
File S6: Determining the correlation c between gene ex-
pression in old and new states

The variable c from the main text quantifies the statistical association between
the random variables gNi and gOi . The purpose of the following calculation
is to establish the relationship between c and the Pearson product-moment
correlation coefficient R between these random variables. Briefly, c is identical
to R except for a scaling constant, and the only reason to use c instead of R
is that it makes central mathematical expressions such as equation (21) from
File S5 simpler. The following calculations rely on the assumption that R ≥ 0,
which is justified by the empirical observation that gene expression states in
different environments or cell types are generally positively correlated (File S7).

The variances of the two random variables gNi and gOi compute as V(gNi ) =
fN (1− fN ) and V(gOi ) = fO

1 (1− fO
1 ). Their covariance equals Cov(gNi , gOi ) =

E(gNi gOi )−E(gNi )E(gOi ) = P (gNi = 1|gOi = 1)fO
1 −fNfO

1 , where E(x) denotes the
expectation of the random variable x. To compute P (gNi = 1|gOi = 1), I use the
Ansatz that this quantity can be described by a linear function f(c) (0 ≤ c ≤ 1),
such that (i) f(0) = fN if the two random variables are uncorrelated (in which
case P (gNi = 1|gOi = 1) = P (gNi = 1) = fN ), and (ii) f(1) = 1 if the two random
variables are perfectly correlated (in which case P (gNi = 1|gOi = 1) = 1). The
linear function that fulfills these constraints is f(c) = fN +c(1−fN ). With this
function, we get Cov(gNi , gOi ) = (fN + c(1 − fN ))fO

1 − fNfO
1 = c(1 − fN )fO

1 .
The Pearson correlation coefficient R between gNi and gOi then calculates as

R =
Cov(gNi , gOi )√
V(gNi )V(gOi ))

(26a)

=
c(1− fN )fO

1√
fN (1− fN )fO

1 (1− fO
1 )

(26b)

= c

√
(1− fN )fO

1

fN (1− fO
1 )

(26c)

In sum, this calculation shows that c and R are linearly related, with a propor-
tionality constant that equals the right-most expression of this equation.

I next discuss how I estimated c for experimental genome-wide gene expression
data. One challenge here is that the quantity fO

1 can be experimentally mea-
sured, but the quantity fN cannot. However, because fN = fN

1 − fN
01 + fN

10 =
fN
1 −∆N

m, the fraction fN of optimally expressed genes in a new state can be
approximated by the fraction fN

1 of actually expressed genes, as long as the
excess of wrongly active over wrongly inactive genes in the new state is not
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very large. This is the case for the population genetic parameters explored
here. (In addition, if ∆m is stochastically independent of f1, then one can sub-
stitute fN

1 for fN in the above calculation.) Under this assumption, I have
calculated c for various experimental data sets. To estimate c for any one data
set that records the number of expressed genes or transcripts in two environ-
ments or cell states a and b, denote as fa, f b, and fab the fractions of genes
expressed in state a, in state b, and in both states, respectively. With this nota-
tion Cov(gNi , gOi ) = fab− faf b, R = (fab− faf b)/

√
fa(1− fa)f b(1− f b), and

c = R
√

[f b(1− fa)]/[(1− f b)fa]. Notice that R is invariant to the exchange
of a and b, but c is not, which means that one needs to make an arbitrary
assumption as to whether a is the old or the new state (as I did in my data
analysis). However, for the data sets I examined, values of c obtained under
either assumption are generally close to one another (not shown).
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