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Here we present detailed derivations of many aspects of this work. 
 
1.1 Taylor series expansion of substitution effects 
 
The function 𝛼!"

! ≈ 𝑓(𝛼!" , 𝝐), constructed as a Taylor series expansion around 𝛼!" evaluated at 
𝒑", is, e.g. (Walsh & Lynch, 2018, eq. A6.7b): 
 

𝛼!"
! ≈ 𝛼!" + 𝛁#$𝝐 +

1
2 𝝐

$𝓗!𝝐… 

where 𝛁 and 𝓗 are a vector and a matrix containing, respectively, the gradient and Hessian 
of 𝛼!  with respect to 𝒑 evaluated at 𝒑" and 	𝝐 = 𝒑"! − 𝒑". 
 
There will be different 𝛁# and 𝑯!  per each of the 𝑛 loci. The elements of  𝛁# are: 
 

𝛁# =

⎝

⎜
⎜
⎜
⎜
⎛

𝜕𝛼!
𝜕𝑝%

9(𝑝! = 𝑝!")
…

𝜕𝛼!
𝜕𝑝!

9(𝑝! = 𝑝!")
…

𝜕𝛼!
𝜕𝑝&

9(𝑝! = 𝑝!")⎠

⎟
⎟
⎟
⎟
⎞

= 2

⎝

⎜⎜
⎛

(𝛼𝛼)!%" 	

−𝑑!∗"

(𝛼𝛼)!&" ⎠

⎟⎟
⎞

 

For instance, (𝛼𝛼)!% =
%
(
)*"
)+#

 and therefore )*"
)+#

9(𝑝! = 𝑝!") = 2(𝛼𝛼)!%" . In other words, the 

vector of first derivatives of 𝛼!   can be written as function of statistical effects in a focal (“b”) 
population with allele frequencies 𝑝!". In the 1st order expansion, these effects are additive by 
additive (𝛼𝛼) (of a locus with other loci) and dominant 𝑑∗ (of a locus with itself). The b in the 
notation (𝛼𝛼)!%"  implies that the Taylor series is expanded around a population with 𝒑 = 𝒑". 
 
The elements of 𝓗!  for a pair of other loci 𝑗 and 𝑘 are: 

𝓗!(-.) = @
𝜕𝛼!
𝜕𝑝-𝑝.

9(𝑝! = 𝑝!")A = 4(𝛼𝛼𝛼)!-."  

 
For 𝑖 ≠ 𝑗 ≠ 𝑘.  If 𝑖 = 𝑗 = 𝑘, then 𝓗!(-.) is null and if 𝑗 = 𝑘, then 𝓗!(-.) is the additive by 
dominance epistatic interaction (−𝛼𝑑)!-  . 
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We are going to ignore these higher-order interactions (2nd order including dominance, and 
3-way and higher) for mathematical convenience, but also because such statistical 
interactions  are expected to be small (Mäki-Tanila & Hill, 2014). Therefore, from the Taylor 
series expansion above, we will consider only the first two terms, i.e.	𝛼!"

! ≈ 𝛼!" + 𝛁!$𝝐. Written 
as function of substitution effects this gives, for locus 𝑖, 
 

𝛼!"
! ≈ 𝛼!" + 2𝜖!F−𝑑!∗"G + 2𝝐$(𝜶𝜶)!" 

 
Where (𝜶𝜶)!" is a vector containing epistatic substitution effects of locus 𝑖 with the rest of 
loci. By convention and to simplify notation we set (𝛼𝛼)!!" = 0 (this corresponds to the 
interaction of a locus with itself, i.e. the dominance effect 𝑑!∗"). Note that 𝛼!", 𝑑!∗" and (𝜶𝜶)!" 
do not depend on allele frequencies in 𝑏$ (as they are defined for the focal population 𝑏 with 
allele frequencies 𝒑").  
 
The expression above also shows, without invoking any explicit “functional” effect, that the 
lower level statistical effects in a reference framework (or set of allele frequencies) contain 
higher order statistical effects in another framework (Álvarez-Castro & Carlborg, 2007).  
 
 
1.2 Expansion of 𝑉𝑎𝑟F𝛼!" + 2𝜖!F−𝑑!∗"G 	+ 2𝝐$(𝜶𝜶)!"G 
 
First,  

𝑉𝑎𝑟F𝛼!" + 2𝜖!F−𝑑!∗"G 	+ 2𝝐$(𝜶𝜶)!"G = 𝑉𝑎𝑟F𝛼!"G + 4𝑉𝑎𝑟F𝜖!𝑑!∗"G + 4𝑉𝑎𝑟F𝝐$(𝜶𝜶)!"G 
as cross-products 𝐶𝑜𝑣 Q𝛼" , 𝜖!F−𝑑!∗"GR and 𝐶𝑜𝑣F𝛼" , 𝝐$(𝜶𝜶)!"G are 0 because statistical effects 
(𝛼!", 𝑑!∗" and (𝜶𝜶)!")  are mutually orthogonal. For 𝑉𝑎𝑟F𝜖!𝑑!∗"G, we use (under certain 
assumptions, roughly speaking of independence of 𝜖!  and 𝑑!∗") result [9] in Bohrnstedt and 
Goldberger (1969) : 𝑉𝑎𝑟(𝑥𝑦) = 𝐸((𝑥)𝑉𝑎𝑟(𝑦) + 𝐸((𝑦)𝑉𝑎𝑟(𝑥) + 𝑉𝑎𝑟(𝑥)𝑉𝑎𝑟(𝑦), leading to  

𝑉𝑎𝑟F𝜖!𝑑!∗"G = 𝐸((𝜖!)𝑉𝑎𝑟F𝑑!∗"G + 𝐸((𝑑!∗")𝑉𝑎𝑟(𝜖!) + 𝑉𝑎𝑟(𝜖!)𝑉𝑎𝑟F𝑑!∗"G
= 𝑉𝑎𝑟(𝜖!) Q𝑉𝑎𝑟F𝑑!∗"G + 𝐸(F𝑑!∗"GR 

as 𝐸(𝜖!) = 0 (as changes are assumed to be random and not directional). In turn, 𝐸(F𝑑!∗"G =
𝜇0,"(  from above which yields 𝑉𝑎𝑟(𝜖!)F𝜎0,"( + 𝜇0,"( G. 
The expansion of 4𝑉𝑎𝑟F𝝐$(𝜶𝜶)!"G involves the variance of a quadratic form as shown below 
(section 1.3). 
 
1.3 Variance of a quadratic form 
 
The expression for the variance 𝑉𝑎𝑟(𝒙%$ 𝒙() of a bilinear form	(𝒙%$ 𝒙() for two vectors, with 

joint covariance matrix 𝑉𝑎𝑟 Q
𝒙%
𝒙(R = 𝑪 = Z𝑪%% 𝑪%(

𝑪(% 𝑪((
[ and 𝐸 Q

𝒙%
𝒙(R = Q𝟎𝟎R, is equal to 

𝑉𝑎𝑟(𝒙%$ 𝒙() = 𝑡𝑟(𝑪(%)( + 𝑡𝑟(𝑪((𝑪%%) (Searle, 1971, Chapter 2). For our specific case, we are 

interested in 𝑉𝑎𝑟F𝝐$(𝜶𝜶)!"G with 𝐸 Z 𝝐$
(𝜶𝜶)!"

[ = Q𝟎𝟎R and 𝑉𝑎𝑟 Z 𝝐$
(𝜶𝜶)!"

[ =

@
𝑉𝑎𝑟(𝝐$) 𝟎

𝟎 𝑉𝑎𝑟F(𝜶𝜶)!"G
A where we assume 𝐶𝑜𝑣F𝝐$, (𝜶𝜶)!"G = 𝟎. Thus, the above 

expression reduces to  
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𝑉𝑎𝑟F𝝐$(𝜶𝜶)!"G = 𝑡𝑟 Q𝑉𝑎𝑟F(𝜶𝜶)!"G𝑉𝑎𝑟(𝝐$)R = 𝑡𝑟 Q𝑉𝑎𝑟(𝝐$)𝑉𝑎𝑟F(𝜶𝜶)!"GR 
 
1.4 Expansion of substitution effects can also be done around a third (focal, 𝑓) population 
 
The expansion of substitution effects can also be done around a third (focal, 𝑓) population as 
follows: 

𝛼!"
! ≈ 𝛼!

2 + 2𝜖!
3"!4F−𝑑!

∗2G + 2𝝐3"!4
!
(𝜶𝜶)!

2 
𝛼!" ≈ 𝛼!

2 + 2𝜖!
(")F−𝑑!

∗2G + 2𝝐(")!(𝜶𝜶)!
2 

Where 𝜖!
3"!4 = 𝑝!"

! − 𝑝!
2 and 𝜖!

(") = 𝑝!" − 𝑝!
2. This leads to 

𝑉𝑎𝑟F𝛼!"
!G ≈ 𝑉𝑎𝑟F𝛼!

2G + 4𝑉𝑎𝑟 Q𝜖!
3"!4𝑑!

∗2R + 4𝑉𝑎𝑟 Q𝝐3"!4
!
(𝜶𝜶)!

2R 

𝑉𝑎𝑟F𝛼!"G ≈ 𝑉𝑎𝑟F𝛼!
2G + 4𝑉𝑎𝑟Q𝜖!

(")𝑑!
∗2R + 4𝑉𝑎𝑟F𝝐(")!(𝜶𝜶)!

2G 
And  

𝐶𝑜𝑣F𝛼!"
! , 𝛼!"G ≈ 𝑉𝑎𝑟F𝛼!

2G + 𝐶𝑜𝑣 Q𝜖!
3"!4, 𝜖!

(")R Q𝑉𝑎𝑟F𝑑!∗"G + 𝐸(F𝑑!∗"GR

+ 𝐶𝑜𝑣 Q𝝐3"!4
!
(𝜶𝜶)!

2 , 𝝐(")!(𝜶𝜶)!
2R 

 
If the two populations drifted from a common ancestral one, the covariance of deviations 

from the focal populations, 𝐶𝑜𝑣 Q𝜖!
3"!4, 𝜖!

(")R, could in principle be put as a function of 
genealogical kinships across populations: 
 

𝐶𝑜𝑣 Q𝜖!
("), 𝜖!

3"!4R = 𝐶𝑜𝑣F𝑝(") − 𝑝2 , 𝑝3"!4 − 𝑝2G

= 𝐶𝑜𝑣F𝑝("), 𝑝3"!4G − 𝐶𝑜𝑣F𝑝("), 𝑝2G − 𝐶𝑜𝑣F𝑝2 , 𝑝3"!4G + 𝐶𝑜𝑣(𝑝2 , 𝑝2)
= F𝜃","! − 𝜃",2 − 𝜃"!,2 + 𝜃2,2G𝑝(1 − 𝑝) 

 
where 𝜃 are across- or within-population kinships referring to the ancestral population and 
𝑝(1 − 𝑝) is half the heterozygosity at the ancestral population. If the focal population 𝑓 is 
the ancestor of both populations and there is only drift (but no migration), then 𝜃","! =
𝜃",2 = 𝜃"!,2 = 𝜃2,2 , the term F𝜃","! − 𝜃",2 − 𝜃"!,2 + 𝜃2,2G cancels out and 

𝐶𝑜𝑣 Q𝜖!
("), 𝜖!

3"!4R = 0. The reason is that, after the split of the populations, both deviations 
are independent from each other (Weir and Hill, 2002; Bonhomme et al., 2010) and thus 

𝐶𝑜𝑣 Q𝜖!
("), 𝜖!

3"!4R = 0. This is not true if the focal population is not an ancestor of the other 
two.  
 
However, these genealogical kinships, and allelic frequencies at the ancestral population, are 
usually unknown. For this reason, and because then the focal population needs not to be an 

ancestor, we formulate  𝐶𝑜𝑣 Q𝜖!
("), 𝜖!

3"!4R in terms of Nei’s genetic distance in the following. 
 

Consider 𝑉𝑎𝑟F𝑝"! − 𝑝"G = 𝐸 QF𝑝"! − 𝑝"G
(
R − 𝐸F𝑝"! − 𝑝"G

(
= 𝐸 QF𝑝"! − 𝑝"G

(
R because 

𝐸F𝑝"! − 𝑝"G = 0 when averaged across loci. Therefore, 𝑉𝑎𝑟F𝑝"! − 𝑝"G = 𝐸 QF𝑝"! − 𝑝"G
(
R 
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which corresponds to Nei’s 𝐷","!  “minimum genetic distance” (Nei 1987; Caballero and Toro 
2002). We massage this expression differently: 
 

𝑉𝑎𝑟F𝑝"! − 𝑝"G = 𝐶𝑜𝑣F𝑝"! − 𝑝" , 𝑝"! − 𝑝"G = 𝑉𝑎𝑟F𝑝"!G + 𝑉𝑎𝑟(𝑝") − 2𝐶𝑜𝑣F𝑝" , 𝑝"!G 
  
from which  

𝐶𝑜𝑣F𝑝" , 𝑝"!G =
𝑉𝑎𝑟F𝑝"!G

2 +
𝑉𝑎𝑟(𝑝")

2 −
𝐷","!
2  

 
Now 

𝐶𝑜𝑣 Q𝜖!
("), 𝜖!

3"!4R = 𝐶𝑜𝑣F𝑝" − 𝑝2 , 𝑝"! − 𝑝2G
= 𝐶𝑜𝑣F𝑝" , 𝑝"!G − 𝐶𝑜𝑣(𝑝" , 𝑝2) − 𝐶𝑜𝑣F𝑝"! , 𝑝2G + 𝑉𝑎𝑟(𝑝2) 

 
Substituting each of those covariances we obtain after cancellations 

𝐶𝑜𝑣 Q𝜖!
("), 𝜖!

3"!4R

=
𝑉𝑎𝑟F𝑝"!G

2 +
𝑉𝑎𝑟(𝑝")

2 −
𝐷","!
2 −

𝑉𝑎𝑟(𝑝")
2 −

𝑉𝑎𝑟(𝑝2)
2 +

𝐷",2
2 −

𝑉𝑎𝑟F𝑝"!G
2

−
𝑉𝑎𝑟(𝑝2)

2 +
𝐷"!,2
2 + 𝑉𝑎𝑟(𝑝2) =

𝐷",2
2 +

𝐷"!,2
2 −

𝐷","!
2  

  
Which is a (strictly positive) measure of similarity of 𝑏 and 𝑏$ after discounting similarity of 
both to 𝑓. Note that if 𝑏 = 𝑓 (the focal population is 𝑏), 𝐷",2 = 0 and 𝐷","! = 𝐷"!,2 and thus 

𝐶𝑜𝑣 Q𝜖!
("), 𝜖!

3"!4R = 0; and similarly, for 𝑏$ = 𝑓.  
 

Assuming uncorrelated changes across loci, 𝐶𝑜𝑣 Q𝝐("), 𝝐3"!4
!
R = 𝑰 Q−

5$,$!

(
+ 5$,&

(
+

5$!,&
(
R 

 
From here and with a development similar to the main text (and 1.5, 1.6 in this Appendix) 
we obtain: 

𝑉𝑎𝑟F𝛼!"
!G ≈

1
𝑛 a

𝜎6(

𝐻c2
+ 4𝐷"!,2

𝜎5(

𝐻2(dddd
+ 8𝐷"!,2

𝜎66(

𝐻c2	𝐻c2
f 

𝑉𝑎𝑟F𝛼!"G ≈
1
𝑛 a

𝜎6(

𝐻c2
+ 4𝐷",2

𝜎5(

𝐻2(dddd
+ 8𝐷",2

𝜎66(

𝐻c2	𝐻c2
f 

Where 𝜎6(, 𝜎5( and 𝜎66(  refer now to population 𝑓. Leading to 
 

𝑟F𝛼!" , 𝛼!"
!G ≈

@𝜎6
(

𝐻2ddd
+ 4 Z

𝐷",2
2 +

𝐷"!,2
2 −

𝐷","!
2 [ 𝜎5

(

𝐻2(
+ 8Z

𝐷",2
2 +

𝐷"!,2
2 −

𝐷","!
2 [ 𝜎66(

𝐻c2𝐻c2
A

g@
𝜎6(
𝐻c2

+ 4𝐷",2
𝜎5(

𝐻2(dddd
+ 8𝐷",2

𝜎66(
𝐻c2	𝐻c2

A@𝜎6
(

𝐻c2
+ 4𝐷"!,2

𝜎5(

𝐻2(dddd
+ 8𝐷"!,2

𝜎66(
𝐻c2	𝐻c2

A
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Note that if 𝑓 = 𝑏, we obtain expression [5] in the main text as Q5$,&
(
+

5$!,&
(
−

5$,$!

(
R = 0 and 

𝐷2," = 0 .  
 
Also note that if 𝑓 is an “average” population of 𝑏 and 𝑏’ (for instance an F2 cross), such that 
5$,$!

(
= 𝐷",2 = 𝐷"!,2, then we obtain  

𝑟F𝛼!" , 𝛼!"
!G ≈

g𝜎6
(

𝐻2ddd

g@
𝜎6(
𝐻c2

+ 4
𝐷"!,"
2

𝜎5(

𝐻2(dddd
+ 8

𝐷"!,"
2

𝜎66(
𝐻c2	𝐻c2

A

 

Similar in form to [5], , but not identical, because variances and heterozygosities refer to the 
F2 population. 
 
 
1.5 Variance due to dominance effects and inbreeding depression 
 
In a HWE population with dominance deviations, the genetic variance due to dominance 
deviations is  

𝜎5( = 4∑𝑝!(𝑞!((𝑑!∗)(	 
To account for directional dominance, consider 𝐸(𝑑!∗) =

%
&
∑(𝑑!∗) = 𝜇0, 𝑉𝑎𝑟(𝑑!∗) = 𝜎0(. Then 

we can define “centered” 𝑑!
∗(7) = 𝑑!∗ − 𝜇0, with 𝑉𝑎𝑟Q𝑑!

∗(7)R = 𝜎0(. If there are 𝑛 loci, then the 
effect of inbreeding per unit of homozygosity is 𝑏 = −𝜇0𝑛 . Now we can decompose 𝜎5( =

4∑𝑝!(𝑞!((𝑑!∗)( = 4∑𝑝!(𝑞!(Q𝑑!
∗(7)R

(
− 4∑𝑝!(𝑞!((2𝑑!∗7𝜇5) + 𝜇0(4∑𝑝!(𝑞!( = 4∑𝑝!(𝑞!(Q𝑑!

∗(7)R
(
+

𝜇0(4∑𝑝!(𝑞!( because 4∑𝑝!(𝑞!((2𝑑!∗7𝜇5) = 0 across loci. Assuming independence of 𝑝!(𝑞!( and 
𝑑!
∗(7), then 𝜎5( = 4∑𝑝!(𝑞!((𝜎0( + 𝜇0() or in other terms,  𝜎5( = 𝑛𝐻(dddd(𝜎0( + 𝜇0() where 𝐻(dddd is 

average squared heterozygosity. 
 
 
1.6 Variance of statistical effects 
We use the fact that the population variances are function of the variances of the different 
effects (Maki-Tanila and Hill, 2014) and moments of heterozygosities. First, we define 
functions of heterozygosities for all 𝑛 loci at the focal population. The average heterozygosity 
across loci is: 

𝐻"dddd =
1
𝑛∑2𝑝!

"F1 − 𝑝!"G 

The average squared heterozygosity is 

𝐻"(dddd =
1
𝑛∑Q2𝑝!

"F1 − 𝑝!"GR
(
 

and the average cross-product of heterozygosities across all pairs of distinct loci is 

𝐻𝐻"dddddd =
1

0.5𝑛(𝑛 − 1)mm2𝑝!"F1 − 𝑝!"G2𝑝-"F1 − 𝑝-"G
-8!

	
!

 

In fact 𝑛((𝐻"dddd)( = 2𝑛(𝑛 − 1)𝐻𝐻"dddddd + 𝑛𝐻"(dddd and from here we make the approximation 𝐻𝐻"dddddd ≈
%
(
𝐻"dddd𝐻"dddd.  
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If we knew these functions of heterozygosities, we could obtain, from estimates of additive, 
dominant and additive by additive variances, the variance of statistical additive, dominant and 
additive by additive effects: 
 

𝑉𝑎𝑟F𝛼!"G = 𝜎*,"( 	=
𝜎6(

𝑛𝐻"dddd
 

𝑉𝑎𝑟F𝑑!∗"G + 𝐸(F𝑑!∗"G = 𝜎0( + 𝜇0( =
𝜎5(

𝑛𝐻"(dddd
 

𝑉𝑎𝑟F(𝛼𝛼)!,-,-8!" G 			= 𝜎(**,")
( =

𝜎66(

𝑛(𝑛 − 1)𝐻𝐻"dddddd ≈ 2
𝜎66(

𝑛(𝐻"dddd𝐻c"
 

𝑉𝑎𝑟((𝜶𝜶)!9) 			= 𝑰⨂	𝜎(**,")
( ≈ 2𝑰

𝜎66(

𝑛(𝐻"dddd	𝐻"dddd
 

 
All variances and effects refer to the focal population with allele frequencies 𝑝" and effects 
𝛼". Note that we assume HWE and LE.  
 
 
1.7 Nei’s minimal genetic distance 𝐷","!as function of 𝐹:;  and 𝐻c" 
 
The objective is to put 𝐷","!  as a function of assumed known parameters 𝐹:;  and 𝐻c" 

(heterozygosity of population 𝑏). In fact, 𝐹:; = 1 −
9.=(>?$@>?$!)

>?'
= 5$,$’

>?'
 where 𝐻cA =

%
&
∑ Q𝑝𝒊"

!F1 − 𝑝!"G + 𝑝𝒊"F1 − 𝑝!"
!GR! . Assuming 𝐻c" ≈ 𝐻c"!  and after some manipulation, this 

yields 𝐷","! =
C)*

%DC)*
𝐻c" . Note that although Nei’s 𝐹:;  and Hudson et al. (1992) definitions of 

𝐹:;  differ (Bhatia et al., 2013), their numerator is identical, and identical to 𝐷","!  by definition. 
  
1.8 Correlation of absolute values of bivariate normal 
 

Consider 𝑥 and 𝑦 that are multivariate normal with 0 expectation and 𝑉𝑎𝑟 Q
𝑥
𝑦R =

@
𝜎E(	 𝜎EF
𝜎EF 𝜎F(

A 

 
Now we define the transformed |𝑥| and |𝑦|. Using Kan and Robotti (2017) one gets 
expressions for 𝐸(|𝑥|), 𝑉𝑎𝑟(|𝑥|), and also for |𝑦|, and 𝐶𝑜𝑣(|𝑥|, |𝑦|). From here the values of 
the correlation can be obtained through a rather long expression. 
 
This has been conveniently programmed in R package MomTrunc (Galarza et al., 2020). The r 
code to obtain the correlation of absolute values from the regular correlation is function 
r2rabs as follows: 
 
require("MomTrunc") 
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foo=function(x) 
cov2cor(meanvarFMD(c(0,0),Sigma=matrix(c(1,x,x,1),2),dist='nor
mal')$varcov)[1,2] 
r2rabs = function(r){ 
 out=c() 
 for (i in r){ 
  out=c(out,foo(i)) 
 } 
 out 
} 
 
Which translates into the following quadratic: 
 

 
 
 
1.9 Simulation 
 
The basic macs command is: 
 
macs 400 3e5 -i 100 -t 0.0012 -r 0.001 -I 2 200 200 -ej $t1Over4Ne 
2 1 -eN 1.67 10 
 
Which translates as: generate 400 sequences of 3e5 bases, 100 times (i.e. 100 DNA stretches). 
-t specifies the nucleotide diversity per base pair, -r the scaled recombination rate (in 4Ne 
units), = 𝜃 = 	4𝑁𝑒	𝑟 where 𝑁𝑒 = 300, the population split into two populations of 200 
gametes each (-I 2 200 200) at time $t1Over4Ne i.e. 𝑡/4𝑁𝑒	, -eN specifies that the 
population had a 10-fold population bottleneck 1.67 generations ago in 4𝑁𝑒 units. 
 
This results in the following histogram of allele frequencies for population 1: 

0.0 0.2 0.4 0.6 0.8 1.0
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0

0.
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0.
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0.
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   [0.0 , 0.05) ┤▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇ 233044    
   [0.05, 0.1 ) ┤▇▇▇▇ 28123                                 
   [0.1 , 0.15) ┤▇▇ 16466                                   
   [0.15, 0.2 ) ┤▇▇ 12379                                   
   [0.2 , 0.25) ┤▇ 10148                                    
   [0.25, 0.3 ) ┤▇ 8476                                     
   [0.3 , 0.35) ┤▇ 7565                                     
   [0.35, 0.4 ) ┤▇ 6459                                     
   [0.4 , 0.45) ┤▇ 6391                                     
   [0.45, 0.5 ) ┤▇ 5766                                     
   [0.5 , 0.55) ┤▇ 5290                                     
   [0.55, 0.6 ) ┤▇ 5317                                     
   [0.6 , 0.65) ┤▇ 4378                                     
   [0.65, 0.7 ) ┤▇ 4375                                     
   [0.7 , 0.75) ┤▇ 4458                                     
   [0.75, 0.8 ) ┤▇ 4200                                     
   [0.8 , 0.85) ┤▇ 3792                                     
   [0.85, 0.9 ) ┤▇ 3667                                     
   [0.9 , 0.95) ┤ 3620                                      
   [0.95, 1.0 ) ┤ 3474                                      
   [1.0 , 1.05) ┤ 3299                                      
                └                                        ┘  
                                Frequency 
 
 
1.10 Derivation of substitution effects in dominance and epistatic systems 
 
Generally, we use gene content (z-score) coded as {-1,0,1} for the three different genotypes.  
 
Complete dominance. In this case we have: 

 cc Cc CC 
z   −1	 0	 1	
 𝑎	 𝑎	 0	

Here the mean is 𝑎(1 − 𝑝() and 𝛼 = %
(
)G(F)
)+"

= −𝑎𝑝 where 𝑝 = 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦(𝐶). The 

dominance deviation is 𝑑!∗ = − %
(
)*"
)+"

= −𝑎/2. 

 
 
Complementary Epistasis. We can write the 2-locus complementary epistasis model as 
follows: 

  cc Cc CC 
 z −1	 0	 1	
bb -1 𝑎	 𝑎	 0	
bB 0 𝑎	 𝑎	 0	
BB 1 0	 0	 0	
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The 𝑛-locus case generalizes to: 
• 𝑎 if genotypes at all 𝑛 loci are NOT “upper case upper case” 
• 0 otherwise  

 
in other words 
 
 𝑦 = [𝑧% ≠ 1][𝑧( ≠ 1]… [𝑧& ≠ 1]𝑎 
 
where 𝑧 is the genotype, the operator “[ ]” is Iverson brackets notation (1 if true and 0 
otherwise). Then, assuming independence across loci (i.e. LE), we generalize to 𝑛 loci: 
 

𝐸(𝑦) = 𝐸([𝑧% ≠ 1][𝑧( ≠ 1][𝑧H ≠ 1]𝑎)
= 𝑎𝐸([𝑧% ≠ 1])𝐸([𝑧( ≠ 1])𝐸([𝑧H ≠ 1])…𝐸([𝑧& ≠ 1]) 

 
Now we obtain 𝐸([𝑧% ≠ 1]). The expression [𝑧% ≠ 1] can be written as [𝑧% ≠ 1] = 1 −
3I#@I#+4

(
 (this is not really needed). Alternatively, the expectation 𝐸([𝑧% ≠ 1]) = 𝑞%( +

2𝑝%𝑞% = 1 − 𝑝%( is obtained looking at the following table: 
 

 z-score [𝑧% ≠ 1] frequency sum 
bb -1 1 𝑞( 𝑞( 
bB 0 1 2𝑝𝑞 2𝑝𝑞 
BB 1 0 𝑝( 0 

 
Thus, 𝐸(𝑦) = 𝑎(1 − 𝑝%()(1 − 𝑝(()(1 − 𝑝H()… (1 − 𝑝&() 
 
Then we can get the different 𝛼 as e.g. for the first locus we have  
 

𝛼% =
1
2
𝜕𝐸(𝑦)
𝜕𝑝%

= −𝑎𝑝%Π-8%F1 − 𝑝-(G 

If we call 𝐾 = ΠF1 − 𝑝-(G then 

𝛼% =
1
2
𝜕𝐸(𝑦)
𝜕𝑝%

= −𝑎
𝑝%

(1 − 𝑝%()
𝐾 

 
and generally 

𝛼! =
1
2
𝜕𝐸(𝑦)
𝜕𝑝!

= −𝑎𝑝!Π-J!F1 − 𝑝-(G = −𝑎
𝑝!

(1 − 𝑝!()
𝐾 

 
The dominance deviation is  

𝑑!∗ = −
1
2
𝜕𝛼!
𝜕𝑝!

=
𝑎
2Π-J!F1 − 𝑝-

(G =
𝑎
2

1
(1 − 𝑝!()

𝐾 

The 𝑖 – by – 𝑗 epistatic effect (𝛼𝛼)!-  is 

(𝛼𝛼)!- =
1
2
𝜕𝛼!
𝜕𝑝-

=
1
2
𝜕
𝜕𝑝-

Q−𝑎𝑝!F1 − 𝑝-(GΠ.J!,-(1 − 𝑝.()R = 
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𝑎𝑝!𝑝-Π.J!,-(1 − 𝑝.() = 𝑎
𝑝!𝑝-

(1 − 𝑝!()F1 − 𝑝-(G
𝐾 

 
Note that the expression is oriented: 𝑝!  is the frequency of the “recessive” allele (say B) at 
locus 𝑖.  
 
Multiplicative. Consider, for instance, the following values of the genotypic value for two loci 
with their respective frequencies: 

  cc Cc CC 
 z −1	 0	 1	
bb -1 𝑎	 0	 −𝑎	
bB 0 0	 0	 0	
BB 1 −𝑎	 0	 𝑎	

The genotypic value can be expressed as the product of z values at each loci, i.e. 𝐺 = 𝑧%𝑧( for 
two loci. The generalization to several loci is immediate as ∏ 𝑧!!K%,&  . The average genotypic 
value considering n loci is, assuming Cov(𝑍! , 𝑍-) = 0 (LE): 
 

𝜇 = 	𝐸(𝑍%𝑍(𝑍H…	𝑍&) = 	𝐸(𝑍%)	𝐸(𝑍()	𝐸(𝑍H)… 	𝐸(𝑍&)		[1] 
 
In general, 𝐸(𝑍!) = 	𝑝!( −	𝑞!( = 𝑝! − 𝑞! = 2𝑝! − 1 and consequently,  

𝜇 =�(2𝑝! − 1)
&

!K%

 

Following Kojima’s definition, the additive substitution effect at locus i is the first derivative 
of 𝜇	: 

𝛼! =
1
2
𝜕𝜇
𝜕𝑝!

=
1
2
𝜕(2𝑝! − 1)

𝜕𝑝!
	Π!J-F2𝑝- − 1G =�F2𝑝- − 1G

-J!

 

Or, calling 𝐾 = ΠF2𝑝- − 1G 

𝛼! =
1

2𝑝! − 1
𝐾 

The dominance deviation is 0 as expected: 

𝑑!∗ = −
1
2
𝜕𝛼!
𝜕𝑝!

= −
1
2
𝜕
𝜕𝑝!

�F2𝑝- − 1G
-J!

= 0 

The additive by additive effect is: 

(𝛼𝛼)!- =
1
2
𝜕𝛼!
𝜕𝑝-

= �(2𝑝. − 1)
.J!,-

=
1

(2𝑝! − 1)F2𝑝- − 1G
𝐾 

 
1.11 Derivation of the moments of functions of allele frequencies assuming beta distributions 
 
We need the moments  

𝐻c = 𝐸F2𝑝!(1 − 𝑝!)G 
𝐻(dddd = 𝐸F4𝑝!(1 − 𝑝!)𝑝!(1 − 𝑝!)G 

and  
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𝐻𝐻ddddd = 𝐸!8- Q2𝑝!(1 − 𝑝!)2𝑝-F1 − 𝑝-GR 
from the parameters of the 𝐵𝑒𝑡𝑎(𝛼, 𝛽) distribution of the allele frequencies 𝑝. The moments 
can be obtained using the Moment generating function of the Beta distribution such that 
(𝑝.) = ∏ *@LD%

*@M@LD%
.
LK%  . For instance 

𝐻c = 2𝐸F𝑝(1 − 𝑝)G = 2𝐸(𝑝) − 2𝐸(𝑝() = 2
𝛼𝛽

(𝛼 + 𝛽)(𝛼 + 𝛽 + 1) 

Which for 𝛼 = 𝛽 = 𝑎 yields  

𝐻c =
2𝑎(

2𝑎(2𝑎 + 1) =
𝑎

(2𝑎 + 1) 

then 
𝐻(dddd = 𝐸F4𝑝(1 − 𝑝)𝑝(1 − 𝑝)G = 4𝐸(𝑝( − 2𝑝H + 𝑝N)

= 4
𝛼

𝛼 + 𝛽
𝛼 + 1

𝛼 + 𝛽 + 1a1 +
𝛼 + 2

𝛼 + 𝛽 + 2Z
𝛼 + 3

𝛼 + 𝛽 + 3 − 2[f 

Which for 𝛼 = 𝛽 = 𝑎 yields  

𝐻(dddd = 2
𝑎 + 1
2𝑎 + 1@1 +

𝑎 + 2
2𝑎 + 2 Z

𝑎 + 3
2𝑎 + 3 − 2[A 

Then, is 𝐻𝐻ddddd = 𝐸!8- Q2𝑝!(1 − 𝑝!)2𝑝-F1 − 𝑝-GR, that we approximated as 𝐻𝐻ddddd ≈ %
(
(𝐻c)( =

%
(
Q A
((A@%)

R
(
 

 
Finally, 

𝐻(dddd

𝐻c
= 2

𝑎 + 1
𝑎 @1 +

𝑎 + 2
2𝑎 + 2 Z

𝑎 + 3
2𝑎 + 3 − 2[A 

 


