
COMPARISON WITH TENSORQTL

This note provides details of the comparison of LiteQTL and ten-
sorQTL as expressed in Table 2.

Both programs were run on the same hardware using the same
CUDA library, as detailed in the manuscript. We tested with two
sets of conditions.

Full matrix: This test condition computes the whole result ma-
trix, without any filtering. This set of testing condition, is probably
not favorable to tensorQTL, since it is not designed to handle full
result matrix. In fact, when we used bigger input sizes, CUDA
library would report out of GPU memory error, because tensorQTL
was chunking the computation based on filtered input and out-
put. But this testing set can be a good measurement to show the
advantage of our implementation.

Filtered: This set of test condition follows the example shown in
tensorQTL package, for which tensorQTL is optimized for. In this
set of testing conditions, we turned on the filtering threshold, p-
value threshold, and MAF filtering threshold. These filters reduce
the size of data involved in the computation, resulting in much
shorter data transfer time, and computation time.

Because of limited GPU memory, we used full phenotype ma-
trix, and 20000 variants for both testing sets. All CPU timing was
done with 20 threads. The timings shown are averages of 10 runs
measured in seconds.

Elapsed time inlcudes data transfer, core computation, and post
processing. For a fair comparison between CPU and GPU, it is
important to include data transfer time, since it is a necessary cost
when using GPU and could obscure ultimate speedup, if excluded.
Core computation is the time spent on the criticle part of algo-
rithm, and generate output for post processing. Post processing
includes time spent on processes that generates meaningful out-
put to user, such as calculate p-values, concatenating dataframes,
adding additional information, type conversions, etc. Since this
part varies depending on user input, and both tensorQTL and
LiteQTL are designed with different defaults in mind, we do not
think it is fair to use this time to compare performance or speedup
between LiteQTL and tensorQTL. We modifed tensorQTL’s code
to insert time stamps. The repository showing our modification is:
https://github.com/senresearch/tensorQTL.

RESULT

Test 1: Full matrix.
tensorQTL: As mentioned earlier, this test is probably not how
tensorQTL intends to be used. The data transfer for CPU is theo-
retically 0. We observed 0.015 for CPU data transfer time, possibly
because tensorQTL depends on PyTorch. This could be the cost of
wrapping data into a tensor format to prepare for PyTorch.

If we only compare core computation time, GPU provides a
speedup of 17 times, from 0.94 seconds down to 0.055 seconds.
However, if we count in data transfer time (moving data to and
from main memory to GPU memory), which is necessary when
using the GPU, it brings GPU timing to 0.616 seconds. The speedup
drops from 17 times to 1.5 times. The time spent on post processing
for tensorQTL is also significant, most of which is spent calculating
p-values.

LiteQTL: In terms of data transfer time and core computation Lite-
QTL is similar to tensorQTL. There is a small yet still positive
speedup. The speedup is swallowed by the data transfer time.
Post processing step is 0.785 seconds, which is much longer than
core computation (0.054s). Most of post processing for LiteQTL is
concatinating results to a data frame.

Test 2: Filtered
tensorQTL: The filtering is based on the MAF filtering threshold
(0.05), and p value threshold (10−5)). After filtering 20000 vari-
ants, there are 11515 variants left. Data transfer time and post
processing time benefit from filtering, which are shorter compared
to tensorQTL’s full matrix test.

LiteQTL: The filtering standards are MAF (minor allele frequency)
filtering threshold (0.05), and the maximum LOD score of each tran-
script. MAF filtering removed about half the genotype, therefore
resulting in about half of the computation time. Another filtering
step is the find maximum LOD for each transcript, which results in
a much smaller output, hence the decreased time in data transfer.
This boosts GPU speedup compared to CPU only implementation
to 10.7 times.

CONCLUSION:

We find that data transfer and core computation costs are similar
for both tensorQTL and LiteQTL. We were limited to testing on
a single hardware platform and a singe dataset. We believe this
will hold more generally since both packages are using the same
core approach. We found that data transfer and post processing
can poses burdens, and thus those are areas where there may be
room for further improvement in the future.

1

https://github.com/senresearch/tensorQTL

