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Figure	S1.	Top	two	principal	components	of	the	genomic	relationship	matrix,	𝑮,	for	each	data	set.		Each	point	

represents	individuals.	(A)	Wheat-small	data	set.	(B)	Wheat-large	data	set.	Individuals	are	color-grouped	by	

the	cycle	(sowing-harvest	year).	
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Figure	S2.	Boxplot	of	grain	yield	phenotypic	records	(in	ton	ha-1)	by	environmental	condition	for	both	Wheat-

small	and	Wheat-large	data	sets.	SD	standard	deviation.		
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Figure	S3.	Distribution	of	the	number	of	training	support	points	(𝑛!"#)	in	the	optimal	SSI	for	grain	yield	(results	

obtained	over	100	trn-tst	partitions;	𝑛$%&=	size	of	the	training	data	set),	by	environmental	condition	(ME:	mega-

environment),	Wheat-small	data	set.	
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Figure	S4.		First	two	principal	components	coordinates	for	prediction	points	(yellow)	and	the	corresponding	

support	points	(green).	Grey	points	represent	genotypes	that	did	not	contribute	to	the	prediction	of	the	genetic	

value	of	grain	yield	of	the	genotype	in	yellow.	All	panels	represent	solutions	for	the	mega-environment	ME1,	

Wheat-small	data	set.	
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Figure	S5.	(left	and	center)	Weights	(𝛽'()	of	a	standard	SI	(G-BLUP)	and	of	the	optimal	SSI	versus	the	genomic	

relationship	(𝑔'(),	and	(right)	proportion	of	weights	in	the	SSI	that	belonged	to	either	the	supporting	or	non-

active	sets,	by	genomic-relationship;	by	environment,	Wheat-large	data	set.	
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Figure	S6.	(left	and	center)	Weights	(𝛽'()	of	a	standard	SI	(G-BLUP)	and	of	the	optimal	SSI	versus	the	genomic	

relationship	(𝑔'(),	and	(right)	proportion	of	weights	in	the	SSI	that	belonged	to	either	the	supporting	or	non-

active	sets,	by	genomic-relationship;	by	environment,	Wheat-small	data	set.	
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Figure	S7.	Prediction	accuracy	for	grain	yield	(average	over	50	partitions)	of	the	optimal	SSI	and	of	the	G-BLUP.	

For	each	training-testing	(trn-tst)	partition,	the	testing	set	(30%)	was	predicted	using	the	(random)	training	

set	 (70%)	with	 the	 SSI	 and	G-BLUP.	 Then,	 the	 same	 testing	 set	was	 predicted	with	 the	 initial	 training	 set	

reduced	to	80%,	70%,	…,	30%	of	its	initial	size	by:	(i)	randomly	sampling	(G-BLUP	Random)	and	(ii)	selection	

using	the	expected	reliability	(CDmean)	optimization	criteria	(G-BLUP	Optimized,	as	described	in	Rincent	et	al.	

2012	and	implemented	in	the	STPGA	R-package,	Akdemir	et	al.,	2015).	By	environmental	condition	(B2I:	bed	

planting	+	2	irrigations,	MEL:	flat	planting	+	5	irrigations,	EHT:	early	planting	date,	DRB:	bed	planting	+	drip	

irrigation),	Wheat-large	data	set.	
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Figure	S8.	Prediction	accuracy	for	grain	yield	(average	over	100	partitions)	of	the	optimal	SSI	and	of	the	G-

BLUP.	For	each	training-testing	(trn-tst)	partition,	the	testing	set	(30%)	was	predicted	using	the	training	set	

(70%).	Then,	the	same	testing	set	was	predicted	with	the	initial	training	set	reduced	to	60%,	50%,	…,	10%	of	

its	initial	size	by	randomly	sampling	down.	The	numbers	on	top	of	the	bars	represent	the	gain	(in	percentage)	

in	accuracy	of	the	SSI	over	the	G-BLUP.	By	environmental	condition	(B2I:	bed	planting	+	2	irrigations,	MEL:	flat	

planting	+	5	irrigations,	EHT:	early	planting	date,	DRB:	bed	planting	+	drip	irrigation),	Wheat-large	data	set.	
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Table	S1.	Number	of	available	observations,	average	grain	yield,	and	heritability	by	environmental	

condition	for	the	Wheat-large	data	set	

Planting	conditions	 Number	of		
irrigations	 Name	 n	 Average		

(SD)	Yield	
Heritability	

(SD)a	Date	 System	

Optimum	 Bed	 2	 B2I	 3,732	 4.53	(0.261)	 0.41	(0.029)	

Optimum	 Bed	 5	 B5I	 29,473	 7.12	(0.372)	 0.57	(0.025)	

Optimum	 Flat	 5	 MEL	 4,403	 5.76	(0.305)	 0.23	(0.025)	

Late	 Bed	 5	 LHT	 4,404	 3.83	(0.375)	 0.51	(0.025)	

Optimum	 Bed	 Minimal	 DRB	 3,763	 2.74	(0.275)	 0.38	(0.029)	

Early	 Bed	 5	 EHT	 2,040	 6.16	(0.525)	 0.41	(0.038)	
SD.	Standard	deviation.	 aPosterior	mean	and	SD	obtained	across	10,000	Monte	Carlo	replicates	using	Gibbs	

sampling.		

	

	

	

	

	

Table	S2.	Number	of	available	observations,	average	grain	yield,	and	heritability	by	environmental	

condition	for	the	Wheat-small	data	set	

Moisture	regime	 Temperature	 Name	 n	 Average		
(SD)	Yield	

Heritability	
(SD)a	 	

Optimal	irrigation,		
low	rainfall	 Optimal	 ME1	 599	 5.14	(0.614)	 0.50	(0.054)		

High	rainfall	 Optimal	 ME2	 599	 4.51	(0.790)	 0.46	(0.056)		

Low	rainfall	 High	drought	 ME3	 599	 3.86	(0.592)	 0.43	(0.062)		

Irrigation	or	rainfall	 Hot,	low	humidity	 ME4	 599	 3.23	(0.636)	 0.44	(0.061)		

SD.	Standard	deviation.	 aPosterior	mean	and	SD	obtained	across	10,000	Monte	Carlo	replicates	using	Gibbs	

sampling.		
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Table	S3.	Prediction	accuracy	for	grain	yield	(average	across	50	partitions)	achieved	by	the	SSI	for	

different	values	of	the	parameter	𝛼	of	an	Elastic-Net-type	SSI,	by	environmental	condition	for	the	

Wheat-large	data	set		

Environment	 𝝀𝟎a	 𝜶	 𝝀𝐨𝐩𝐭b	 nsupc	 Accuracy	(SD)	

B2I	

1.5320	 1.00	 0.0141	 395	 0.649	(0.032)	

0.7660	

0.25	 0.0667	 320	 0.663	(0.032)	
0.50	 0.0320	 330	 0.664	(0.032)	
0.75	 0.0233	 290	 0.664	(0.032)	
1.00	 0.0155	 338	 0.664	(0.032)	

B5I	

1.8412	 1.00	 0.0119	 1,226	 0.610	(0.009)	

0.9215	

0.25	 0.0460	 1,187	 0.630	(0.009)	
0.50	 0.0223	 1,203	 0.631	(0.009)	
0.75	 0.0164	 1,044	 0.631	(0.009)	
1.00	 0.0132	 943	 0.631	(0.009)	

MEL	

3.7934	 1.00	 0.0116	 561	 0.665	(0.046)	

1.8967	

0.25	 0.0705	 338	 0.685	(0.045)	
0.50	 0.0406	 270	 0.686	(0.045)	
0.75	 0.0294	 236	 0.687	(0.045)	
1.00	 0.0195	 282	 0.687	(0.045)	

LHT	

0.9841	 1.00	 0.0218	 237	 0.712	(0.026)	

0.4921	

0.25	 0.0854	 248	 0.727	(0.025)	
0.50	 0.0491	 194	 0.729	(0.025)	
0.75	 0.0295	 223	 0.729	(0.025)	
1.00	 0.0235	 202	 0.730	(0.025)	

DRB	

1.7555	 1.00	 0.0344	 103	 0.679	(0.038)	

0.8778	

0.25	 0.1461	 102	 0.694	(0.039)	
0.50	 0.0823	 79	 0.696	(0.039)	
0.75	 0.0588	 69	 0.697	(0.040)	
1.00	 0.0386	 85	 0.697	(0.040)	

EHT	

1.5514	 1.00	 0.0284	 120	 0.657	(0.046)	

0.7757	

0.25	 0.0970	 159	 0.670	(0.048)	
0.50	 0.0554	 126	 0.672	(0.048)	
0.75	 0.0399	 110	 0.672	(0.048)	
1.00	 0.0264	 133	 0.673	(0.048)	

SD:	Standard	deviation	across	the	50	training-testing	partitions.	aShrinkage	factor	involved	in	the	standard	SI	

(Equation	2).	Within	environment,	in	the	top	row	a	value	of	𝜆)	was	used	as	in	the	G-BLUP	and	in	rows	below,	

𝜆)	 was	 reduced	 to	 half.	 bOptimal	 value	 of	 𝜆	 (average	 across	 partitions)	 estimated	 by	 cross-validating	 the	

training	set.	cAverage	number	of	support	points	in	the	SSIs.	
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Table	S4.	Prediction	accuracy	for	grain	yield	(average	across	50	partitions)	achieved	by	the	SSI	for	

different	values	of	the	parameter	𝛼	of	an	Elastic-Net-type	SSI,	by	environmental	condition	for	the	

Wheat-small	data	set		

Environment	 𝝀𝟎a	 𝜶	 𝝀𝐨𝐩𝐭b	 nsupc	 Accuracy	(SD)	

ME1	

1.2101	 1.00	 0.0314	 84	 0.769	(0.062)	

0.5061	

0.25	 0.1042	 99	 0.772	(0.063)	
0.50	 0.0492	 101	 0.773	(0.063)	
0.75	 0.0296	 110	 0.773	(0.063)	
1.00	 0.0236	 103	 0.773	(0.063)	

ME2	

1.3034	 1.00	 0.0175	 151	 0.708	(0.085)	

0.6517	

0.25	 0.0686	 147	 0.711	(0.086)	
0.50	 0.0397	 126	 0.710	(0.086)	
0.75	 0.0240	 136	 0.710	(0.086)	
1.00	 0.0192	 129	 0.710	(0.086)	

ME3	

1.4084	 1.00	 0.0514	 50	 0.609	(0.090)	

0.7042	

0.25	 0.2213	 48	 0.611	(0.089)	
0.50	 0.1017	 48	 0.610	(0.090)	
0.75	 0.0601	 54	 0.609	(0.091)	
1.00	 0.0474	 50	 0.609	(0.091)	

ME4	

1.4380	 1.00	 0.0615	 40	 0.722	(0.073)	

0.7190	

0.25	 0.2689	 39	 0.727	(0.074)	
0.50	 0.1483	 31	 0.727	(0.074)	
0.75	 0.0870	 35	 0.728	(0.075)	
1.00	 0.0681	 32	 0.728	(0.075)	

SD:	Standard	deviation	across	the	50	training-testing	partitions.	aShrinkage	factor	involved	in	the	standard	SI	

(Equation	2).	Within	environment,	in	the	top	row	a	value	of	𝜆)	was	used	as	in	the	G-BLUP	and	in	rows	below,	

𝜆)	 was	 reduced	 to	 half.	 bOptimal	 value	 of	 𝜆	 (average	 across	 partitions)	 estimated	 by	 cross-validating	 the	

training	set.	cAverage	number	of	support	points	in	the	SSIs.	
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