## Estimation of the probabilities of recurrent mutations in the same gene.

Let us consider a random $28 \times 6075$ matrix (the rows of the matrix represent independent sequenced genomes, the columns represent the number of functional yeast genes used in this study). If there is a mutation in the gene $j$ from the genome $i, a_{i j}=1$, otherwise $a_{i j}=0$. Thus, the entries $a_{i j}$ are independent variables taking the value 1 with the probability $p$ and the value 0 with the probability $1-p$. Note that the probability is the same for all $i$ and $j$. Our goal is to estimate the probability $\mathrm{P}_{25}$ that there is a gene where at least 5 independent mutations were found (the total number of mutations found in 28 independent genomes is 197, Suppl. Table 6). Let us first estimate $p$. Since the variables are independent, the expected value of the total number of mutations is

$$
E\left(\sum_{i=1}^{28} \sum_{j=1}^{6075} \mathrm{a}_{\mathrm{i}}\right)=\left(\sum_{i=1}^{28} \sum_{j=1}^{6075} E\left(\mathrm{a}_{\mathrm{i}}\right)\right)=28 \times 6075 \times p=197
$$

whence

$$
p=\frac{197}{28 \times 6075}=1.16 \times 10^{-3}
$$

Now let us calculate the probability of at least 5 mutations in a fixed gene $j$. The probability of exactly $k$ mutations in this gene is

$$
\binom{28}{k} p^{k}(1-p)^{28-k}
$$

Thus, the probability of at most 4 mutations is
$p_{\leq 4}=\sum_{k=0}^{4}\binom{28}{k} p^{k}(1-p)^{28-k}$
and the probability of at least 5 mutations is
$p_{\geq 5}=1-p_{\leq 4} \approx 2 \times 10^{-10}$.

Finally, since the events "at least five mutations in the $j$-th gene" are independent for different $j$, the probability $\mathrm{P}_{\geq 5}$ is
$\mathrm{P}_{\geq 5}=1-(1-p \geq 5)^{6075}=1.2 \times 10^{-6}$.
The same logic was applied to 3 and 4 multiple independent mutations.
3 mutations, $\mathrm{P}=0.0302$
4 mutations, $\mathrm{P}=0.0002$
5 mutations, $\mathrm{P}=1.2 \times 10^{-6}$
Thus, the probability of observing 3 independent mutations in the same gene is marginally significant, whereas 4 mutations are highly significant.

We also performed a simulation experiment as a control; we randomly populated the $28 \times 6075$ matrix with 197 mutations and estimated a weight
$\mathrm{W}_{\text {random }}=\underset{j=1}{\operatorname{MA75}} X\left(\sum_{i=1}^{28} a_{\mathrm{i}}\right)$
We repeated this procedure 1000 times and did not find any simulated matrix with the weight $\mathrm{W}_{\text {random }} \geq 5$. The result suggested that the probability of observing 5 or more mutations in a gene is less than 0.001 . This is consistent with our analytical estimates ( $\mathrm{P}_{\geq 5}$ $\left.\approx 1.2 \times 10^{-6}\right)$.

Thus, the probability of finding 5 or more mutations in a gene is extremely small, suggesting that this event is likely to be biologically important.

