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As mentioned in the Discussion, the observation that a knock-down of MYB5a/NEGAN
decreases the RTo concentration is consistent with activator-inhibitor systems that serve as
minimal models of the MBW regulatory network (Ding et al., 2020). To clarify this point,
consider the following ordinary differential equation system,†
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These equations model the time-dependent change of activator (A) and inhibitor (I) under
modest assumptions regarding the production and degradation rates of both chemical species.
The degradation rates of activator and inhibitor are given by βAA and βII, respectively,
where βA and βI are first-order rate constants. Both activator and inhibitor show a baseline
rate of production with magnitudes controlled by the parameters A0 and I0, respectively. In
Eq. 2, the parameter γI represents the strength of activation of the production of inhibitor as
regulated by the activator (higher concentration of activator leads to increased production
of inhibitor). Similarly in Eq. 1, γA accounts for the strength of positive auto-regulation of
the activator. The production rate for the activator is multiplied by the Hill-type function

†The activator-inhibitor system given by Eqs. 1 and 2 is essentially a non-spatial version of the model
presented in Ding et al. (2020, Supplementary Materials),
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To obtain Eqs. 1 and 2 from these equations, set the diffusion coefficients (DA and DI) to zero, and replace
γ̄A with γAκ and Ā0 with A2

0. Writing the activator-inhibitor system in this way is preferred, because γA
and γI have the same physical dimensions; similarly for A0 and A. In the original case, γ̄A and γI did not
have the same physical dimensions; nor did A0 and A. See Murray (2007, Ch. 2) for other examples of
activator-inhibitor systems and pattern formation.
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Figure S1: Nullclines of the activator/inhibitor model given by Eqs. 1 and 2. Control
simulation: γ̂A = 0.27, γ̂I = 0.4, a0 = 5, and i0 = 0 (dimensionless parameters). The
simulated MYB5 RNAi experiment uses an activator production rate constant that is half
the control value (γ̂A = 0.13).

κ/(I + κ), which determines the degree to which the inhibitor can quench the production
of activator. At low concentrations of inhibitor (I << κ), this factor has no effect, that is,
κ/(I+κ) ≈ 1, which indicates that the production of activator is not inhibited. However, as
I increases, κ/(I+κ) decreases and ultimately approaches zero (high inhibitor concentration
leads to decreased production of activator).

An important observation in our experimental work, summarized in Fig. 5 of the main
text, is that knockdown of the MYB5 (activator) gene leads to a decrease in the concentration
of RTo (inhibitor). Interpreting this experimental result as an observation of a change in
the steady-state concentrations of MYB5 and RTo, we begin our analysis of the activator-
inhibitor system by setting the left hand side of Eqs. 1–2 to zero (see Segel and Edelstein-
Keshet (2013) for review of this technique and others below). In this way we obtain two
algebraic expressions that are referred to as the A and I nullclines,
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As shown in Fig. S1, the A and I nullclines can be interepreted geometrically as curves in
(A, I) phase plane. The A nullcline indicates the points in the plane for which dA/dt =
0. Similarly, the I nullcline indicates dI/dt = 0. Thus, the intersection of the A and I
nullclines locates a steady state of the system, that is, activator (MYB) and inhibitor (RTo)
concentrations leading to no further change in concentration (dA/dt = 0, dI/dt = 0).

To simplify the algebraic expressions for the A and I nullclines, let us define the quantities
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Â = A/κ and Î = I/κ. Because κ has physical dimensions of concentration, both Â and Î
are dimensionless quantities with nullclines given by
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Defining the dimensionless parameters γ̂A = γAκ/βA, γ̂I = γIκ/βI , a0 = A0/κ, i0 = I0/(βIκ),
the algebraic expressions for the nullclines can be simplified as follows:
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At this point we are prepared to interrogate the nullclines (Eqs. 5 and 6) of the activator-
inhibitor system representing the MBW regulatory network to ascertain how knock-down
of MYB5 might affect RTo concentration. To begin, let us write (Âss, Îss) to indicate the
location in the (A, I) phase plane that simultaneously solves Eqs. 5 and 6. Observe that, ac-
cording to Eq. 5, a simulated knock-down of the activator (decreased Âss), may be modeled
by increasing the dimensionless parameter γ̂A = γAκ/βA. That is, consistent with intuition,
the steady-state activator concentration will decrease if there is either an increase the degra-
dation rate constant for the activator (βA) or, alternatively, a decrease the rate constant for
activator production (γA). Fig. S1 shows how a simulated knock-down of activator lowers the
activator nullcline (shown blue, compare solid and broken curves). The Î nullcline does shift
in response to simulated knockdown of activator, because γ̂I and i0 in Eq. 6 do not depend
on βA or γA. Fig. S1 uses parameters that illustrate an experimental condition resulting in
a 50% decrease in the MYB5 concentration relative to control.

Under the assumption that the basal production of the inhibitor is zero (I0 = 0), the
quadratic nature of the Î nullcline (and i0 = 0) implies that for a x-fold decrease in Âss,
the inhibitor Îss will exhibit a x2-fold decrease in concentration. The same is true for the
original variables, A and I, that have physical dimensions of concentration (A = κÂ and
I = κÎ). Fig. S1 illustrates this phenomenon of activator knock-down leading to an even
greater decrease of inhibitor (gray arrow, compare open and filled circles). For the parameters
given in the caption, the simulated 50% decrease in the MYB5 concentration causes a 75%
decrease in the concentration of RTo (reminiscent of Fig. 5 in the main text).

It is important to note that the activator-inhibitor system, with different model parame-
ters, can exhibit RTo response to MYB5 knockdown that is different in character and more
directly comparable to observations in Ding et al. (2020). For example, increasing the basal
production of inhibitor (I0) can shift the quadratic relationship between Âss and Îss dis-
cussed in the previous paragraph. In Fig. S1, a 2-fold decrease in activator concentration
results in a 4-fold decrease in inhibitor concentration. However, a modified parameter set
with an larger basal production rate for inhibitor, i0 = I0/(βIκ), leads to a vertical shift in
the Î nullcline, as illustrated below.
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This change in the relationship between activator concentration and the basal production
rate of inhibitor alters the locations of the steady state (Âss, Îss) both before and after
knockdown. This change in the location of the Î nullcline dramatically decreases the RTo
response to MYB5 knockdown. In fact, using the parameters given in the caption of Fig. S1,
but with a slight increase in the basal inhibitor production rate (i0), a 2-fold decrease in
activator can result in a decrease in inhibitor that is less than 2-fold. To see this, compare
the Â and Î nullcline intersections (blue and red curves) in the above diagram with Fig. S1,
taking note of the relative positions of the open and filled circles in each case.
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