
File S1: Full description of the model

Observed and hidden variables The data consist of genotyped individuals for genes k ∈ {1, 2, ..., K}, each with biallelic sites t ∈
{1, 2, ..., Tk}. For each biallelic site, the observed alleles are randomly named a and b, such that three genotypes are possible:
homozygote for allele a (“aa”), heterozygote (“ab”), and homozygote for allele b (“bb”). At each biallelic site t of gene k, and for each
individual i, OGtk

ih g is an indicator of the individual having observed genotype g ∈ {1 = aa, 2 = ab, 3 = bb} and sex h ∈ {1, 2}. h = 1
for females, h = 2 males; for convenience, we will write ♀ and ♂. is the number of individuals with sex h and observed genotype g;
note that the total number of observations (i.e., genotyped individuals) can vary between sites (Nkt is the total number of observed
genotypes at a site). The vector OGOGOGkt describes all observations at a site.

We seek under which segregation type Sj, j ∈ 1...7, these observed genotypes are most likely. These segregation types will be listed
in fixed order, and a specific number corresponds to each of them:

1. Diploid autosomal segregation

2. Haploid sequences

3. Paralogs

4. X-hemizygous segregation

5. XY gametologous segregation

6. Z-hemizygous segregation

7. ZW gametologous segregation

For some segregation types, as will be detailed below, several sub-types of segregation have to be specified; these are denoted Al with
l ∈ {1..L}. The conditional likelihood of observing the genotypes under each segregation type depends on the allele frequencies and a
genotyping error rate.

We introduce a hidden variable TGkt
ih g′ which is an indicator for the true genotype g′ ∈ {aa, ab, bb} of an individual i with sex h. The

conditional probabilities of observing a true genotype for an individual, given the fully specified segregation type, are

TGTGTGkt
ih
|Sj, Al ∼M

(
1; Pkt

1hjl , Pkt
2hjl , Pkt

3hjl

)
.

Pkt
hjl is the vector of the probabilities

(
Pkt

1hjl , Pkt
2hjl , Pkt

3hjl

)
for each genotype at a site, given the sex of the individual and the segregation

type and subtype. The genotype probabilities Pkt
g′hjl are calculated from the empirical allele frequencies f̂ kt

jl using the following
population genetic expectations.

1. For autosomal segregation, the Hardy-Weinberg equilibrium should hold in both sexes. Thus,

Pkt
♀,j=1 = Pkt

♂,j=1 =


( f̂ kt

j=1)
2

2 f̂ kt
j=1

(
1− f̂ kt

j=1

)
(

1− f̂ kt
j=1

)2


where

f̂ kt
j=1 =

2Nkt
aa + Nkt

ab
2Nkt .

2. Haploid segregation is modeled by

Pkt
♀,j=2 = Pkt

♂,j=2 =


f̂ kt
j=2

0

1− f̂ kt
j=2


and

f̂ kt
j=2 =

Nkt
aa

Nkt
aa + Nkt

bb
.

3. Paralogy is caused by the mapping of the reads of two more or less recently duplicated genes on one locus in the reference.
There is no recombination between the copies, that thus evolve independently. For simplicity, we assume that one of the copies
is fixed for one of the alleles. The genotype probabilities depend on which allele is considered fixed in one of the copies, and two
sub-types have to be modeled.
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(a) First, we consider that allele a is fixed in one of the copies. f̂ kt
j=3,l=1 is the frequency of allele b in the other copy. In reality, such

sites have four copies; thus, the genotypes are aaaa, aaab, are aabb, with frequencies
(

1− f̂ kt
j=3,l=1

)2
, 2 f̂ kt

j=3,l=1

(
1− f̂ kt

j=3,l=1

)
and ( f̂ kt

j=3,l=1)
2. Genotypes aaab and aabb will probably be considered as ab by the genotyper that expects only diploids;

thus, the genotype probabilities are:

Pkt
♀,j=3,l=1 = Pkt

♂,j=3,l=1 =


(

1− f̂ kt
j=3,l=1

)2

( f̂ kt
j=3,l=1)

2 + 2 f̂ kt
j=3,l=1

(
1− f̂ kt

j=3,l=1

)
0


To estimate the empirical allele frequency, note that the ab genotype counts that are obtained from the genotyper (Nab)
will likely be a mixture of aaab and aabb. The expected proportions Naaab and Naabb can be calculated depending on the

frequency f̂ kt
j=3,l=1 that we concisely denote f̂ here: 2 f̂

(
1− f̂

)
/( f̂ 2 + 2 f̂

(
1− f̂

)
) and f̂ 2/( f̂ 2 + 2 f̂

(
1− f̂

)
). While in

reality, f̂ = 0.5(Naaab + 2Naabb)/ (Naaaa + Naaab + Naabb), we instead calculate

f̂ =
1

2 (Naa + Nab)

 2 f̂
(

1− f̂
)

Nab

f̂ 2 + 2 f̂
(

1− f̂
) +

2 f̂ 2Nab

f̂ 2 + 2 f̂
(

1− f̂
)


This yields

f̂ kt
j=3,l=1 = 1−

√√√√1−
Nkt

ab
Nkt

aa + Nkt
ab

.

(b) Alternatively, allele b could be fixed in one of the copies. f̂ kt
j=3,l=2 is the frequency of allele a in the other copy. The genotype

probabilities and empirical allele frequency are

Pkt
♀,j=3,l=2 = Pkt

♂,j=3,l=2 =


0

( f̂ kt
j=3,l=2)

2 + 2 f̂ kt
j=3,l=2

(
1− f̂ kt

j=3,l=2

)
(

1− f̂ kt
j=3,l=2

)2



f̂ kt
j=3,l=2 = 1−

√√√√1−
Nkt

ab
Nkt

ab + Nkt
bb

.

4. For X-hemizygously segregating genes, the males are haploid while the females are diploid.

Pkt
♀,j=4 =


( f̂ kt

j=4)
2

2 f̂ kt
j=4

(
1− f̂ kt

j=4

)
(

1− f̂ kt
j=4

)2

 ; Pkt
♂,j=4 =


f̂ kt
j=4

0

1− f̂ kt
j=4



f̂ kt
j=4 =

2Nkt
aa,♀ + Nkt

ab,♀ + Nkt
aa,♂

2
(

Nkt
aa,♀ + Nkt

ab,♀ + Nkt
bb,♀

)
+ Nkt

aa,♂ + Nkt
bb,♂

5. XY gametologous segregation is characterized by the presence of two independent copies in males, and two copies of the X gene
in females. We assume that an allele is fixed in at least one of the copies.

(a) X-polymorphism, allele a fixed on Y. f is the frequency of allele b on X.

Pkt
♀,j=5,l=1 =


(

1− f̂ kt
j=5,l=1

)2

2 f̂ kt
j=5,l=1

(
1− f̂ kt

j=5,l=1

)
( f̂ kt

j=5,l=1)
2

 ; Pkt
♂,j=5,l=1 =


1− f̂ kt

j=5,l=1

f̂ kt
j=5,l=1

0



f̂ kt
j=5,l=1 =

2Nkt
bb♀ + Nkt

ab♀ + Nkt
ab♂

2
(

Nkt
aa♀ + Nkt

ab♀ + Nkt
bb♀

)
+ Nkt

aa♂ + Nkt
ab♂
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(b) X-polymorphism; allele b fixed on Y. f is the frequency of allele a on X :

Pkt
♀,j=5,l=2 =


( f̂ kt

j=5,l=2)
2

2 f̂ kt
j=5,l=2

(
1− f̂ kt

j=5,l=2

)
(

1− f̂ kt
j=5,l=2

)2

 ; Pkt
♂,j=5,l=2 =


0

f̂ kt
j=5,l=2

1− f̂ kt
j=5,l=2


f̂ kt
j=5,l=2 =

2Nkt
aa♀ + Nkt

ab♀ + Nkt
ab♂

2
(

Nkt
aa♀ + Nkt

ab♀ + Nkt
bb♀

)
+ Nkt

bb♂ + Nkt
ab♂

(c) Y-polymorphism, allele a fixed on X. f is the frequency of allele b on Y:

Pkt
♀,j=5,l=3 =


1

0

0

 ; Pkt
♂,j=5,l=3 =


1− f̂ kt

j=5,l=3

f̂ kt
j=5,l=3

0


f̂ kt
j=5,l=3 =

Nkt
ab♂

Nkt
aa♂ + Nkt

ab♂
(d) Y-polymorphism, allele b fixed on X. f is the frequency of allele a on Y:

Pkt
♀,j=5,l=4 =


0

0

1

 ; Pkt
♂,j=5,l=4 =


0

f̂ kt
j=5,l=4

1− f̂ kt
j=5,l=4


f̂ kt
j=5,l=4 =

Nkt
ab♂

Nkt
bb♂ + Nkt

ab♂

6. Z-hemizygous segregation is similar to X-hemizygous segregation:

Pkt
♀,j=6 =


f̂ kt
j=6

0

1− f̂ kt
j=6

 ; Pkt
♂,j=6 =


( f̂ kt

j=6)
2

2 f̂ kt
j=6

(
1− f̂ kt

j=6

)
(

1− f̂ kt
j=6

)2


f̂ kt
j=6 =

2Nkt
aa,♂ + Nkt

ab,♂ + Nkt
aa,♀

2
(

Nkt
aa,♂ + Nkt

ab,♂ + Nkt
bb,♂

)
+ Nkt

aa,♀ + Nkt
bb,♀

7. ZW gametologous segregation is modeled similar to XY gametologous segregation, for both Z and W polymorphism, and two
asymmetrical cases for each.

(a) Z-polymorphism, allele a fixed on W. f is the frequency of allele b on Z.

Pkt
♀,j=7,l=1 =


1− f̂ kt

j=7,l=1

f̂ kt
j=7,l=1

0

 ; Pkt
♂,j=7,l=1 =


(

1− f̂ kt
j=7,l=1

)2

2 f̂ kt
j=7,l=1

(
1− f̂ kt

j=7,l=1

)
( f̂ kt

j=7,l=1)
2


f̂ kt
j=7,l=1 =

2Nkt
bb♂ + Nkt

ab♂ + Nkt
ab♀

2
(

Nkt
aa♂ + Nkt

ab♂ + Nkt
bb♂

)
+ Nkt

aa♀ + Nkt
ab♀

(b) Z-polymorphism; allele b fixed on W. f is the frequency of allele a on Z :

Pkt
♀,j=7,l=2 =


0

f̂ kt
j=7,l=2

1− f̂ kt
j=7,l=2

 ; Pkt
♂,j=7,l=2 =


() f̂ kt

j=7,l=2)
2

2 f̂ kt
j=7,l=2

(
1− f̂ kt

j=7,l=2

)
(

1− f̂ kt
j=7,l=2

)2


f̂ kt
j=7,l=2 =

2Nkt
aa♂ + Nkt

ab♂ + Nkt
ab♀

2
(

Nkt
aa♂ + Nkt

ab♂ + Nkt
bb♂

)
+ Nkt

bb♀ + Nkt
ab♀
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(c) W-polymorphism, allele a fixed on Z. f is the frequency of allele b on W:

Pkt
♀,j=7,l=3 =


1− f̂ kt

j=7,l=3

f̂ kt
j=7,l=3

0

 ; Pkt
♂,j=7,l=3 =


1

0

0



f̂ kt
j=7,l=3 =

Nkt
ab♀

Nkt
aa♀ + Nkt

ab♀

(d) W-polymorphism, allele b fixed on Z. f is the frequency of allele a on W:

Pkt
♀,j=7,l=4 =


0

f̂ kt
j=7,l=4

1− f̂ kt
j=7,l=4

 ; Pkt
♂,j=7,l=4 =


0

0

1



f̂ kt
j=7,l=4 =

Nkt
ab♀

Nkt
bb♀ + Nkt

ab♀

As we calculate all genotype probabilities for all segregation types at all sites, calculation of f̂ kt
jl might lead to division by 0. To avoid

this problem, counts that are expected to be 0 under a segregation type are added to the numerator and the denominator.
Genotyping errors (whether they are due to sequencing errors, read mapping errors, or violations of the assumptions of the method

for genotyping) cause the observed genotype g to be different from the true genotype g′. We define qgg′ = P
(

OGkt
ih g|TGkt

ih g′

)
, i.e., the

probability to observe genotype g when the true genotype is g′, and Q is the matrix of all qgg′ , such that

Q =


q1,1 q1,2 q1,3

q2,1 q2,2 q2,3

q3,1 q3,2 q3,3


We can now directly calculate the probabilities of the observed genotypes for each segregation type:

P
(

OGkt
ih g|Sj, Al

)
= ∑

g′
P
(

TGkt
ih g′ |Sj, Al

)
P
(

OGkt
ih g|TGkt

ih g′
)

= ∑
g′

Pkt
g′hjlqgg′

We rename the quantity ∑g′ Pkt
g′hjlqgg′ as P̃kt

ghjl ; it is the expected frequency of the observed genotype given the segregation type and a

certain genotyping error rate. For each sex, OGOGOG follows a multinomial distributionM
(

Nkt
h ; P̃kt

1hjl , P̃kt
2hjl , P̃k

3hjl

)
. Thus, the conditional

likelihood of the data (given the segregation type) at each site, that we name Mkt
jl , is

Mkt
jl = P

(
OGOGOGkt|Sj, Al

)
= ∏

gh

(
P̃kt

ghjl

)Nkt
gh (1)

Parameters The error rates qgg′ depend on one error parameter e. We assume all genotyping errors to occur with the same frequency,
so qg,g′ 6=g = e and qg,g′=g = 1− 2e, which gives the error matrix

Q =


1− 2e e e

e 1− 2e e

e e 1− 2e


Two more series of parameters are required to model the data; these indicate the proportion of the genome that segregates under

each type. There are a maximum of seven segregation types Sj, each occupying a proportion πj of the genome, such that ∑j πj = 1. π

is the vector containing all πj. The segregation types Skt
j are distributed multinomially, thus

S ∼ M(1, π)
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Several biologically relevant segregation types (S) have several “subtypes” (A), depending on the fixation of one of the alleles
on either of the copies. Thus, for a segregation type Sj, there are L subtypes, and each subtype Ajl applies to a proportion αjl of the
proportion πj of the genome (corresponding to the segregation type Sj). For each segregation type with subtypes, ∑L

l=1 αjl = 1, and

Aj|Sj ∼ M(1, αj)

For the paralogs, the subtype depends uniquely on the choice of what allele is called a, which is random. Thus, no parameter is
needed, and

α3 =

(
1
2

,
1
2

)
For the XY and ZW types, more sites can be polymorphic on one chromosome than on the other. The proportion of XY or ZW sites

that are polymorphic on X or on Z is described by the parameter ρj, which takes a single value for each segregation type. The (random)
choice what allele is called a affects both X (or Z) and Y (or W) polymorphisms, leading to four subtypes

α5 =

(
ρ5
2

,
ρ5
2

,
1− ρ5

2
,

1− ρ5
2

)
When aggregating the segregation subtypes (A) to biologically relevant types (S), we get

P
(

OGOGOGkt|Sj

)
= Bkt

j = ∑
l

αjl Mkt
jl (2)

Expectation-Maximization algorithm The full log-likelihood of the model is given by

log P (OGOGOG,TGTGTG,SSS,AAA) = log P (OGOGOG|TGTGTG)

+ log P (TGTGTG|SSS,AAA)

+ log P (AAA|SSS)
+ log P (SSS)

This likelihood is maximized through an Expectation-Maximization (EM) algorithm.

E-step The posterior segregation types are given by

E (log P (S) |OGOGOG) = ∑
jkt

E(Skt
j |OGOGOGkt) log πj

with

E(Skt
j |OGOGOGkt) = Ŝkt

j =
πjBkt

j

∑j′ πj′Bkt
j′

(3)

The posteriors for the subtypes are calculated by

E
(

log P
(

Akt|Sk(t)
)
|OGOGOGkt

)
= ∑

jlkt
E
(

Akt
l Sk(t)

j |OGOGOGkt
)

log αjl

= ∑
jlkt

E
(

Akt
l |OGOGOGkt, Sk(t)

j

)
E
(

Sk(t)
j |OGOGOGk(t)

)
log αjl

= ∑
jlkt

Âkt
lj Ŝk(t)

j log αjl

Âkt
lj =

αjl Mkt
jl

∑l′ αjl′Mkt
jl′

For the true expected true genotypes, we calculate

E (log P(TGTGTG|SSS,AAA)|OGOGOG) = ∑
(kt)(jl)(ih g′)

E
(

Skt
j Akt

jl TGkt
ih g′ |OGOGOGkt

ih

)
log Pkt

g′hjl

= ∑
(kt)(jl)(ih g′)

E
(

TGkt
ih g′ |OGOGOGkt

ih, Skt
j , Akt

jl

)
E
(

Skt
j , Akt

jl |OGOGOG
)

log Pkt
g′hjl

= ∑
(kt)(jl)(ih g′)

E
(

TGkt
ih g′ |OGOGOGkt

ih, Skt
j , Akt

jl

)
Âkt

lj Ŝkt
j log Pkt

g′hjl
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T̂G
kt
ih g′ jl =

Pkt
g′hjl ∏g q

OGkt
ih g

gg′

∑g′′ Pkt
g′′hjl ∏g q

OGkt
ih g

gg′′

As individuals are defined uniquely by their sex and their observed genotype, T̂G
kt
ih g′ jl is the same for two individuals having the same

sex and genotype. Thus, we write T̂G′
kt
hgg′ jl =

Pkt
g′hjl qgg′

∑g′′ Pkt
g′′hjl qgg′′

.

Finally, the conditional likelihood of the observed genotypes is given by

E (log P (OGOGOG|TGTGTG) |OGOGOG) = ∑
(kt)(jl)(ih g′)g

OGkt
ih gE

(
TGkt

ih g′ |OGOGOGkt
)

log qgg′

= ∑
(kt)(jl)(ih g′)g

OGkt
ih gT̂G

kt
ih g′ jl Âkt

lj Ŝkt
j log qgg′

M-step The key quantity used in the M-step is the conditional expectation of the complete-data likelihood:

E (log P (OGOGOG,TGTGTG,SSS,AAA) |OGOGOG) = ∑
(kt)(jl)(ih g′)g

OGkt
ih gT̂G

kt
ih g′ jl Âkt

lj Ŝk(t)
j log qgg′

+ ∑
(kt)(jl)(ih g′)

T̂G
kt
ih g′ jl Âkt

lj Ŝk(t)
j log Pkth

g′ jl

+ ∑
(kt)(jl)

Âkt
lj Ŝk(t)

j log αjl + ∑
(k(t))j

Ŝk(t)
j log πj

= ∑
(kt)(hg)

Nkth
g

∑
(jl)

Âkt
lj Ŝk(t)

j

(
∑
g′

T̂G′
kt
hgg′ jl

(
log qgg′ + log Pkth

g′ jl

))
+ ∑

(kt)(jl)
Âkt

lj Ŝk(t)
j log αjl + ∑

(k(t))j
Ŝk(t)

j log πj

Parameters to estimate are π, α and error rate e. These parameters only involve

E (log P (OGOGOG|TGTGTG) |OGOGOG) = ∑
(kt)

∑
(jl)(ih)

OGkt
ih gT̂G

kt
ih g′ jl Âkt

lj Ŝk(t)
j log qgg′

= ∑
(kt)

∑
(jl)(gh)

Nkth
g T̂G′

kt
hgg′ jl Âkt

lj Ŝk(t)
j log qgg′

To simplify notations, let us denote

Ûgg′ = ∑
(kt)

∑
(jl)(ih)

OGkt
ih gT̂G

kt
ih g′ jl Âkt

lj Ŝk(t)
j

= ∑
(kt)

∑
(jl)(h)

Nkth
g T̂G′

kt
hgg′ jl Âkt

lj Ŝk(t)
j

Thus,

E (log P (OGOGOG|TGTGTG) |OGOGOG) = ∑
(gg′)

Ûgg′ log qgg′

We find the new values of e by ∂E(log P(OGOGOG|TGTGTG)|OGOGOG)
∂e = 0, which gives:

ê =
Û12 + Û13 + Û21 + Û23 + Û31 + Û32

2(Û12 + Û22 + Û32 + Û13 + Û23 + Û33 + Û11 + Û21 + Û31)

=
∑(g 6=g′) Ûgg′

2 ∑(gg′) Ûgg′

Similarly, we calculate

6 Käfer et al.



ρ̂ =
∑kt Ŝkt

3

(
Âkt

13 + Âkt
23

)
∑kt Ŝkt

3

π̂j =
∑kt Ŝkt

j

∑kt 1

Monitoring and convergence The likelihood of the data in the model is

log P (OGOGOG) = ∑
kt

log

∑
jl

(
P
(

Akt
l

)
P
(

Skt
j

)
∏

i
P
(

OGkt
ih g|S

kt
j , Akt

l

))
= ∑

kt
log

∑
jl

πjαl Mkt
jl


Convergence is evaluated as a function of the relative change in parameter value estimations. Optimization is halted when the largest
relative change of all parameters has been less than 10−4 for 10 iterations, except for the error rate parameter, which is not considered
for convergence.

There are J − 1 free parameters for the proportion πj of the segregation types, one parameter ρ for each of the XY and ZW types,
and one parameter for the error rate. θ̂ is the set of optimized parameters. If the number of parameters is ξ, we calculate the Bayesian
Information Criterion (BIC) as follows:

BIC = log P
(
OGOGOG; θ̂

)
− 1

2
log

(
∑
kt

1

)
ξ

The model with the lowest BIC has the best fit.

Site- and contig-wise probabilities The posterior probabilities per site, as given in Equation 3, are calculated using the priors πj, which
are the estimated proportions of each segregation type in the genome. The smaller πj, the higher the conditional likelihood Bkt

j should
be to produce a high posterior probability. For the sex-linked segregation types πj can easily be very small. If, say, 0.1% of the sites
are inferred as gametologous and 99.9% as autosomal, the conditional likelihood for the gametologous segregation types should be
1000 times higher than the one for autosomal segregation to obtain comparable posterior likelihoods with this formula. In order to
avoid excessive biases against rare segregation types, for inference purposes at the end of the optimization, we calculate the posterior
probabilities without priors, which amount to using a uniform prior. Thus, for the output, we compute

Ŝkt
j =

Bkt
j

∑j′ Bkt
j′

(4)

At the contig level, the goal is to estimate the posterior probability to be sex-linked, autosomal, or not informative (i.e., haploid or
paralogous), given the observed data for each of its sites and the optimal parameter values. This probability is the expectation of each
segregation type, Ŝk

j , which we calculate from the site-wise probabilities. As sites are treated as unlinked, which they are obviously
not within a contig, especially when they are sex-linked, calculating the product of the site likelihoods would lead to ignoring the
dependence induced by linkage and to overestimating the effective number of independent observations. This is thus expected to
inflate the posterior probability contrasts between alternative hypotheses (segregation types) for a given contig. Instead, we take the
geometric mean, which reduces this effect:

ŜN
k
j =

GM
(

Ŝkt
j

)
∑j′ GM

(
Ŝkt

j′

) =
GM

(
Bkt

j

)
∑j′ GM

(
Bkt

j′

) =
exp

(
1
Tk

∑t log Bkt
j

)
∑j′ exp

(
1
Tk

∑t log Bkt
j′

) (5)

The geometric mean has the further advantage to give more weight to informative sites, for which the probabilities for each segregation
type are very different (say, 0.1 and 10−5), than to sites with less information (say, 0.4 and 0.6). Thus, a site with all females heterozygous
and all males homozygous, which would produce a much higher likelihood to be sex-linked than to be autosomal, has more weight
than a site with one female heterozygous and all other individuals homozygous, a pattern compatible with both sex-linkage and
autosomal segregation.

For completeness (e.g. to allow additional calibration by expert users), we provide two other ways to calculate the posterior
probabilities per contig. First, we provide the posterior probability as the geometric mean of the site-wise probabilities calculated
using the estimated genome proportions πj as priors (as in Equation 3):

ŜG
k
j =

πjGM
(

Bkt
j

)
∑j′ πj′GM

(
Bkt

j′

) =
πj exp

(
1
Tk

∑t log Bkt
j

)
∑j′ πj′ exp

(
1
Tk

∑t log Bkt
j′

) (6)
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Second, we provide the arithmetic mean of the expectations per site, Ŝkt
j from Equation 3:

Ŝk
j =

1
Tk

∑
t

Ŝkt
j =

1
Tk

∑
t

πjBkt
j

∑j′ πj′Bkt
j′

(7)

We recommend that inferences of segregation types should be based on the posterior probabilities that were calculated without the
priors, i.e. Equation 4 for sites and Equation 5 for contigs.

Population genetic predictions From the allele frequencies and segregation subtypes, it is possible to calculate the expected diversity
and divergence of the gametologous copies. For each site, the frequency of allele a on chromosome v ∈ {W, X, Y, Z} is

f̂v
kt
= Âkt

j,l=1

(
1− f̂ kt

j,l=1

)
+ Âkt

j,l=2 f̂ kt
j,l=2 + Âkt

j,l=3 for v ∈ {X, Z},

f̂v
kt
= Âkt

j,l=1 + Âkt
j,l=3

(
1− f̂ kt

j,l=3

)
+ Âkt

j,l=4 f̂ kt
j,l=4 for v ∈ {W, Y}.

A different way of predicting the allele frequency on both sex chromosomes is to assign it to be the frequency corresponding to the
most probable subtype.

This information can be used to infer the consensus sequences of the X and Y sequences. For a given contig (that can be chosen

on the basis of ŜN
k
j , but not necessarily if we have other reasons to believe the contig is sex-linked), each polymorphic site can be

considered fixed for an allele if f̂X or f̂Y are above a threshold U f (0.5 ≤ U f ≤ 1) or below 1−U f . A further threshold can be applied
to genotype non-fixed sites: if f̂X or f̂Y are above a threshold u f (0.5 ≤ u f ≤ U f ) or below 1− u f .

Nucleotide diversity (here denoted as d because the usual symbol π is already used for a model parameter) can be calculated as

dk
v =

1
τk

∑
t

2 f̂v
kt (

1− f̂v
kt)

where τk ≥ Tk is the total length of the contig k, including monoallelic sites. The divergence is

Dk
XY =

1
τk

∑
t

(
f̂ kt
X

(
1− f̂ kt

Y

)
+ f̂ kt

Y

(
1− f̂ kt

X

))
in the XY case; extension to ZW chromosomes is trivial.

8 Käfer et al.


