
Bioinformatics and Data analysis 1

Software used 2

List of software used... (html link if no citation available) 3

FastQC v0.11.7 4

bbmap v38.05 5

STAR-2.5.2b 6

bowtie2 v2.2.9 7

magicblast v1.3.0 8

SPAdes v3.13.1 9

ncbi-blast v2.7.1 10

SeqKit v0.11.0 11

Samtools v1.8 12

minimap2 v2.1 https://github.com/lh3/minimap2 13

sdust Release 0.1-r2 https://github.com/lh3/sdust 14

LAST http://home.cc.umanitoba.ca/ psgendb/doc/last/last.html 15

In Python v3.7.1 16

1. pandas v0.25.1 17

2. seaborn v0.9.0 18

3. matplotlib v2.2.3 19

4. matplotlib-venn v0.11.5 20

5. statsmodels v0.12.0 21

In R v4.05 22

1. polyester v1.26.0 23

Mystery Miner is available at is available at... 24

https://github.com/senorelegans/MysteryMiner 25

Layout of analysis 26

This supplemental will follow closely along with the nextflow pipeline, subsequent filtering scripts, and the github 27

README. Inside of the main nextflow folder we have added a folder called RunFirst which should help building the 28

various blast databases and indexes. All custom python scripts used in the pipeline are located under bin/src. Jupyter 29

notebooks (.ipynb) in the src folder were used to generate python scripts with the correspond name (example: 30

script1.ipynb makes nb script1.py) using notebook2script.py. This provides a nice test driven environment to develop in 31

jupyter notebooks and is inspired by the fastai library https://www.fast.ai/ 32

For the explanations below we are assuming the nextflow out folder is called NF OUT 33

PLOS 1/6



1 Nextflow Pipeline 34

FastQC and Trimming 35

Reads were verified for quality using FastQC, over-represented sequences and adapter contamination were trimmed using 36

bbduk and then rechecked with FastQC. The adapter file (adapters.fa) is located in the nextflow bin 37

bbduk.sh 38

in=R1.fastq.gz 39

in2=R2.fastq.gz 40

out=R1.trim.fastq.gz 41

out2=R2.trim.fastq.gz 42

ref=bbmap adapters 43

ktrim=r qtrim=10 k=23 mink=11 hdist=1 44

nullifybrokenquality=t 45

maq=10 minlen=25 46

tpe tbo 47

literal=AAAAAAAAAAAAAAAAAAAAAAA 48

Unmapped reads from target organisms (Human,Mice,Rat, etc) 49

Reads were aligned against the target organism using the following commands 50

STAR –genomeDir genome 51

–readFilesIn R1.trim.fastq.gz R2.trim.fastq.gz 52

–readFilesCommand zcat 53

–runThreadN 20 54

–runMode alignReads 55

–outReadsUnmapped Fastx 56

–outSAMattributes All 57

–outSAMtype SAM 58

–outFileNamePrefix name 59

–quantMode GeneCounts 60

–outFilterMultimapNmax 100 61

bowtie2 62

-q 63

-p 20 64

-x bowtie2 index 65

-1 Unmapped.out.mate1 66

-2 Unmapped.out.mate2 67

-S bowtie2.sam 68

–un-conc unmapped.fastq 69

magicblast 70

-query unmapped.1.fastq 71

-query mate unmapped.2.fastq 72

-db magicblastDB 73

-infmt fastq 74

-outfmt tabular 75

-num threads 20 76

-no unaligned 77

-out blast.tsv 78

PLOS 2/6



After magicblast, seqkit is used to remove reads that match hits from magicblast. Additionally we have taken 400 reads 79

out before magicblast, and add them back in after so that the assembly with spades won’t fail. 80

Assembly 81

At this point we have unmapped reads ready for assembly. We assemble the samples as seperate single files, as well as 82

concatenated by each condition (Control, Treatment1, Treatment2, etc), and all samples concatenated together (all). This 83

gives us the different heirarchies of single, group, all. The concatenation step is important for the preprocessing for the 84

LastALL step. It should be noted that spades can fail if you do not set the read orientation properly (=or in the nextflow 85

pipeline). It might also fail if you put in too large of a kmer size (=kmer size in the nextflow pipeline). A general rule is 86

to go a little under half your read length and set it to an odd number (Example: 75bp reads set kmer size to 35). 87

spades 88

–rna 89

–pe1-or 90

-k kmer size 91

–pe1-1 R1 92

–pe1-2 R2 93

-o name spades 94

mv name spades/transcripts.fasta name spades.fasta 95

Nucelotide Blast 96

At this point we have contigs ready for nucleotide blast. This will give us taxid numbers we can query jgi with. We also 97

add in fake/dummy contigs at this point as well so downstream processes won’t fail. These sequences are located in 98

dummysequences.fa in the bin. This will not be counted in the dataframe output but it is important to be aware of the 99

dummy sequences so you do not mistake them as valid dark biome hits. This is also the point where any contigs not 100

identified by BLAST are put into the darkbiome section of the pipeline. 101

blastn -db ntblastDB 102

-query fa withdummy 103

-max target seqs 1 104

-max hsps 1 105

-outfmt ”6 qseqid sseqid pident evalue staxids sscinames scomnames sskingdoms stitle” 106

-out name unmapped.tsv 107

-num threads 30 108

Joint Genome Institute (JGI) Query 109

At this point we can query the jgi server using the taxids identified by BLAST. Contigs matching Human, Mouse, 110

Vertebrate, Viridiplantae, Artificial (synth or vector or Vector or artificial in the name) are removed and placed into the 111

NF OUT/unmapped/final/filter/contigs/blast/. In this folder you will also find the initial contigs that were made using 112

spades. This step corresponds to the jgiJSON.ipynb and nb jgiJSON.py scripts in the bin. 113

concat fasta for Bowtie2Index 114

At this step we will take all of the contigs that spade assembled and build bowtie2 indexes out of them so we can map 115

reads to them. It is important that we are taking all of the contigs used in spades so reads that want to map back to 116

”junk” contigs have the opportunity. Additionally, since we get counts for all of the contigs we can use these in 117

subsequent normal and dark biome calculations. 118

bowtie2-build –threads 20 condition.fasta condition 119

PLOS 3/6



Map with bowtie2 and run mpileup 120

Now that we have indexes we can map using bowtie2. After mapping we sort and index these bams then run mpileup to 121

get read counts for each basepair. 122

bowtie2 -q 123

-p 20 124

-x condition 125

-1 R1.fastq 126

-2 fin R2.fastq 127

-S fout condition.sam 128

samtools view -@ 20 -bS -o fout conditiontmp fout condition.sam 129

samtools sort -@ 20 fout conditiontmp ¿ fout condition.bam 130

samtools index fout condition.bam 131

samtools mpileup -f fa fout condition.bam ¿ fout condition pileup.txt 132

Dark Biome Dust Filter 133

At this point we have finished the normal biome. At the start of the Dark Biome we get all of the contigs that do not 134

have a BLAST hit. Next, we run a dust filter from minimap2 that identifies repetitive regions, and use the created bed 135

file to remove these contigs using seqkit. 136

sdust fa withdummy > name dust mask.bed 137

2 Post Nextflow Scripts 138

After the nextflow pipeline run the bash script 2.0 MysteryMiner Filter.sh to run all of the python scripts below 139

Filter darkGenome using LASTDB and BLASTX 140

Now that we have dark biome contigs free of overly repetitive sequences we can use the different levels/heirarchies of 141

assembly (single sample, group/condition concatenated) to filter contigs found when all samples are assembled together. 142

The logic here is that we want retain contigs that have a greater than %60 identitiy between assembled heirarchies. 143

Briefly, this consist of making indexes out of the contigs in each heirarchy, then doing pairwise alignment between 144

heirarchies. We use the single and group contigs to create a set of group contigs that are filtered by singles (Group FS), 145

then use the Group FS contigs to filter the set of contigs made from all of the samples concatenated together. This gives 146

you All FG (All filtered by Group FS). Finally, we protein BLAST (BLASTX) All FG. 147

Contigs that have a BLASTX hit are identified with JGI similar and filtered similar to the normal biome, and can be 148

located in the NF OUT/unmapped/final/darkbiome/lastdb/FINAL Tophits. 149

Contigs with no hits can be located in the NF OUT/unmapped/final/darkbiome/lastdb/FINAL Nohits folder. 150

This step was too complicated to execute in the nextflow pipeline and can be found in the 1.0-FilterDarkGenome.py and 151

nb 1.0-FilterDarkGenome.py script in the bin. 152

Pileup coverage and normalization 153

In order to normalize samples by library size, we use the total mapped reads to the target genome from STAR to create a 154

normalization factor for each sample. Normalization factors for each sample are calculated by finding the samples with 155

the fewest mapped reads (norm min), and dividing all of the other samples by the norm min. We make the assumption 156

that we can scale samples by the number of reads mapping to target genome and any unmapped reads that are not used 157

in this calculation will have a negligible effect on normalization factors. 158

Next, using the mpileup output we calculate coverage for each contig by summing all of the counts for each base pair in a 159

contig and dividing by the length of the contig. 160

PLOS 4/6



Finally, we library normalize each contig coverage number in a sample by multiplying by the appropriate normalization 161

factor of that sample. 162

This is done using the nb 2.0-PileupNormalize and nb 3.0-PileupDataFrame scripts in the bin. 163

Fastq and contig counting 164

Now we count all of the Fastq reads and contigs and create dataframes showing the amount. This is done in the 165

nb 4.0-CountContigs scripts. 166

The amount of fastq reads removed at each step and for singles, groups, and all can be found in 167

NF OUT/unmapped/final/filter/fastq/fastq amount df.csv 168

The amount of regular biome contigs and amount removed at different filtering steps can be found in 169

NF OUT/unmapped/final/filter/contigs/blast/contigs amount df.txt’ 170

The amount of dark biome contigs at each filtering step can be found in 171

NF OUT/unmapped/final/darkbiome/contigs amount dark afterblast.txt 172

T-Test and quantification 173

In the script nb 5FilterTtest.py a generic T-Test is ran for every permutation of conditions and 174

ranks = [’superkingdom’, ’kingdom’, ’phylum’, ’order’, ’family’, ’genus’, ’species’,”name”] 175

and 176

superkingdoms = [’Bacteria’, ’Viruses’, ’Eukaryota’, ’NA’, ’Archaea’] 177

After running this script you can look in NF OUT/FINAL OUT for the final output. As an example, if you wanted to 178

look for bacteria reads binned by species for condition A and B you would go to the final output and open the folder 179

A B Bacteria Bin species and look in A B Bacteria Bin species all pileupCoverageNormalizedMatched.txt for the regular 180

biome or A B Bacteria Bin species dark all pileupCoverageNormalizedMatched.txt for the dark biome. There is also a 181

folder for dark biome contigs in each comparison. The folder A B OUT ALL CONTIGS contains the individual contigs, 182

fastas, and T-Test for that comparison. 183

Inside you will see output for doubledark 184

To create a custom query and T-Test open up the notebook 6.0-CustomTtest.ipynb once the other scripts are finished. 185

This will allow you to create custom queries and remove taxonomies at different levels or select a particular taxonomy to 186

look at. Detailed instructions are in the jupyter notebook. 187

A two-sided T-Test is ran using stats.ttest ind from scipy and a padj value is calculated using the number of contigs or 188

species in the dataframe using statsmodels.sandbox.stats.multicomp.fdrcorrection0 from statsmodels. 189

The significance threshold is set to 0.05 but can be changed inside the script. 190

Synthetic minibiome 191

We first used Polyester set to 10 replicates with two groups, error rate set to 0.005, paired end = TRUE, readlen = 100, 192

and seed = 12. 193

We then generated the chr22 fasta using the default command from polyester 194

fasta file = system.file(’extdata’, ’chr22.fa’, package=’polyester’) 195

Next, we took the first 10 sequences from that and the first 10kb of the sequence. We then generated reads with no fold 196

change difference and coverage set to 1000. 197

We next took the fastas of the sequences described in the paper and took the first 10kb from them. Next, we generated 198

reads at multiple coverage levels from 1000 down to 0.01 in multiples of ten. We then combined these files. 199

We then used reformat.sh from bbmap to generate read quality scores from the output of polyester. 200

Finally, we combined the fastqs from human and minibiome using the ”cat” command in bash and ran it through 201

Mystery Miner. 202

PLOS 5/6



Creating RDRP phylogeny tree 203

We first used BLASTX from the BLAST website on default settings on the contig to find similar hits. We then took the 204

hits along with the RDRP contig performed multiple sequence alignment using CLUSTALW2 on default settings. 205

https://www.ebi.ac.uk/Tools/msa/clustalo/. Next, we used the alignments to build the tree using Simple Phylogeny on 206

default settings https://www.ebi.ac.uk/Tools/phylogeny/simple phylogeny/. 207

RDRP contig amino acid sequence used in BLASTX 208

DEGSLESRGEDTKTRRSDQNPQGDIITDAEYAEVIHALKGYVWPDRSSNAELTSLLYQTGLGNTCTPECD 209

IFVKTKFSTIVSTCTSLYPKSNCHEDKASDVAFIHDVIRSELYTHTSVWDASPGYPFQIVYPTLLDLVDS 210

EPSALITLTLLLILRWGLTPHSQVRLMTAAELFEAKLTFLVRLFVKQEPHPVQKALDGRWRLVSSVPSHV 211

NVAARVLLGPQHRLNIRSCDYISPSIGLGLSDPMIQTHIRKAAMVEDSFGLVSSDQSGFDWRFYLLWADV 212

IAQVWVNLTCATGFWENAIRNYCYTMVFSYYVLSDGRIFGLLIPAARKSGDLDTGSGNSLHRIALNITIR 213

LWLKLERPSLVNRSVLPAMTMGDDCCESFGTRVDGPTLVEMFRQLGFKLTDVVIGSRNRFEFCSTRFEYD 214

GSWTITPLSWPRMLFRLLSQEPKQEFLDQFKYELRNLTGVYGGVNLRMLCLFLDRVGWKVPFDSPTNL 215

PLOS 6/6


	Nextflow Pipeline
	Post Nextflow Scripts

