the assumption that all collectives always consist of 37! N replicators, the
expected sample variance within a collective of the next generation is

E[v:] = (1= BN [owi +m(l = m)(1 = 2{k;5))°] (586)

where the index of collectives i needs to be kept because (k;;) depends on i. Averaging E [v],]
over 7, we obtain

E [v,] ~ ave; [E [v],]]

= (1= BN {ow +m(l —m) [(1 - 2¢kz))* + 4ua]
where we used the fact that v, = ave;[(k;;)*] —(k;)?. Since E[v,] = E[v;] —E[v},], we obtain

(S87)

Elv]= 1-M v, + (BN =M [UW +m(1—m)(1- 2<<k;3>>)2]

(S88)
—4 (1= BN m(l — m)v,.

If the systems is on a parameter-region boundary, (k;;) = 1/2. Thus, setting (k;;) = 1/2,

i

we obtain
E[v.] = (1 — BN [vy + 4m(1 — m)v,] (S89)
Elo]=(1—-M Y va+ (BN =M o, —4(1 =N )m (1 —m)v,. (S90)

To apply the condition for the parameter-region boundary vy, /v, & /Sy, we need to calculate
the ratio vy /v,. To this end, dividing Eq. (S89) by Eq. (S90) on each side, we obtain

B[] (1= BN |2 + dm(1 - m) |

= . 1
Bl ~ (- M+ (N1 M0z a0 N m—m) O
Assuming a steady state (i.e., E[v] |/E[v.] = vy/va), we obtain
dm(1l — 1- BNt
vy _ Am(l —m)(1 = SNT) (S92)
U, BN-1 — M-1
Using the condition vy /v, & S./Sy, We obtain
4m(1 — 1-BN! a
BN-1 — M—1 Sw
If BN~ « 1, m « 1, and M — oo (Kimura’s model assumes that M = o0), we obtain
%2~ 4mBIN, (S94)

which is the same as Eq. (17).
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7 Supplementary Figures
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Figure S1: Rate of logarithmic fitness increase as function of mutation rate measured through
simulations with no within-collective selection (s, = 0, s, = 1073, M = 5 x 10°, and
o = 107*). Fitness is defined as w;; = e**52  Symbols have following meaning: N = 102
(black circles); N = 10® (blue triangle up); N = 10* (orange triangle down); N = 10° (green
diamond). Line is A{ks;)/At ocm?3, as predicted by Eqs. (4) and (14) in main text. This
figure confirms that Alk;)/At ocm?? in agreement with Ref. [1]. Note also that Adk;;) is
roughly independent of N if N « M, which is consistent with prediction of Eq. (14) in main
text.
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Figure S2: Average third central moment of k;; within collective (c,,) measured through
simulations (M = 5 x 10°, 0 = 107*, and s, = s, = 1072). (a) Ratio between effect of
selection and that of random genetic drift on Av,, as function of A{ky;)/At: Alks)/At > 0
(black triangle up); Alk;;)/At < 0 (red triangle down). (b) |cy| as function of v,,. Triangles
are simulation results: A{ks;)/At > 3 x 1077 (black triangle up); Alk;)/At < 3 x 1077
(red triangle down). Line is |cy|ocv3/2, as postulated in Eq.(9). Least squares fitting of
|cw| = v to data for Alks;)/At < 3 x 1077 yielded 7, & 0.25.
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Figure S3: Dynamics of common ancestors of collectives (m = 0.01, M = 5 x 10° 0 =
107, and s, = s, = 0.01). Plotted are number of replicators per collective (black; left
coordinate) and (k;;) (orange; right coordinate). (a) N = 5623. In this case, Alk;;) > 0,
and evolutionarily stable disequilibrium is not clearly observed. (b) N = 17783. In this case,
<k:> < 0, and evolutionarily stable disequilibrium is clearly observed.

s=10" s=10° s=107 s=10"
10° 10° 10° 10°
10° \\ 10°3 55
N 111N N 22220%
103242222 5N 10°8002040 )
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Figure S4: Parameter-sweep diagrams of binary-trait model (s, = s, = s and M = 5 x 10°).
Symbols have following meaning: (k;;) > 1/2 (triangle up); (k) < 1/2 (triangle down).
Lines are estimated parameter-region boundaries. Parameter-region boundaries were esti-
mated as follows. Zeros of (k) —1/2 were estimated with linear interpolation with respect
to N from two simulation points around parameter-region boundary for various m values
between 107° and 10~!. Estimated zeros were used to obtain parameter-region boundary
through least squares regression of N ocm™¢.
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