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Appendix

Does the validation-data type (i.i.d. BLUPs vs. GBLUPs) make a difference? Most often, cross-
validation done to test genomic prediction accuracy uses validation data (the stand-in for “truth”) consisting
of adjusted values, (e.g. BLUPs or BLUES) for total individual performance, not including genomic relatedness
information. In our study we set-up cross-validation folds that enable us to predict the GEBV and GETGV
(GBLUPsS) of validation family-members, and to subsequently compute their sample means, variances and
usefulness. This approach has the added advantage of expanding the available sample size of validation
progeny with complete data across traits. Nevertheless, we made some comparison to results using BLUPs that

do not incorporate genomic relatedness information; in other words, independent and identically distributed
(i.i.d.) BLUPs.

Prediction accuracy for family means were nearly uniformly higher using GBLUPs compared to iidBLUPs
(median 0.18 higher). The Spearman rank correlation between prediction accuracies based on iidBLUPs
and GBLUPs was high (median 0.75, range 0.55-0.84). Similar to the means, accuracy using GBLUP-
validation-data appeared mostly higher compared to iidBLUPs (median difference GBLUPs-iidBLUPs = 0.07,
interquartile range -0.002-0.14). The Spearman rank correlations of iildBLUP and GBLUP-validation-based
accuracies was positive for family (co)variances, but smaller compared to family means (mean correlation 0.5,
range 0.04-0.89). Supplementary plots comparing validation-data accuracies for means and (co)variances
were inspected (Figure S6-S7). Based on this, we conclude that we would reach similar though more muted
conclusions about which trait variances and trait-trait covariances are best or worst predicted, if restricted to
iidBLUPs for validation data.

What if we consider only families with greater than a threshold size? In our primary analysis, we
computed (co)variance prediction accuracies with weighted correlations, considering any family with more
than one member. We also considered a more conservative alternative approach of including only families
with > 10 (n=112); we thought beyond that was too stringent as at > 20 only 22 families remain. The
Spearman rank correlation between accuracy estimates when all vs. only families with more than 10 members
was 0.89. There should therefore be good concordance with our primary conclusions, depending on the family
size threshold we impose. The median difference in accuracy (“threshold size families” minus "all families’’)
was 0.01. Considering only size 10 or greater families noticeably improved prediction accuracy for several
trait variances and especially for two covariances (DM-TCHART and logFYLD-MCMDS) (Figure S8).

Comparing posterior mean variance (PMV) to variance of posterior mean (VPM) predictions:
Variances and covariances were predicted with the computationally intensive PMV method. Population
variance estimates based on PMV were consistently larger than VPM, but the correlation of those estimates
is 0.98 (Figure S9). Using the predictions from the cross-validation results, we further observed that the PMV
predictions were consistently larger and most notably that the correlation between PMV and VPM was very
high (0.995). Some VPM prediction accuracies actually appear better than PMV predictions (Figure S10).



The critical point is that VPM and PMV predictions should have very similar rankings. In our primary
analysis, we focus on the PMV results with the only exception being the exploratory predictions where we
saved time/computation and used the VPM. If implementing mate selections via the usefulness criteria,
choosing the VPM method would mostly have the consequence of shrinking the influence on selection decisions
towards the mean.

Comparing the directional dominance to the “classic” model: Our focus in this article was not in
finding the optimal or most accurate prediction model for obtaining marker effects. However, genome-wide
estimates of directional dominance have not previously been made in cassava. For this reason, we make some
brief comparison to the standard or “classic” additive-dominance prediction model, where dominance effects
are centered on zero. Overall, the ranking of models and predictions between the two models were similar,
as indicated by a rank correlation between model accuracy estimates of 0.98 for family means and 0.94 for
variances and covariances. Three-quarters of family-mean and almost half of (co)variance accuracy estimates
were higher using the directional dominance model. The most notably improved predictions were for the
family-mean logFYLD TGV (Figure S11-S12). There was also an overall rank correlation of 0.98 between
models in the prediction of untested crosses.

Supplementary Tables

Most Supplementary Tables are included as worksheets in the file SupplementaryTables.xlsx. Very large
ones are included as separate CSV files.

Table S1: Selection indices. For each trait, the standard deviation of BLUPs (blupSD), which were
divided by “unscaled” index weights for the StdSI and BiofortSI indices to get StdSI and BiofortSI weights
used throughout the study.

Table S2: Summary of cross-validation scheme. For each fold of each Rep, the number of parents in
the test-set (Ntestparents) is given along with the number of clones in the corresponding training (Ntraintset)
and testing (Ntestset) datasets and the number of crosses to predict (NcrossesToPredict).

Table S3: Test-parents. For each fold of each cross-validation repeat, the set of parents whose crosses are
to be predicted is listed.

Table S4: Training-Testing partitions of germplasm. For each fold of each repeat, the genotype ID
(germplasmName) of all clones in the “trainset” and “testset” are given.

Table S5: Crosses to predict each fold. For each fold of each repeat, the sireID and damlID are given
for each cross-to-be-predicted.

Table S6: Predicted and observed cross means. For each fold of each repeat, each cross distinguished
by a unique pair of sireID and damlID is given. The genetic model used (Models A, AD, DirDomAD,
DirDomBYV), whether the prediction is of mean breeding value (predOf=MeanBV) or mean total genetic
value (predOf=MeanTGV), the trait (BiofortSI or StdSI), type of observation (ValidationData: GBLUPs or
iidBLUPs) and corresponding prediction (predMean) and observations (obsMean) are shown.

Table S7: Predicted cross variances. All predictions of cross-variance from the cross-validation scheme are
detailed. For each fold of each repeat and each unique cross (sireID x damID). Both variances (Trait1==Trait2)
and co-variances (Trait1!=Trait2) are given. The genetic model used (Model: A, AD, DirDomAD, DirDomBV),
the variance component being predicted (VarComp=VarA or VarD), along with the number of segregating
SNPs in the family (Nsegsnps) and the time taken in seconds for computation, per family (totcomputetime)
are given. The predictions based on the variance of posterior means (VPM) and the posterior mean variances
(PMV) are both shown.

Table S8: Predicted versus observed cross variances. From the cross-validation analysis. For each
fold of each repeat, each cross distinguished by a unique pair of sireID and damlID is given. The genetic
model used (Model: A, AD, DirDomAD, DirDomBYV), whether the prediction is of family variance in
breeding value (predOf=VarBV) or variance in total genetic value (predOf=VarTGV), the trait (BiofortSI or
StdSI), type of observation (ValidationData: GBLUPs or iidBLUPs) and corresponding prediction (predVar)



and observations (obsVar) are shown. The predictions are based on either only the variance of posterior
means (VarMethod=VPM) or the posterior mean variances (VarMethod=PMV). The family size (number of
genotyped offspring, FamSize) or number of offspring with direct phenotypes (Nobs) are used to weight the
correlation (CorrWeight) between observed and predicted family variances.

Table S9: Predicted versus observed UC. For each fold of each repeat, each cross distinguished by a
unique pair of sireID and damID is given. The predicted usefulness criterion (predUC) was computed as the
predMean + reallntensity*predSD, where predMean is the predicted family mean and predSD is the predicted
genetic standard deviation. The genetic model used (Model: A, AD, DirDomAD, DirDomBV), whether
the prediction is of family variance in breeding value (predOf=VarBV) or variance in total genetic value
(predOf=VarTGV), the trait (BiofortSI or StdSI) and corresponding prediction (predUC) and observations
(obsUC) are shown. The family size (number of genotyped offspring, FamSize) is shown along with the
realized selection intensity (reallntensity) for each selection stage in the breeding pipeline (Parent, CET,
PYT, AYT, UYT) and also a constant intensity value (Stage=ConstIntensity).

Table S10: Accuracies predicting the mean. For each fold of each repeat, the accuracy predicting
family means (Accuracy) is given. The genetic model used (Model: A, AD, DirDomAD, DirDomBV), whether
the prediction is of mean breeding value (predOf=MeanBV) or mean total genetic value (predOf=MeanTGV),
the trait (BiofortSI or StdSI), type of observation (ValidationData: GBLUPs or iildBLUPs) are shown.

Table S11: Accuracy of predicting the variances. For each fold of each repeat the estimated accuracy
of predicting family variances is given. Accuracy was computed the correlation between predicted and
observed variance, either weighted by family size (AccuracyWtCor) or not (AccuracyCor). The genetic model
used (Model: A, AD, DirDomAD, DirDomBV), whether the prediction is of family variance in breeding value
(predOf=VarBV) or variance in total genetic value (predOf=VarTGV), the trait (BiofortSI or StdSI), type of
observation (ValidationData: GBLUPs or iidBLUPs) are shown. The predictions are based on either only
the variance of posterior means (VarMethod=VPM) or the posterior mean variances (VarMethod=PMV).

Table S12: Accuracy predicting the usefulness criteria. For each fold of each repeat the estimated
accuracy of predicting family usefulness criteria is given. Accuracy was computed as the correlation between
predicted UC and observed UC (mean of selected offspring), either weighted by family size (AccuracyWtCor)
or not (AccuracyCor). The genetic model used (Model: A, AD, DirDomAD, DirDomBV), whether the
prediction is of UC in breeding value (predOf=VarBV) or UC in total genetic value (predOf=VarTGV), the
trait (BiofortSI or StdSI), type of observation (ValidationData: GBLUPs or iidBLUPs) are shown. The
predictions of cross variance used to compute the UC are based on either only the variance of posterior means
(VarMethod=VPM) or the posterior mean variances (VarMethod=PMYV).

Table S13: Realized within-cross selection metrics. Table summarizing measurements made of
selection within each cross (unique sireID-damID). Summaries included: family size (FamSize), number
(NmembersUsed AsParent) and proportion of members used as parents (propUsedAsParent), mean GEBV
and GETGV of top 1% of each family (meanToplpctGEBV, meanToplpctGETGYV), for each selection
index Trait (Trait: BiofortSI, StdSI), proportion of each family that has been phenotyped (propPhenotyped,
NmembersPhenotyped) and past each stage of the breeding pipeline (propPast and NmembersPast CET,
PYT, AYT) and finally the corresponding realized intensity of selection for each stage (e.g. reallntensity AYT).

Table S14: Genome-wide proportion of SNPs that are homozygous, for each clone
(GID=germplasmName).

Table S15: Variance-covariance estimates for each genetic group. Summary of the population-
level genetic variance estimates in each genetic group (GG=C0, TMS13=C1, TMS14=C2, TMS15=C3),
for each genetic model (Model: A, AD, DirDomA, DirDomAD), each variance (Traitl==Trait2) and
covariance (Traitl!=Trait2). The estimates are computed both based on the variance of posterior means
(VarMethod=VPM) and the posterior mean variances (VarMethod=PMYV).

Table S16: Directional dominance effects estimates. Based on the directional dominance model,
the genome-wide posterior mean (InbreedingEffect) and posterior standard deviation (InbreedingEffectSD)
inbreeding effect is given. Estimates are provided for each trait, genetic group (Group), and each repeat-fold
of the cross-validation study.



Table S17: Predictions of untested crosses. Compiled predictions of 47,083 possible crosses (sireID
x damID) of 306 parents. Predictions were made with two additive-dominance genetic models: either
with (Model=DirDomAD) or without (Model=ClassicAD) a directional dominance term. The predictions
included are the cross mean (predMeanBV predMeanGV), standard deviation (predSdBV,predSdGV) and
usefulness (predUCparent,predUCvariety) in terms of breeding (BV) and total genetic (GV) value. Additional
information provided for each cross include: whether the cross is a self (IsSelf=T/F), has previously been
made (CrossPrevMade=Yes/No), the number of segregating SNPs expected in the family (Nsegsnps) and the
parental GEBV (sireGEBV, damGEBV).

Table S18: Long-form table of predictions about untested crosses. Compiled predictions of 47,083
possible crosses (sireID x damID) of 306 parents. Predictions were made with two additive-dominance genetic
models: either with (Model=DirDomAD) or without (Model=ClassicAD) a directional dominance term. The
predictions (Pred) included are of the cross mean (PredOf=Mean), standard deviation (PredOf=Sd) and
usefulness (PredOf=UC) in terms of breeding (Component=BV) and total genetic (Component=GV) value.
Additional information provided for each cross include: whether the cross is a self (IsSelf=T/F) and has
previously been made (CrossPrevMade=Yes/No).

Table S19: Top 50 crosses (sireID x damID) selected by each of 16 predictions of 47,083
crosses. Predictions for each trait were made with two additive-dominance genetic models: either with
(Model=DirDomAD) or without (Model=ClassicAD) a directional dominance term. The predictions (Pred) se-
lected on are of the cross mean (PredOf=Mean), standard deviation (PredOf=Sd) and usefulness (PredOf=UC)
in terms of breeding (Component=BV) and total genetic (Component=GV) value. Additional information
provided for each cross include: whether the cross is a self (IsSelf=T/F) and has previously been made
(CrossPrevMade=Yes/No).



Supplementary Figures (Main)

Figure S01: Genome-wide proportion homozygous
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Figure S01: Boxplot of the genome-wide proportion of homozygous SNPs in each of four genetic groups
comprising the study pedigree.



Figure S02: Correlations among phenotypic BLUPs (including Selection Indices)
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Figure S02: Correlations among BLUPs (including Selection Indices). (A) StdSI vs. BiofortSI computed

from i.i.d. BLUPs. (B) Heatmap of the correlation among BLUPs for each of four component traits and two
derived selection indices.



Figure S03: Realized selection intensities: measuring post-cross selection

Realized selection intensities as measures of post-cross selection

A B
1.00 1 e , 0 o °
2.0
o 0.751 2
g 2
ks . L3
[0) ° £ 1.5+
@ . s DescendentsOfCycle
= ° =
§ 8 B o
L 0504 @ o oo ®
— ° [} ‘ C1
o ° T 1.0
S X X} & E Cc2
% [ [ ] t:)
L) ° [
Q.
= — ° g
Q- .25+ . . o
‘ ° . ge 0.57
° ! o9
i N HER D
. ] ' 1
0.00 —— @ ® Q S —— 0.0 1 °
ParentPhenotyped CET ~ PYT  AYT Parent CET  PYT  AYT  UYT
StagePast Stage

Figure S03: Realized selection intensities: measuring post-cross selection. Boxplots showing (A) the proportion
of each family selected and (B) the standardized selection intensity for each stage of the breeding pipeline, in
each genetic group.



Figure S04: Correlation matrix for predictions on the StdSI
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Figure S04: Correlation matrix for predictions on the StdSI. Heatmap of the correlations between predictions
of mean, standard deviation, and usefulness in terms of BV and TGV. Predictions were made for 47,083
possible pairwise crosses of 306 parents with a directional dominance model.

Figure S05: Correlation matrix for predictions on the BiofortSI
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Figure S05: Correlation matrix for predictions on the BiofortSI. Heatmap of the correlations between
predictions of mean, standard deviation, and usefulness in terms of BV and TGV. Predictions were made for



47,083 possible pairwise crosses of 306 parents with a directional dominance model.

Supplementary Figures (Appendix)

Figure S06: Contrasting GBLUPs and iidBLUPs as validation data for measuring
family mean prediction accuracy
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Figure S06: Contrasting GBLUPs and iidBLUPs as validation data for measuring family mean
prediction accuracy. The cross mean prediction accuracy based on fivefold parent-wise cross-validation is
shown using boxplots. Each panel contains results for one of the selection indices (stdSI and biofortST) and
for the component traits (DM, logFYLD, MCMDS, TCHART). Prediction accuracies are on the y-axis and
cross mean GEBV (MeanBV) and GETGV (MeanTGV) are on the x-axis. Colors distinguish the validation
data used to estimate the accuracy.



Figure S07: Contrasting GBLUPs and iidBLUPs as validation data for measuring

family *co)variance prediction accuracy
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Figure S07: Contrasting GBLUPs and iidBLUPs as validation data for measuring family
(co)variance prediction accuracy. The cross variance and covariance prediction accuracy based on
fivefold parent-wise cross-validation is shown using boxplots. Each panel in the top row contains results for
either a selection index (stdSI and biofortSI) or a component trait (DM, logFYLD, MCMDS, TCHART)
variance. Each panel on the bottom row contains one of the six pairwise covariances between the four
component traits. Prediction accuracies are on the y-axis and cross variance/covariance for GEBV (VarBV)
and GETGV (VarTGV) are on the x-axis. Colors distinguish the validation data used to estimate the

accuracy.
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Figure S08: Variance-covariance Accuracy considering only families with 10+

members?
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Figure S08: Variance-covariance Accuracy considering only families with 104+ members? The
cross variance and covariance prediction accuracy based on fivefold parent-wise cross-validation is shown using
boxplots. Results are shown based on the directional dominance model. Each panel in the top row contains
results for either a selection index (stdSI and biofortSI) or a component trait (DM, logFYLD, MCMDS,
TCHART) variance. Each panel on the bottom row contains one of the six pairwise covariances between
the four component traits. Prediction accuracies are on the y-axis and cross variance/covariance for GEBV
(VarBV) and GETGV (VarTGV) are on the x-axis. Colors distinguish whether all families (AllFams) or just
the ones with at least 10 members were included in the accuracy estimates.
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Figure S09: Population estimates of genetic variance parameters - PMV vs. VPM
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Figure S09: Population estimates of genetic variance parameters - PMYV vs. VPM. We contrasted
the variance of posterior means (VPM; x-axis) to the less biased, more intensive-to-compute posterior mean
variance (PMV; y-axis). Each point is a trait variance or trait-trait covariance estimate from the directional
dominance model. Colors distinguish additive variance (VarA) and dominance variance(VarD).
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Figure S10: PMYV vs. VPM - Compare prediction accuracy
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Figure S10: Variance-covariance Accuracy comparing VPM vs. PMV. The cross variance and
covariance prediction accuracy based on fivefold parent-wise cross-validation is shown using boxplots. Results
are shown based on the directional dominance model. Each panel in the top row contains results for either a
selection index (stdST and biofortSI) or a component trait (DM, logFYLD, MCMDS, TCHART) variance.
Each panel on the bottom row contains one of the six pairwise covariances between the four component
traits. Prediction accuracies are on the y-axis and cross variance/covariance for GEBV (VarBV) and GETGV
(VarTGV) are on the x-axis. Colors distinguish whether predictions were based on the VPM or the PMV.
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Figure S11: Directional Dominance vs. Classic Model - Family Mean Prediction
Accuracy
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Figure S11: Contrasting directional and non-directional dominance models accuracy predicting
family means. The cross mean prediction accuracy based on fivefold parent-wise cross-validation is shown
using boxplots. Each panel contains results for one of the selection indices (stdSI and biofortSI) and for the
component traits (DM, logFYLD, MCMDS, TCHART). Prediction accuracies are on the y-axis and cross
mean GEBV (MeanBV) and GETGV (MeanTGV) are on the x-axis. Colors distinguish whether results are
based on the directional dominance (DirDom) model or not (Classic).
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Figure S12: Directional Dominance vs. Classic Model - Family (Co)variance
Prediction Accuracy
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Figure S12: Contrasting directional and non-directional dominance models accuracy predicting
family (co)variances. The cross variance and covariance prediction accuracy based on fivefold parent-wise
cross-validation is shown using boxplots. Results are shown based on the directional dominance model.
Each panel in the top row contains results for either a selection index (stdSI and biofortSI) or a component
trait (DM, logFYLD, MCMDS, TCHART) variance. Each panel on the bottom row contains one of the
six pairwise covariances between the four component traits. Prediction accuracies are on the y-axis and
cross variance/covariance for GEBV (VarBV) and GETGV (VarTGV) are on the x-axis. Colors distinguish
whether results are based on the directional dominance (DirDom) model or not (Classic).
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