
Supplementary Notes

In the main text of the manuscript, we have provided a proof of the equivalence between
“GWAS by GBLUP” and the “P3D” approximated Q+K model in the case that each individual
has only one phenotypic record. Here in this note, we generalized the proof to the case that some
individuals may have multiple records (e.g. data from a multi-environment trial in which some
individuals were tested in more than one environment). We also generalize the proof from the
single SNP-based test to the window-based test in which the additive effects for a group of SNPs
are tested together. In fact, the generalization is straightforward and hence it largely parallels
the proof in the main text. In the proof, we will use the two lemmas in the Appendix of the
manuscript, which we do not repeat here.

Throughout the note, we assume that n is the number of individuals, m is the number of
phenotypic records (m ≥ n), k is the number of covariates, p is the total number of markers
and s is the number of SNPs in the window-based test. When s = 1, it simplifies to the single
SNP-based test.

1 GWAS by the Q+K model with the P3D approaximation

The model has the following form:

y = Xβ +Z(Waw + g) + e. (1)

The notations are the following: y is the m-dimensional vector of phenotypic records. β is the
k-dimensional vector of covariate effects. X is the corresponding m× k design matrix. Z is the
m × n dimensional design matrix allocating the phenotypic records to each individuals. aw is
the vector of additive effect of s markers in the window being tested and W is the corresponding
n × s dimensional matrix of marker profiles. g denotes the n-dimensional vector of polygenic
background effects. e is the residual term. In the model, β and aw are assumed to be fixed
parameters and g ∼ N (0,Gσ2g), where G = MM ′/c is a genomic relationship matrix, M is
the n× p dimensional matrix of all marker profiles and c is a scaling factor (e.g. the VanRaden
G-matrix [2]). The remaining assumptions are e ∼ N (0, Iσ2e) and Cov(e, g) = 0.

The model can be rewritten as follows:

y = X̃β̃ +Zg + e, (2)
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where X̃ = (X|ZW ), β̃ = (β′,a′w)′.
From Henderson’s mixed model equations [1], we know that the best linear unbiased estimation

of the fixed effects are the following:

ˆ̃
β = (X̃

′
V −1X̃)−1X̃

′
V −1y, Var(

ˆ̃
β) = C̃11σ

2
e , (3)

where V = I + λZGZ ′, λ = σ2g/σ
2
e and C̃11 is defined via the following:(

X̃
′
X̃ X̃

′
Z

Z ′X̃ Z ′Z + λ−1G−1

)−1
=

(
C̃11 C̃12

C̃
′
12 C̃22

)
(4)

Using Lemma A.1, we can calculate that

C̃11 = (X̃
′
X̃ − X̃ ′Z(Z ′Z + λ−1G−1)−1Z ′X̃)−1

= (X̃
′
(I −Z(Z ′Z + λ−1G−1)−1Z ′)X̃)−1

= (X̃
′
V −1X̃)−1.

(5)

Using (5), the mixed model solution (3) can be written as follows:(
β̂
âw

)
=

(
X ′V −1X X ′V −1ZW
W ′Z ′V −1X W ′Z ′V −1ZW

)−1(
X ′V −1y
W ′Z ′V −1y

)
Var

(
β̂
âw

)
=

(
X ′V −1X X ′V −1ZW
W ′Z ′V −1X W ′Z ′V −1ZW

)−1
σ2e .

(6)

Using (6) and Lemma A.1, we can resolve âw and Var(âw):

âw = (W ′Z ′V −1ZW −W ′Z ′V −1X(X ′V −1X)−1X ′V −1ZW )−1W ′Z ′V −1y

− (W ′Z ′V −1ZW −W ′Z ′V −1X(X ′V −1X)−1X ′V −1ZW )−1·
W ′Z ′V −1X(X ′V −1X)−1X ′V −1y

= (W ′Z ′(V −1 − V −1X(X ′V −1X)−1X ′V −1)ZW )
−1·

W ′Z ′(V −1 − V −1X(X ′V −1X)−1X ′V −1)y

= (W ′Z ′TZW )
−1
W ′Z ′Ty,

Var(âw) = (W ′Z ′V −1ZW −W ′Z ′V −1X(X ′V −1X)−1X ′V −1ZW )−1σ2e

= (W ′Z ′(V −1 − V −1X(X ′V −1X)−1X ′V −1)ZW )−1σ2e

= (W ′Z ′TZW )
−1
σ2e ,

where T = V −1 − V −1X(X ′V −1X)−1X ′V −1.
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Thus, to test the hypothesis H0 : aw = 0, we can use the following Wald statistic:

WQ+K = â′w Var(âw)−1âw

= (W ′Z ′Ty)′(W ′Z ′TZW )−1W ′Z ′Tyσ−2e

= y′TZW (W ′Z ′TZW )−1W ′Z ′Tyσ−2e

(7)

2 GWAS by GBLUP

The GBLUP model has the following form:

y = Xβ +Zg + e, (8)

where all notations are the same as in (1). It is equivalent to the following RR-BLUP model:

y = Xβ +ZMa+ e, (9)

where a is the p-dimensional vector of additive effects of all markers, a ∼ N (0, Iσ2a) and M is
an n × p matrix of marker profiles. For the equivalence between (9) and (8), it is required that
σ2a = σ2g/c.

According to Henderson [1], the best linear unbiased prediction of random effects a and its
variance for the model (9) is the following:

â = ρM ′Z ′Ṽ
−1

(y −X(X ′Ṽ
−1
X)−1X ′Ṽ

−1
y)

Var(â) = (ρI −C22)σ
2
e

(10)

where ρ = σ2a/σ
2
e , C22 is the defined as follows:(

X ′X X ′ZM
M ′Z ′X M ′Z ′ZM + ρ−1I

)−1
=

(
C11 C12

C ′12 C22

)
(11)

and Ṽ = I + ρZMM ′Z ′.
In fact, Ṽ is the same as V defined in section 1. Due to the equivalence between (8) and (9),

we have σ2a = σ2g/c. Hence, we know that ρ = σ2g/cσ
2
e = λ/c. Recalling that G = MM ′/c, we

have
Ṽ = I + ρZMM ′Z ′ = I + λZGZ ′ = V .

Replacing Ṽ by V in (10), we have

â = ρM ′Z ′V −1(y −X(X ′V −1X)−1X ′V −1y)

= ρM ′Z ′(V −1 − V −1X(X ′V −1X)−1X ′V −1)y

= ρM ′Z ′Ty.

(12)
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where T = V −1 − V −1X(X ′V −1X)−1X ′V −1 as in the last subsection.
Using Lemma A.1, we can derive C22 as follows:

C22 = (M ′Z ′ZM + ρ−1I −M ′Z ′X(X ′X)−1X ′ZM)−1

= (ρ−1I +M ′Z ′(I −X(X ′X)−1X ′)ZM)−1

= (
σ2e
σ2a
I +M ′Z ′SZM)−1

(13)

where S = I −X(X ′X)−1X ′.
Thus, replacing C22 by (13) in (10), we have

Var(â) = σ2aI − (
σ2e
σ2a
I +M ′Z ′SZM)−1σ2e (14)

Using (12), we can easily extract the estimation of marker effects within the window being
tested:

âw = ρW ′Z ′Ty, (15)

where W is the submatrix of M consisting of the columns corresponding to the markers within
the testing window. Note that in order to distinguish from the marker effects estimated in the
Q+K model, which has been denoted by âw, we used âw to denote the marker effects estimated
by the GBLUP model.

On the other hand, it is not straightforward to derive an explicit form of Var(âw) from (14).
But we know that Var(â) is an p × p matrix and Var(âw) is an s × s submatrix of Var(â)
corresponding to the markers within the testing window. So we may denote it by Var(â)w,w.

Then, to test the hypothesis H0 : aw = 0, we can use the following Wald statistic:

WGBLUP = (âw)′Var(â)−1w,wâ
w

= ρ2y′TZW Var(â)−1w,wW
′Z ′Ty

(16)

3 The equivalence between the two GWAS approaches

We need to prove WQ+K = WGBLUP . Comparing (7) and (16), it is necessary to prove the
following:

Var(â)w,w = ρ2W ′Z ′TZWσ2e . (17)

As ρ = σ2a/σ
2
e , it is sufficient to prove

Var(â)w,w =
σ4a
σ2e
W ′Z ′TZW . (18)

To achieve our goal, we need the singular value decomposition (SVD) of the matrix X.
Assume that the SVD of X is X = UΣW . In the decomposition, U is an m ×m orthogonal
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matrix, Σ = (D 0k×(m−k))
′, where D is an k× k diagonal matrix whose diagonal entries are the

singular values of X and 0k×(m−k) is a k × (m − k) matrix of zeros, W is a k × k orthogonal
matrix. We can write U = (U1 U2), where U1 is the left m × k block and U2 is the right
m× (m− k) block of U . Then we have:

X = UΣW = (U1 U2)

(
D

0k×(m−k)

)
W = U1DW . (19)

The orthogonality of U gives the following:

U ′2U1 = 0(m−k)×k, U ′1U2 = 0k×(m−k),

U ′1U1 = Ik, U ′2U2 = Im−k, U1U
′
1 +U2U

′
2 = Im.

(20)

Using (19) and (20), we have

S = I −X(X ′X)−1X ′ = I −U1DW (W ′DU ′1U1DW )−1W ′DU ′1

= I −U1DW (W ′D−2W )W ′DU ′1

= I −U1U
′
1 = U2U

′
2

(21)

Replacing S in (14) and using Lemma A.1, we can simplify the formula for Var(â) as follows:

Var(â) = σ2aI − (
σ2e
σ2a
I +M ′Z ′U2U

′
2ZM)−1σ2e

= σ2aI − (ρI − ρ2M ′Z ′U2(I + ρU ′2ZMM ′Z ′U2)
−1U ′2ZM)σ2e

=
σ4a
σ2e
M ′Z ′U2(I + λU ′2ZGZ

′U2)
−1U ′2ZM ,

(22)

where in the last equality we used ρ = λ/c and G = MM ′/c. With the above formula, we now
have a direct formula for Var(â)w,w:

Var(â)w,w =
σ4a
σ2e
W ′Z ′U2(I + λU ′2ZGZ

′U2)
−1U ′2ZW (23)

Now, replacing Var(â)w,w in the left hand side of (18) by (22), we only need to prove

W ′Z ′TZW = W ′Z ′U2(I + λU ′2ZGZ
′U2)

−1U ′2ZW (24)

Using (19) and (20), we can calculate that

T = V −1 − V −1X(X ′V −1X)−1X ′V −1

= V −1 − V −1U1DW (W ′DU ′1V
−1U1DW )−1W ′DU ′1V

−1

= V −1 − V −1U1DW (W ′D−1(U ′1V
−1U1)

−1D−1W )W ′DU ′1V
−1

= V −1 − V −1U1(U
′
1V
−1U1)

−1U ′1V
−1

(25)
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Note that V −1 is positive-definite matrix, U ′1U2 = 0. Thus, we can apply Lemma A.2 to the
above formula, yielding

T = U2(U
′
2V U2)

−1U ′2

= U2(U
′
2(I + λZGZ ′)U2)

−1U ′2

= U2(I + λU ′2ZGZ
′U2)

−1U ′2,

(26)

which completes the proof.
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