
S1 Supplementary Material

S1.1 Propositions

Quadratic forms

If X is a vector of random variables with mean µ and (nonsingular) covariance matrix Σ,
then the quadratic form X T AX is a scalar random variable:

E(X T AX ) = tr(AΣ) + µTΣµ (S1)

Var(X T AX ) = 2tr(AΣAΣ) + 4µAΣAµ (S2)

See ref. [1, Appendix 3, pp. 843] for more details.

Linear transform of random vector

If B is a constant matrix and X is a vector of random variables with mean µ and covari-
ance matrix Σ, then BX is a vector of random variables:

E(BX ) = BE(X ) (S3)

Var(BX ) = BVar(X )BT (S4)

The proof makes use of definitions of mean and variance.

Eigen-value decomposition (EVD)

If K is the covariance matrix of size n× n, that means K is symmetric and positive semi-
definite. Furthermore, EVD of K is

K = QDQT = QDQ−1 (S5)

where Q is an n × n orthogonal matrix of eigen-vectors and D is a n × n diagonal
matrix of eigen-values (λi

K with i from 1 to n).
EVD for the matrix inverse to K is

K−1 = QD−1QT (S6)

EVD for the matrix such as V = aK + bI, where a and b are scalars, I is the n × n
identity matrix, is

V = aK + bI = aQDQT + bI = aQDQT + bQIQT = Q(aK + bI)QT (S7)
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Trace operator and eigen-value decomposition (EVD)

For the covariance matrix K and the matrix V = aK + bI, we have the following series of
equations in relation to the trace operator.

tr(K) =
n

∑
i=1

λi
K

tr(K−1) =
n

∑
i=1

(λi
K)
−1

tr(V) = tr(aK + bI) =
n

∑
i=1

(aλi
K + b)

tr(V−1) = tr((aK + bI)−1) =
n

∑
i=1

(aλi
K + b)−1

tr(V−1K) = tr((aK + bI)−1K) = tr((aI + bK−1)−1) =
n

∑
i=1

(a + b(λi
K)
−1)−1

(S8)

In the last equation we used the following equality.

V−1K = (aK + bI)−1K = (aK + bI)−1(K−1)−1

= K−1(aK + bI)−1 = (aI + bK−1)−1 (S9)

S1.2 Analytical derivation of multiplier γβ for families

The effective sample size (ESS) multiplier for family-based association studies is given in
Equation 33 of the main text. We write down this result again.

γβ =
tr
(
(Kσ2

a + Iσ2
r )
−1K

)
N

(S10)

We can further rewrite the numerator using the relationship between the trace oper-
ator and eigen-value decomposition (EVD) of matrix (Kσ2

a + Iσ2
r )
−1K given in Equation

S8 of this Supplementary Material.

γβ =
1
N

N

∑
i=1

λi

λiσ2
a + σ2

r
(S11)

The assumption of y being standardized leads to σ2
r = 1− σ2

a :

f (σ2
a , λ) = γβ =

1
N

N

∑
i=1

λi

(λi − 1)σ2
a + 1

(S12)
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Splitting K into blocks of sub-matrices Ks

The sample generally consists of Ns families such that there is no between-family genetic
relatedness. Then the kinship matrix K can be represented as a block matrix.

K =


Ks1 0 . . . 0
0 Ks2 . . . 0

. . . . . . . . . . . .
0 0 . . . KsNs


Hence, the multiplier can be evaluated separately for each family using the kinship

matrices Ksk for each family, where k is from 1 to Ns and sk is the dimension of square
matrix Ksk .

For family-based designs such as related pairs (siblings or twins) the blocks are the
same and the block matrix K has the form.

K =


Ks 0 . . . 0
0 Ks . . . 0

. . . . . . . . . . . .
0 0 . . . Ks

 (S13)

The matrix Ks for sibling pairs is:

Ks =

(
1 0.5

0.5 1

)
The matrix Ks for monozygotic twins is:

Ks =

(
1 1
1 1

)
In a general case, we consider s related pairs with the relatedness coefficients r, where

s is a positive integer and r is from 0 (unrelated) to 1 (monozygotic twins).

Ks =


1 r . . . r
r 1 . . . r

. . . . . . . . . . . .
r r . . . 1

 (S14)

Eigenvalues of Ks

Let λi denote s eigenvalues of Ks matrix in Equation (S14). These eigenvalues can be
analytically calculated by representing the matrix Ks as a weighted sum of two matrices
(one of which is a diagonal matrix).

Ks =


1 r . . . r
r 1 . . . r

. . . . . . . . . . . .
r r . . . 1

 =


r r . . . r
r r . . . r

. . . . . . . . . . . .
r r . . . r

+


1− r 0 . . . 0

0 1− r . . . 0
. . . . . . . . . . . .
0 0 . . . 1− r
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If λ1 is the first eigenvalue and λ−1 are the remaining (s− 1) eigenvalues, then we
use the results in Equation S7 and obtain.

λ1 = rs + (1− r)
λ−1 = 0 + (1− r) = 1− r

(S15)

Therefore, the sum of eigenvalues of Ks is further simplified.

s

∑
i=1

λi = λ1 + (s− 1)λ−1 = [rs + (1− r)] + [(s− 1)(1− r)]

Related pairs No. pairs, s Relatedness, r First eigenvalue, λ1 Other eigenvalues, λ−1
Monozygotic twins s 1 s 0
Siblings s 1/2 (s+1)/2 1/2
Cousins s 1/4 (s+3)/4 3/4

Table S1: The eigenvalues of the matrix Ks (a submatrix of K) with respect to the related-
ness distribution.

Computing γβ for the related pairs through EVD of Ks

To further simplify the analytical form of multiplier in Equation (S12), we reformulate it
using the block-wise representation of K given in Equations (S13) and (S14).

f (σ2
a , λ) =

1
s

s

∑
i=1

λi

(λi − 1)σ2
a + 1

(S16)

Finally, we get the result in Equation (31) of the main text by summing the weighted
eigenvalues of Ks derived in (S15). Here we write the Equation (31) again.

γβ(Related pairs) =
1
s

(
rs + 1− r

(rs + 1− r)σ2
a + σ2

r
+

(s− 1)(1− r)
(1− r)σ2

a + σ2
r

)
=

1
s

(
rs + 1− r

(rs− r)σ2
a + 1

− (s− 1)(1− r)
(rσ2

a + 1

)
=

1
s

(
(s− 1)r + 1
(s− 1)rσ2

a + 1
− (s− 1)(1− r)

rσ2
a + 1

)

Minima of the function γβ(σ
2
a )

To minimize the function f from Equation (S16) with respect to σ2
a and get its extrema,

we only have to find the solution:
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∂ f (x, λ)

dx
= 0

− 1
s

s

∑
i=1

λ2
i − λi

((λi − 1)x + 1)2 = 0

Note that f (0, λ) = f (1, λ) = 1 except for the case of twins. For the case of twins, we
have f (0, (s, 0, . . . , 0)) = 1 and limx→1 f (x, (s, 0, . . . , 0)) = 1

s .

Case 1: Siblings (s, r = 1/2) The solution is:

( s+1
2 )2 − s+1

2

(( s+1
2 − 1)x + 1)2

= (s− 1)
1

4(1− 1
2 x)2

s2 − 1
((s− 1)x + 2)2 =

s− 1
(2− x)2

(s− 3)sx2 + 8sx− 4s = 0

x =
2(
√

s + 1− 2)
s− 3

if s 6= 3

x =
1
2

if s = 3

(S17)

Case 2: Cousins (s, r = 1/4) The solution is:

x =
4(s− 1)(

√
3(s + 3)− 4)

3s2 − 10s + 7
(S18)

Case 3: Twins (s, r = 1) Because only one eigenvalue is not null, the derivative of
function f with respect to σ2

a is:

∂ f (σ2
a , λ)

dσ2
a

= −1
s

s2 − s
((s− 1)σ2

a + 1)2 < 0 (S19)

The monotonic decrease of the function γβ(σ
2
a ) for twins is observed on Supplemen-

tary Figure S7.

S1.3 The relationship matrices K, KD and KI

To study the gene-environment interaction effect δ on a quantitative trait y, Equation (8)
in the main text outlines the model, y ∼ N (wβ+ dτ + vδ, Σy), where y, w, d are observed
N × 1 vectors of the standardized trait, genetic variant and exposure, respectively; v is a
vector of the interaction between the genetic variant and exposure obtained by element-
wise multiplication of w and d; β, τ, δ are the effect sizes; Σy is the N × N covariance
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matrix of trait across N individuals. The matrix Σv ≡ KD is a covariance matrix of the
interaction variable v.

Table 2 in the main text, according the ref. [2], suggests to include two types kinship
matrices K and KI into Σy: Σy = σ2

a K + σ2
aiKI + σ2

r I. Inclusion of the matrix KI controls
for the family structure when testing for the gene-environment interaction effect and
protects from spurious associations (false positives).

Overall, the relationship matrices K, KD and KI define the behavior of test statistic
in association studies of gene-environment interactions. So we would like to show how
these matrices look like for a particular example of the nuclear family.

Nuclear Families

Consider a single nuclear family of 5 individuals, 2 parents and 3 offspring. The kinship
matrix K is:

K =


1 0 0.5 0.5 0.5
0 1 0.5 0.5 0.5

0.5 0.5 1 0.5 0.5
0.5 0.5 0.5 1 0.5
0.5 0.5 0.5 0.5 1


Consider next a binary environmental exposure d, which is drawn such that the first

two individuals (parents) are unexposed and the last three individuals (offspring) are
exposed to the environment. Thus, the frequency of binary exposure is f = 0.6.

d =
(

0 0 1 1 1
)

The matrix KI is computed by element-wise multiplication of K and a special masking
matrix M, which defines whether a pair of individuals have the same exposure status (d).

M =


1 1 0 0 0
1 1 0 0 0
0 0 1 1 1
0 0 1 1 1
0 0 1 1 1



KI = M ◦ K =


1 0 0 0 0
0 1 0 0 0
0 0 1 0.5 0.5
0 0 0.5 1 0.5
0 0 0.5 0.5 1


Equations (20) and (21) in the Methods section of main text introduce the matrices

E, D and KD. These matrices are further used to derive the test statistic in association
studies of gene-environment interactions. See Equations (32) and (33) for the result of
derivation.

We next show how the matrices E, D and KD look like for our example of nuclear
family and binary exposure. One can see further that the matrices are scaled by factor
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f (1 − f ), because the genetic and environmental exposure variables are standardized
according to our association model, Equation (8).

The matrix E is simply defined as E = diag(d).

E =
1√

f (1− f )


− f 0 0 0 0
0 − f 0 0 0
0 0 (1− f ) 0 0
0 0 0 (1− f ) 0
0 0 0 0 (1− f )


The matrix D is defined using the fact that Di,j = Ei,iEj,j for i, j from 1 to N.

D =
1

f (1− f )


f 2 f 2 − f (1− f ) − f (1− f ) − f (1− f )
f 2 f 2 − f (1− f ) − f (1− f ) − f (1− f )

− f (1− f ) − f (1− f ) (1− f )2 (1− f )2 (1− f )2

− f (1− f ) − f (1− f ) (1− f )2 (1− f )2 (1− f )2

− f (1− f ) − f (1− f ) (1− f )2 (1− f )2 (1− f )2


Further simplifying the notation, we obtain.

D =


f /(1− f ) f /(1− f ) −1 −1 −1
f /(1− f ) f /(1− f ) −1 −1 −1
−1 −1 (1− f )/ f (1− f )/ f (1− f )/ f
−1 −1 (1− f )/ f (1− f )/ f (1− f )/ f
−1 −1 (1− f )/ f (1− f )/ f (1− f )/ f


The matrix KD, which is the covariance matrix Σv of the interaction variable v in

Equation (8), has the form.

Σv = KD = D ◦K =


f /(1− f ) 0 −0.5 −0.5 −0.5

0 f /(1− f ) −0.5 −0.5 −0.5
−0.5 −0.5 (1− f )/ f 0.5(1− f )/ f 0.5(1− f )/ f
−0.5 −0.5 0.5(1− f )/ f (1− f )/ f 0.5(1− f )/ f
−0.5 −0.5 0.5(1− f )/ f 0.5(1− f )/ f (1− f )/ f


For illustration purposes, we replace f by its value 0.6.

E =
1√
0.24


−0.6 0 0 0 0

0 −0.6 0 0 0
0 0 0.4 0 0
0 0 0 0.4 0
0 0 0 0 0.4



D =
1

0.24


0.36 0.36 −0.24 −0.24 −0.24
0.36 0.36 −0.24 −0.24 −0.24
−0.24 −0.24 0.16 0.16 0.16
−0.24 −0.24 0.16 0.16 0.16
−0.24 −0.24 0.16 0.16 0.16
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Σv = KD =
1

0.24


0.36 0 −0.12 −0.12 −0.12

0 0.36 −0.12 −0.12 −0.12
−0.12 −0.12 0.16 0.08 0.08
−0.12 −0.12 0.08 0.16 0.08
−0.12 −0.12 0.08 0.08 0.16


Some elements of KD are negative, because the genetic and environmental exposure

variables are standardized in Equation (8). Figure (3)c in the main text depicts these
negative elements by gray color.

Unrelated individuals

We can check whether our family-based derivations of the relationship matrices K, KD
and KI are consistent with the case of unrelated individuals, for which the kinship matrix
is the identity matrix, K = I.

The vector d and matrix D are the same for unrelated individuals, but the covariance
matrix has a simpler form, Σv = diag(D).

d =
(

0 0 1 1 1
)

D =


f /(1− f ) f /(1− f ) −1 −1 −1
f /(1− f ) f /(1− f ) −1 −1 −1
−1 −1 (1− f )/ f (1− f )/ f (1− f )/ f
−1 −1 (1− f )/ f (1− f )/ f (1− f )/ f
−1 −1 (1− f )/ f (1− f )/ f (1− f )/ f



Σv = D ◦ I = diag(D) =


f /(1− f ) 0 0 0 0

0 f /(1− f ) 0 0 0
0 0 (1− f )/ f 0 0
0 0 0 (1− f )/ f 0
0 0 0 0 (1− f )/ f


Further, we expect the multiplier γδ from Equation (33) to be one for unrelated in-

dividuals. Since we have Σy = σ2
r I = I; σ2

r = 1, we need to show that tr(Σv) = N for
unrelated individuals.

γδ ≈
tr(Σ−1

y (Σv))

N
=

tr(diag(D)

N
=

(1− f )N f /(1− f ) + f N(1− f )/ f
N

= 1

S1.4 Data simulations

In the power analysis of testing the marginal genetic effect, we simulate a trait with
mean E(y) = βgxg on allelic (unstandardized) scale: the allelic effect size βg = 0.05 and
genetic variant xg has entries 0, 1, and 2 (the minor allele frequency p = 0.3). The effect
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size βg = 0.05 is allelic and corresponds to βallele in Equation (S20). The genetic variant
explains ≈ 0.1% of the trait variance.

Similarly in the power analysis of testing the gene-environment interaction effect, we
simulate a trait with mean E(y) = βgxg + βexe + βgexg ∗ xe on unstandardized scale. The
genetic variant xg has entries 0, 1, and 2 (the minor allele frequency p = 0.3). The binary
exposure xe has entries 0 and 1 with the exposure frequency f = 0.6. All the effect sizes,
including the main genetic βg, main environmental βe and interaction βge, are equal to
0.1. The gene-environment interaction (standardized) effect explains ≈ 0.1% of the trait
variance.

In simulations of unrelated individuals under the polygenic model [3], we set the
number of individuals to N = 1, 000, the number of genetic variants to M = 2, 000 and
the number of causal variants to either Mc = 200 (default) or Mc = 50. We generate M
bi-allelic genetic variants with the minor allele frequency p = 0.5, standardize them and
store in a N ×M matrix W. We then generate a vector of the genetic effect sizes b (Mc
causal variants) from the normal distribution N (0, (σ2

g/Mc)I), where σ2
g = 0.8 denotes

the heritability. Finally, the trait is simulated as y = Wb + ε, where the residual noise
comes from the normal distribution N (0, (1 − σ2

g)I). In the next step of fitting LMM
to the simulated data, we first construct the GRM using either all or the top associated
variants (the LR test statistics), then estimate the variance components, in particular σ2

g ,
by REML [3] and finally compute the LMM test statistic. We note that we might not fully
recover the true heritability (≈ 0.8, Mc = 200) given that the sample size of the simulated
datasets is relatively small (N = 1, 000).

The standardized and allelic effect sizes

We use the standardized marginal genetic effect size β and the standardized gene-
environment interaction effect δ in our data simulations and real data analysis of the
UK Biobank. The relation to the allelic effect sizes can be derived through the minor
allele frequency of the genetic variant, p, and, for example, the frequency of the binary
environmental exposure, f [4, Appendix B].

β = 2p(1− p)βallele (S20)

δ = 2p(1− p) f (1− f )δallele (S21)

The variance explained by the genetic variant and gene-environment interaction vari-
able is readily expressed through the standardized effect sizes, β2 and δ2, respectively.

S1.5 Simulation results for the Unrelated+GRM scenario

Before studying the relative power between the Unrelated and Unrelated+GRM scenarios
on simulated data, we sought to examine the impact of several LMM configurations that
differ by the variant selection for the GRM.

As described in the Methods section of the main text, we simulated a trait under the
polygenic model on N = 1, 000 unrelated individuals, M = 2, 000 (unlinked) genetic
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variants and Mc = 200 causal variants that explain 80% of the trait variance (the heri-
tability is denoted with σ2

g). We first performed association study by the LR model, from
which we ranked variants by their association statistic. We then examined three sets of
Ms = 200 selected variants (Ms = Mc): the random variants (Random), the top LR-based
associated variants (Top) and the causal variants (Causal).

When fitting the LMM to estimate the heritability, we observed that the three models
revealed different estimates of the heritability, σ̂2

g : 9% for the Random set, 65% for the
Top set and 80% for the Causal set. The accuracy of recovering the true heritability was
driven by the sample size, N, the number of selected variants for the GRM, Ms and the
number of causal variants captured by the GRM (Supplementary Figure S11). For the
three LMM configurations in Figures S9 and S10 discussed below, the number of causal
variants included in GRM was equal to 22 for Random, 90 for Top and 200 for Causal.

We then examined how the LMM configurations with different sets of selected vari-
ants influence the estimation of the effective size multiplier, γβ. The LMM association
statistics and the multiplier were computed by plugging the estimated heritability, σ̂2

g ,
and the trait covariance, Σ̂y, into Equations 3, 4 and 30. Figure S9a shows that the ef-
fective size multiplier γβ, derived using the proposed analytical formulation, accurately
approximated the empirical ratios between LR and LMM squared standard errors. Im-
portantly, the approximation worked equally well for all three LMM configurations with
different estimates of the heritability and the trait covariance matrix.

We next evaluated the performance of the empirical effective size multiplier γs
β [5].

Figure S9b shows that the accuracy of the empirical multiplier γs
β was variable across

LMM configurations and dependent of sets of variants used to compute the ratios of the
test statistics. Given that the choice of the top variants is subjective, we explored two
approaches in each LMM configuration: significant variants (P < 1× 10−5 in LMM) and
top variants (significant in LMM, P < 1× 10−5, and nominally significant in LR, P < 0.05).

For the first LMM configuration with the random variants in the GRM (the left panel
in Figure S9b), the multiplier γs

β is trivially equal to one (LMM ≈ LR), because most
of the random variants were null and explained nearly zero heritability. For the second
LMM configuration with the top associated variants in the GRM (the middle panel in
Figure S9b), the empirical multiplier γs

β is consistently lower than the effective sample
size multiplier γβ. The reason for this mismatch can be explained by the composition of
the top associated statistic for γs

β: almost a half of variants are null with the ratios of the
test statistic expected to be ones. For the last LMM configuration with all causal variants
in the GRM (right panel of Figure S9b), the empirical multiplier γs

β largely overestimated
γβ for the set of top associated causal variants. There were particular causal variants with
the low effect sizes (Supplementary Figure S12), which were significant only in the LMM:
the residual variance was remarkably reduced, as ≈ 80% heritability was explained by
the GRM. This overestimation was partially mitigated if nominally insignificant variants
in LR (P > 0.05) were filtered out.

If one uses median instead of mean to estimate the ratio of the test statistic for γe, then
the estimator is less affected by the outlier variants, which were nominally insignificant
in the LR model with PLR > 0.05 (see Supplementary Figure S10).
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S2 Supplementary Tables

Relationship φ Inference criteria
Monozygotic twin 1

2 φ > 1
23

Parent–offspring 1
4 φ ≥ 1

25/2 & φ < 1
23/2 & IBS0 ≤ 0.0012

Full sibling 1
4 φ ≥ 1

25/2 & φ < 1
23/2 & IBS0 > 0.0012

2nd Degree 1
8 φ ≥ 1

27/2 & φ < 1
25/2

3rd Degree 1
16 φ ≥ 1

29/2 & φ < 1
27/2

Table S2: The criteria for inference of the pairwise relationships based on the estimated
kinship coefficients (φ), as recommended by the authors of KING; see Table 1 in ref. [6].
The IBS0 coefficients are additionally used to distinguish between parent–offspring and
full-sibling pairs [7]. These two types of related pairs have the same expected kinship
coefficient 1/4, and any such pair with IBS0 ≤ 0.0012 is called parent-offspring.

Relationship No. pairs No. individuals γβ* σ2
a *

Monozygotic twin 179 358 0.500 1.000
Parent–offspring 6,273 11,202 0.922 0.560
Full sibling 22,664 41,512 0.929 0.531
2nd Degree 11,115 20,196 0.982 0.511
All above (<2nd Degree) 40,231 68,910 0.939 0.537

Table S3: The relative power of GWAS in related samples (up to the second degree) from
the UK Biobank. *The last two columns report the minimum value of the ESS multiplier
γβ across the range of heritability (σ2

a ) values, [0, 1].

S3 Supplementary Figures
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Figure S1: The results of simulations for testing the marginal genetic effect in unrelated
individuals by linear regression (LR). A quantitative trait was simulated 1,000 times at
each value of the sample size N according to a data model y ∼ N (wβ, Σy = σ2

r I) (see Sup-
plementary Material). The same model was used for association testing. Boxplots at pan-
els (a-d) show the distribution of standard error of β̂, β̂, χ2 statistic and σ̂2

r , respectively;
true values of model parameters are depicted by red lines. Panel (e) shows the distribu-
tion of empirical ESS multiplier estimated as 1/[var(β̂)N] (see Equation (17)) for every
simulation; the red lines correspond to the analytical multiplier γβ = tr(σ2

r I)/N = 1 cal-
culated with true model parameters used to simulate data (see Equation (27)). Panel (f)
reports observed power at the nominal level of α = 0.05, where each point is a simulation
with 1,000 variants. The total number of points for each value of N is also 1,000, and the
red lines give analytical estimates of the expected power.
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Figure S2: The results of simulations for testing the marginal genetic effect in related
individuals (nuclear families of two parents and three offspring) by linear mixed model
(LMM).
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Figure S3: The results of simulations for testing the gene-environment interaction effect
in unrelated individuals by linear regression (LR).
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Figure S4: The results of simulations for testing the gene-environment interaction ef-
fect in related individuals by the linear mixed model (LMM) with two genetic variance
components.
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Figure S5: The results of simulations for testing the gene-environment interaction ef-
fect in related individuals by the linear mixed model (LMM) with one genetic variance
component.
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Figure S6: The effective size multiplier γβ, analytically computed for nuclear families
(2 parents and offspring), varies with the proportion of variance explained by family
relationships (heritability σ2

a ) and family structure (the number of offspring in nuclear
families).
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Figure S7: The effective size multiplier γβ, analytically computed for related pairs, varies
with the proportion of variance explained by family relationships (heritability σ2

a ) and
family structure (pair relatedness). The relatedness for different pairs (the double kinship
coefficient): 0.125 for cousins, 0.5 for siblings, and 1 for monozygotic twins.
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Figure S8: The effective size multiplier γβ is analytically estimated in 68,910 UK Biobank
unrelated individuals (up to 2nd degree; see Supplementary Table S3). The multiplier
is a function of the variance explained by family relationships (heritability σ2

a ) and the
strength of genetic relatedness (twins, monozygotic twins: 1; sib, sibling pairs: 0.5; po,
parent-offspring pairs: 0.5; 2nd, 2nd-order relatives: 0.125).
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Figure S9: Validation of the analytical multiplier γβ on simulated data under Unre-
lated+GRM and Unrelated scenarios (N = 1,000, M = 2,000, Mc = 200 and Ms = 200 (
see Supplementary Material). Three sets of Ms = 200 variants are selected to build GRM
in LMM: random variants (Random), top LR top associated variants (Top) and causal
variants (Causal). (a) The effective size multiplier γβ (red bars) accurately approximates
empirical ratios of squared standard errors (dark gray bars) for every set of Ms variants
used in GRM. (b) The empirical multiplier γs

e (brown and beige bars) is computed at
different sets of variants: significant variants (PLMM < 1× 105 in LMM) and top variants
(significant in LMM, PLMM < 1× 105, and nominally significant in LR, PLR < 0.05). The
multipliers γs

e and γβ match well only in the trivial case when random variants in GRM
capture nearly zero heritability (Unrelated ≈ Unrelated+GRM). Otherwise, γs

e gives bi-
ased estimates. Heights of dark gray, brown and beige bars represent mean values, while
error bars range from 1st to 3rd quartiles. The multiplier γs

e on panel (b) is not reported
for sets of all variants (dark gray bars on panel (a)), because the mean statistic is not ro-
bust to outliers, which are causal variants with low effect sizes (significant in LMM and
insignificant in LR). See also Supplementary Figure S10 for reported median ratios and
Supplementary Figure S12 for distribution of tests statistics at causal variants, including
causal variants with low effect sizes.
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Figure S10: Results on simulated data, reported in Figure S9, using the median rather
than mean in computing (a) ratios of squared standard errors and (b) ratios of squared
test statistic.
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Figure S11: Estimated heritability is reported on simulated data under Unrelated+GRM
scenario (N = 1,000, M = 2,000, Mc = 50, 200 and Ms = 10, 50, 100, 200, 500 (see Supple-
mentary Material). Three sets of Ms variants are selected to build GRM in LMM: random
variants (Random), random causal variants (Causal) and top LR top associated variants
(Top).
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Figure S12: Distribution of LMM and LR test statistics (Z-scores) on simulated data (N
= 1,000, M = 2,000, Mc = 200 and Ms = 200 (see Supplementary Material). Ratios of
association statistics LMM/LR between Unrelated and Unrelated+GRM scenarios are
computed at causal variants and stratified by the effect sizes. Outlier points above the
75% quantile of box plots correspond to causal variants with low effect sizes that are
insignificant in LR, but become significant in LMM. These particular variants inflates
the empirical multiplier γs

e computed on a set of causal variants (Figure S9). All causal
variants are included in GRM when producing LMM test statistics.
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Figure S13: The effective size multiplier for gene-environment interaction effect γδ is
analytically computed for nuclear families with 2 parents and 3 offspring. All possible
realizations of a binary exposure within a family are considered, that results in different
exposure frequencies. The distribution of γδ is shown as a dotplot for six combinations
of variance components in LMM. Recall that the association model to test the gene-
environment interaction effect δ is: y ∼ N (wβ + dτ + vδ, Σy = σ2

a K + σ2
aiKI + σ2

r I). Each
panel has its own ratio σ2

ai/σ2
a , for instance, σ2

ai = 0 on the left panel and σ2
ai = σ2

a on the
right panel.

Figure S14: The effective size multiplier for genetic effect γβ (rather than γδ for gene-
environment interaction effect) is analytically estimated on the same nuclear family data
as in Figure S13.
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Figure S15: This supplementary figure shows the same results as the main Figure 2 but
is based on association test statistics from only Chromosome 1. Those per-trait top 1,000
variants from Chromosome 1 are excluded from the GRM in low-rank LMM (conse-
quently, the estimated heritability used to compute γβ is smaller than in Figure 2), and
association test statistics and standard errors used to compute the empirical estimators
γse

β and γs
β is available only from Chromosome 1.
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