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Appendices

A Double-reduction models

In the presence of double-reduction, a gamete will carry some identical-by-double-reduction (IBDR)

alleles. For tetrasomic and hexasomic inheritances, there are only two and three allele copies within a

gamete, respectively. Hence, there is at most one pair of IBDR alleles within a gamete. Therefore, we

only need to use a single parameter to measure the degree of double-reduction.

For polysomic inheritance with a high ploidy level 𝑣, there may be more than one pair of IBDR

alleles within a gamete. Therefore, it is necessary to add some additional parameters to measure the

degree of double-reduction. Let 𝛼𝑖 be the probability that a gamete carries 𝑖 pairs of IBDR alleles. Then∑︀⌊𝑣/4⌋
𝑖=0 𝛼𝑖 = 1, where ⌊𝑣/4⌋ is the greatest integer not more than 𝑣/4. We call each 𝛼𝑖 a double-reduction

rate.

Geneticists have developed several simplified models to simulate double-reduction. In the random

chromosome segregation (RCS) model, the crossing over between the target locus and the corresponding

centromere is ignored. Therefore, there cannot be any IBDR allele in a gamete, and the genotypic

frequencies accord with the HWE (Figure S1(A), Muller, 1914).

The pure random chromatid segregation (PRCS) model accounts for such crossings over, and assumes

that the chromatids behave independently in the meiotic anaphase, and are randomly segregated into

some gametes (Figure S1(B), Haldane, 1930). When a pair of sister chromatids are segregated into the

same gamete, the double-reduction occurs.

In the complete equational segregation (CES) model, the whole arms of two pairing chromatids are

supposed to be exchanged between the pairing chromosomes (Figure S1(C), Mather, 1935). Subsequently,

the chromosomes are randomly segregated into the secondary oocytes in Metaphase I. If the pairing chro-

mosomes are segregated into the same secondary oocyte, the duplicated alleles may be further segregated

into a single gamete.

The probability that an allele within a chromatid is exchanged with a pairing chromatid is called

the single chromatid recombination rate, denoted by 𝑟𝑠. In the CES model, the rate 𝑟𝑠 is assumed to be

one. This is an ideal assumption. In fact, the maximum value of 𝑟𝑠 is 50% whenever the locus is located

far from the centromere. Huang et al. (2019) presented a model by incorporating 𝑟𝑠 into CES, called the

partial equational segregation (PES) model. Let 𝑑 be the distance (in centimorgans) from the target locus
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Figure S1: Diagram of double-reduction models under tetrasomic inheritance. The left column shows
three primary oocytes, the middle column shows two secondary oocytes (in the rows marked (A) and (C))
or one tetrad (in the row marked (B)), and the right column shows three gametes. The gametes with a gray
background carry IBDR alleles. We denote the cellular fissions by dashed lines, the arms of chromosomes
by solid lines, and the centromeres by circles connecting solid lines. Each locus is located in a long arm of
chromosomes and the identical-by-descent allele is denoted by the same letter as the corresponding locus.
The row marked (A) is the sketch of RCS model. In this model, the crossing over between the target
locus and its corresponding centromere is ignored (Muller, 1914). In the absence of crossing over, gametes
may originate from any combination of homologous chromosomes, and two sister chromatids are never
sorted into the same gamete (Parisod et al., 2010). The row marked (B) is the sketch of PRCS model.
This model accounts for the crossing over between the target locus and its corresponding centromere, and
assumes that the chromatids behave independently in the meiotic anaphase, and are randomly segregated
into the gametes (Haldane, 1930). When a pair of sister chromatids are segregated into the same gamete,
the double-reduction occurs. The probability that two chromatids within the same gamete are a pair of
sister chromatids is 4/

(︀
8
2

)︀
, i.e. 1/7, where 4 is the number of pairs of sister chromatids, and

(︀
8
2

)︀
is the

number of ways to sample two chromatids from eight chromatids. The row marked (C) is the sketch of
CES model. In this model, the pairs of homologous chromosomes are exchanged with the chromatids
via recombination (Mather, 1935). The whole arms of sister chromatids are exchanged into different
chromosomes. The probability that two homologous chromosomes within a single secondary oocyte are
previously paired at a locus in Prophase I is 1/3. In this case, the fragments of these sister chromatids will
be segregated into a single gamete at the ratio of 1/2, so the double-reduction rate is 1/6 for tetrasomic
inheritance.
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to its corresponding centromere. According to the Haldane’s mapping function, the relational expression

between 𝑟𝑠 and 𝑑 is as follows:

𝑟𝑠 =
1

2
[1− exp(−2𝑑/100)] .

In summary, different models are required to satisfy different conditions and their dimensions are

also not the same. For example, there is an additional parameter 𝑟𝑠 (or 𝑑) in the PES model, and

thus the number of degrees of freedom in PES is higher. It is noteworthy that all of the four models

mentioned above can be incorporated into a generalized framework (i.e. the double-reduction rates are

used as the parameters to express the phenotypic probabilities for some models). Comparing with the

RCS, PRCS and CES models, the number of parameters for such generalized model increases by ⌊𝑣/4⌋.

The double-reduction rates in four models are shown in Table S1.

Table S1: The double-reduction rates in four models

Model Alpha
Ploidy level

4 6 8 10 12

RCS
𝛼1 0 0 0 0 0
𝛼2 0 0 0
𝛼3 0

PRCS
𝛼1 1/7 3/11 24/65 140/323 1440/3059
𝛼2 1/65 15/323 270/3059
𝛼3 5/3059

CES
𝛼1 1/6 3/10 27/70 55/126 285/616
𝛼2 3/140 5/84 65/616
𝛼3 5/1848

PES
𝛼1 𝑟𝑠/6 3𝑟𝑠/10

3
70𝑟𝑠(10− 𝑟𝑠)

5
126𝑟𝑠(14− 3𝑟𝑠)

5
616𝑟𝑠(84− 28𝑟𝑠 + 𝑟2𝑠)

𝛼2
3

140𝑟
2
𝑠

5
84𝑟

2
𝑠

5
616𝑟

2
𝑠(14− 𝑟𝑠)

𝛼3
5

1848𝑟
3
𝑠

B Likelihoods for genotypic data

The likelihood formulas stated in this section are applicable to the genotypic data of both diploids

and autopolyploids.

We will first give the likelihood formulas in the absence of self-fertilization, and these formulas

are identical to those in Kalinowski et al. (2007). For the first category in a parentage analysis (i.e.

identifying the father when the mother is unknown), the likelihoods can be expressed as

ℒ(𝐻1)= Pr(𝒢𝐴)
[︀
(1− 𝑒)2𝑇 (𝒢𝑂 | 𝒢𝐴) + 2𝑒(1− 𝑒) Pr(𝒢𝑂) + 𝑒2 Pr(𝒢𝑂)

]︀
,

ℒ(𝐻2)= Pr(𝒢𝐴)
[︀
(1− 𝑒)2 Pr(𝒢𝑂) + 2𝑒(1− 𝑒) Pr(𝒢𝑂) + 𝑒2 Pr(𝒢𝑂)

]︀
.

(A1)

These two formulas are already listed in Equation (2), in which the second formula can be rewritten as

ℒ(𝐻2) = Pr(𝒢𝐴) Pr(𝒢𝑂) by merging similar terms.
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For the second category (i.e. identifying the father when the mother is known), the likelihoods can

be expressed as

ℒ(𝐻1) = Pr(𝒢𝑀 ) Pr(𝒢𝐴)
{︀
(1− 𝑒)3𝑇 (𝒢𝑂 | 𝒢𝐴,𝒢𝑀 )

+𝑒(1− 𝑒)2
[︀
𝑇 (𝒢𝑂 | 𝒢𝑀 ) + 𝑇 (𝒢𝑂 | 𝒢𝐴) + Pr(𝒢𝑂)

]︀
+3𝑒2(1− 𝑒) Pr(𝒢𝑂) + 𝑒3 Pr(𝒢𝑂)

}︀
, (A2)

ℒ(𝐻2) = Pr(𝒢𝑀 ) Pr(𝒢𝐴)
{︀
(1− 𝑒)3𝑇 (𝒢𝑂 | 𝒢𝑀 ) + 𝑒(1− 𝑒)2

[︀
𝑇 (𝒢𝑂 | 𝒢𝑀 ) + 2Pr(𝒢𝑂)

]︀
+3𝑒2(1− 𝑒) Pr(𝒢𝑂) + 𝑒3 Pr(𝒢𝑂)

}︀
,

where 𝒢𝑀 is the observed genotype of the true mother.

For the third category (i.e. identifying the father and the mother jointly), the likelihoods can be

expressed as

ℒ(𝐻1) =Pr(𝒢𝐴𝑀 ) Pr(𝒢𝐴)
{︀
(1− 𝑒)3𝑇 (𝒢𝑂 | 𝒢𝐴,𝒢𝐴𝑀 )

+𝑒(1− 𝑒)2
[︀
𝑇 (𝒢𝑂 | 𝒢𝐴𝑀 ) + 𝑇 (𝒢𝑂 | 𝒢𝐴) + Pr(𝒢𝑂)

]︀
+3𝑒2(1− 𝑒) Pr(𝒢𝑂) + 𝑒3 Pr(𝒢𝑂)

}︀
,

ℒ(𝐻2) =Pr(𝒢𝐴𝑀 ) Pr(𝒢𝐴) Pr(𝒢𝑂),

(A3)

where 𝒢𝐴𝑀 is the observed genotype of the alleged mother.

We will now give the likelihood formulas in the presence of self-fertilization. For the first category,

the offspring is produced by selfing at a probability of 𝑠 and by outcrossing at a probability of 1− 𝑠. So,

if we denote 𝑇𝑠1 for (1− 𝑠)𝑇 (𝒢𝑂 | 𝒢𝐴)+ 𝑠𝑇 (𝒢𝑂 | 𝒢𝐴,𝒢𝐴), then the likelihood formulas can be obtained by

replacing 𝑇 (𝒢𝑂 | 𝒢𝐴) with 𝑇𝑠1 in the first formula in Equation (A1), whose expressions are as follows:

ℒ(𝐻1) = Pr(𝒢𝐴)
[︀
(1− 𝑒)2𝑇𝑠1 + 2𝑒(1− 𝑒) Pr(𝒢𝑂) + 𝑒2 Pr(𝒢𝑂)

]︀
,

ℒ(𝐻2) = Pr(𝒢𝐴) Pr(𝒢𝑂).

For the second category, if the alleged father is not the same individual as the true mother, selfing

cannot occur in 𝐻1 but may occur in 𝐻2. Thus, if we denote 𝑇𝑠2 for (1−𝑠)𝑇 (𝒢𝑂 | 𝒢𝑀 )+𝑠𝑇 (𝒢𝑂 | 𝒢𝑀 ,𝒢𝑀 ),

then the likelihood formulas can be obtained by replacing 𝑇 (𝒢𝑂 | 𝒢𝑀 ) with 𝑇𝑠2 in the second formula in

Equation (A2), whose expressions are as follows:

ℒ(𝐻1) = Pr(𝒢𝑀 ) Pr(𝒢𝐴)
{︀
(1− 𝑒)3𝑇 (𝒢𝑂 | 𝒢𝐴,𝒢𝑀 )

+𝑒(1− 𝑒)2
[︀
𝑇 (𝒢𝑂 | 𝒢𝑀 ) + 𝑇 (𝒢𝑂 | 𝒢𝐴) + Pr(𝒢𝑂)

]︀
+3𝑒2(1− 𝑒) Pr(𝒢𝑂) + 𝑒3 Pr(𝒢𝑂)

}︀
,

ℒ(𝐻2) = Pr(𝒢𝑀 ) Pr(𝒢𝐴)
{︀
(1− 𝑒)3𝑇𝑠2 + 𝑒(1− 𝑒)2

[︀
𝑇𝑠2 + 2Pr(𝒢𝑂)

]︀
+3𝑒2(1− 𝑒) Pr(𝒢𝑂) + 𝑒3 Pr(𝒢𝑂)

}︀
.
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Moreover, if the alleged father is the same individual as the true mother, selfing must have occurred in

𝐻1 and could not have occurred in 𝐻2. Therefore, the likelihood formulas can be obtained by replacing

(1− 𝑒)2𝑇 (𝒢𝑂 | 𝒢𝐴) with (1− 𝑒)2𝑇 (𝒢𝑂 | 𝒢𝐴,𝒢𝐴) and (1− 𝑒)2 Pr(𝒢𝑂) with (1− 𝑒)2𝑇 (𝒢𝑂 | 𝒢𝐴) in Equation

(A1), whose expressions are as follows:

ℒ(𝐻1) = Pr(𝒢𝐴)
{︀
(1− 𝑒)2𝑇 (𝒢𝑂 | 𝒢𝐴,𝒢𝐴) + 2𝑒(1− 𝑒) Pr(𝒢𝑂) + 𝑒2 Pr(𝒢𝑂)

}︀
,

ℒ(𝐻2) = Pr(𝒢𝐴)
{︀
(1− 𝑒)2𝑇 (𝒢𝑂 | 𝒢𝐴) + 2𝑒(1− 𝑒) Pr(𝒢𝑂) + 𝑒2 Pr(𝒢𝑂)

}︀
.

For the third category, if the alleged father is not the same individual as the alleged mother, selfing

cannot happen in 𝐻1 but may happen in 𝐻2. In this situation, the likelihood formulas are the same as

those in Equation (A3). Moreover, if the alleged father is the same individual as the alleged mother,

selfing must have occurred in 𝐻1 but could not have occurred in 𝐻2. Therefore, the likelihood formulas

can be obtained by replacing 𝑇 (𝒢𝑂 | 𝒢𝐴) with 𝑇 (𝒢𝑂 | 𝒢𝐴,𝒢𝐴) in the first formula in Equation (A1), whose

expressions are as follows:

ℒ(𝐻1) = Pr(𝒢𝐴)
{︀
(1− 𝑒)2𝑇 (𝒢𝑂 | 𝒢𝐴,𝒢𝐴) + 2𝑒(1− 𝑒) Pr(𝒢𝑂) + 𝑒2 Pr(𝒢𝑂)

}︀
,

ℒ(𝐻2) = Pr(𝒢𝐴) Pr(𝒢𝑂).

For the transitional probability 𝑇 (𝒢𝑂 | 𝒢𝐴) or 𝑇 (𝒢𝑂 | 𝒢𝐴,𝒢𝑀 ) and so on in this section, it should be

calculated by 𝑇 (𝐺𝑂 |𝐺𝐹 ) or 𝑇 (𝐺𝑂 |𝐺𝐹 , 𝐺𝑀 ) because these genotypes are assumed correctly genotyped

in calculating these transitional probabilities, i.e. 𝒢𝑂 = 𝐺𝑂, 𝒢𝐹 = 𝐺𝐹 , 𝒢𝑀 = 𝐺𝑀 . Similarly, for

the genotypic frequency Pr(𝒢𝐴) or Pr(𝒢𝑂) and so on in some formula listed in this section, it should

be calculated by Pr(𝐺𝐴) or Pr(𝐺𝑂) because the genotyping errors does not change the distribution of

genotypes, i.e. Pr(𝒢) = Pr(𝐺 = 𝒢).

For diploids without self-fertilization, the formulas of genotypic frequency and two transitional prob-

abilities have been given in the section Marshall et al.’s (1998) diploid model.

For diploids with self-fertilization, the transitional probabilities do not change, but the genotypic

frequency is related to the inbreeding coefficient 𝐹 , denoted by Pr(𝐺 |p, 𝐹 ), which can be calculated by

Pr(𝐺 |p, 𝐹 ) =

{︃
𝐹𝑝𝑖 + (1− 𝐹 )𝑝2𝑖 if 𝐺 = 𝐴𝑖𝐴𝑖,

2(1− 𝐹 )𝑝𝑖𝑝𝑗 if 𝐺 = 𝐴𝑖𝐴𝑗 ,

where 𝐹 can be converted from the selfing rate 𝑠 by the relational expression

𝐹 =
𝑠

2− 𝑠
.

Above two formulas will be extended from disomic to polysomic inheritances in Appendix C.

For autopolyploids without self-fertilization, the genotypic frequency Pr(𝐺) from tetrasomic to de-

casomic inheritances for each double-reduction model has been derived in Huang et al. (2019), and the

transitional probabilities 𝑇 (𝐺𝑂 |𝐺𝐹 ) and 𝑇 (𝐺𝑂 |𝐺𝐹 , 𝐺𝑀 ) are given in Appendix D.
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For autopolyploids with self-fertilization, the transitional probabilities do not change, but the exact

genotypic frequency is unavailable. As an alternative, we give its approximate solution, whose derivation

is given in Appendix C.

C Genotypic and phenotypic frequencies

We have previously discussed the generalized genotypic frequencies from tetrasomic to decasomic

inheritances under any double-reduction model (Huang et al., 2019). We will further incorporate self-

fertilization into these genotypic frequencies.

In the presence of self-fertilization, if the ploidy level is high, the calculation of the genotypic fre-

quencies from their analytical expressions is problematic (see Appendix K for details). As an alternative,

we give an approximate solution by using the inbreeding coefficient 𝐹 as an intermediate variable under

the assumption that the inbreeding is only caused by both self-fertilization and double-reduction. The

analytical expression of 𝐹 at an equilibrium state under both double-reduction and selfing was derived

in Huang et al. (2019), which is

𝐹 =
8𝛼+ 𝑠𝑣

8𝛼+ 𝑣(𝑠+ 𝑣 − 𝑠𝑣)
,

where 𝑠 is the selfing rate, 𝑣 is the ploidy level, and 𝛼 is the expected number of pairs of IBDR alleles

within a gamete. The value of 𝛼 can be calculated by 𝛼 =
∑︀

𝑖 𝑖𝛼𝑖, in which 𝛼𝑖 is a double-reduction rate,

whose value is listed in Table S1.

Let’s now consider the genotypic frequencies incorporating both inbreeding and double-reduction.

Let 𝑝1, 𝑝2, · · · , 𝑝𝐾 be all allele frequencies in a population, and let 𝛾𝑘 be (1/𝐹 − 1)𝑝𝑘, 𝑘 = 1, 2, · · · ,𝐾.

Denote p = [𝑝1, 𝑝2, · · · , 𝑝𝐾 ] and 𝛾 =
∑︀𝐾

𝑘=1 𝛾𝑘. Assume that 𝑞1, 𝑞2, · · · , 𝑞𝐾 are all allele frequencies of

an individual, which are drawn from the Dirichlet distribution 𝒟(𝛾1, 𝛾2, · · · , 𝛾𝐾) (Pritchard et al., 2000).

Denote q = [𝑞1, 𝑞2, · · · , 𝑞𝐾 ]. Then the probability density function of q is

𝑓(q |p, 𝐹 ) = Γ(𝛾)

𝐾∏︁
𝑘=1

𝑝𝛾𝑘−1
𝑘

Γ(𝛾𝑘)
,

the expectation E(𝑞𝑘) is 𝑝𝑘, and the variance Var(𝑞𝑘) is 𝐹𝑝𝑘(1− 𝑝𝑘), 𝑘 = 1, 2, · · · ,𝐾. Moreover, for any

𝑞𝑘, its standardized variance is exactly 𝐹 . From this, we see that these conditions accord with those of the

definition of Wright’s 𝐹 -statistics. Hence the inbreeding coefficient 𝐹 can be defined as the standardized

variance of allele frequencies among individuals in the same population.

Because the correlation between alleles within the same individual relative to the population is

explained by the divergence from p to q, the alleles within the same genotype are independent relative to

q. Therefore, the frequency Pr(𝐺 |q) of a genotype 𝐺 conditional on q is one of terms in the expansion

of polynomial (𝑝1 + 𝑝2 + · · ·+ 𝑝𝐾)𝑣, i.e. the following term:
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Pr(𝐺 |q) =
(︂

𝑣

𝑛1, 𝑛2, · · · , 𝑛𝐾

)︂ 𝐾∏︁
𝑘=1

𝑞𝑛𝑘

𝑘 ,

where 𝑛𝑘 is the number of copies of the 𝑘th allele in 𝐺, 𝑘 = 1, 2, · · · ,𝐾.

Next, the frequency Pr(𝐺 |p, 𝐹 ) of 𝐺 conditional on q and 𝐹 is the weighted average of all frequencies

in the form of Pr(𝐺 |q), with 𝑓(q |p, 𝐹 )dq as a weight, that is

Pr(𝐺 |p, 𝐹 ) =

∫︁
Ω

Pr(𝐺 |q)𝑓(q |p, 𝐹 )dq,

where the integral domain Ω can be expressed as

Ω = {(𝑞1, 𝑞2, · · · , 𝑞𝐾) | 𝑞1 + 𝑞2 + · · ·+ 𝑞𝐾 = 1, 𝑞𝑘 > 0, 𝑘 = 1, 2, · · · ,𝐾}.

Such integral can be converted into the following repeated integral with the multiplicity 𝐾 − 1:

Pr(𝐺 |p, 𝐹 ) =

∫︁ 1

0

∫︁ 1−𝑞1

0

· · ·
∫︁ 1−𝑞1−𝑞2−···−𝑞𝐾−2

0

Pr(𝐺 |q)𝑓(q |p, 𝐹 )d𝑞1d𝑞2 · · · d𝑞𝐾−1.

It can now be calculated from the expressions of Pr(𝐺 |q) and 𝑓(q |p, 𝐹 ) mentioned above that

Pr(𝐺 |p, 𝐹 ) =

(︂
𝑣

𝑛1, 𝑛2, · · · , 𝑛𝐾

)︂ 𝐾∏︁
𝑘=1

𝑛𝑘−1∏︁
𝑗=0

(𝛾𝑘 + 𝑗)

⧸︃
𝑣−1∏︁
𝑗′=0

(𝛾 + 𝑗′). (A4)

Equation (A4) is the approximate solution with 𝐹 as an intermediate variable. Here, if self-fertilization is

considered, the genotypic frequency Pr(𝒢) should be calculated by Equation (A4), otherwise, the formula

of Pr(𝒢) under each double-reduction model is given in Huang et al. (2019).

Based on the derivation above, we are now able to express the phenotypic frequencies whilst con-

sidering the presence of negative amplifications. If 𝛽 is the negative amplification rate, the frequency

Pr(𝒫) for each phenotype 𝒫 is the weighted average of ℬ𝒫=∅ and
∑︀

𝒢B𝒫 Pr(𝒢) with 𝛽 and 1−𝛽 as their

weights, i.e.

Pr(𝒫) = 𝛽 ℬ𝒫=∅ + (1− 𝛽)
∑︁
𝒢B𝒫

Pr(𝒢). (A5)

Besides, if the negative amplifications are not considered, it only needs to set 𝛽 as zero in Equation (A5).

D Transitional probabilities

In our model with a ploidy level greater than two, we establish two formulas of transitional proba-

bilities 𝑇 (𝐺𝑂 |𝐺𝐹 ) and 𝑇 (𝐺𝑂 |𝐺𝐹 , 𝐺𝑀 ), whose expressions are as follows:
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𝑇 (𝐺𝑂 |𝐺𝐹 )=
∑︁

𝑔𝐹⊂𝐺𝐹⊎𝐺𝐹

𝑇 (𝑔𝐹 |𝐺𝐹 ) Pr(𝐺𝑂 ∖ 𝑔𝐹 ),

𝑇 (𝐺𝑂 |𝐺𝐹 , 𝐺𝑀 )=
∑︁

𝑔𝐹⊂𝐺𝐹⊎𝐺𝐹

𝑇 (𝑔𝐹 |𝐺𝐹 )𝑇 (𝐺𝑂 ∖ 𝑔𝐹 |𝐺𝑀 ),
(A6)

where the operations ⊎ and ∖ are respectively the union and difference of multisets, 𝐺𝑂, 𝐺𝐹 and 𝐺𝑀

are in turn the genotypes of the offspring, the father and the mother at a locus, 𝑔𝐹 and 𝐺𝑂 ∖ 𝑔𝐹 are the

genotypes of the sperm and the egg that form the offspring, Pr(𝐺𝑂 ∖ 𝑔𝐹 ) is gamete frequency of the egg,

and 𝑇 (𝑔𝐹 |𝐺𝐹 ) and 𝑇 (𝐺𝑂 ∖ 𝑔𝐹 |𝐺𝑀 ) are two transitional probabilities from a zygote to a gamete, which

have been derived in Equation (A7).

It is noteworthy that there cannot be any double-reduction under the RCS model or the PES model

with 𝑟𝑠 = 0 (see Table S1), then the double-reduction should not be considered. In other words, the

expression 𝑔𝐹 ⊂ 𝐺𝐹 ⊎𝐺𝐹 in Equation (A6) has to be replaced by 𝑔𝐹 ⊂ 𝐺𝐹 under these situations.

Huang et al. (2019) derived the generalized gamete frequency Pr(𝑔) and zygote frequency Pr(𝐺)

(Huang et al., 2019). They also derived the generalized transitional probability 𝑇 (𝑔 |𝐺) from a zygote

𝐺 to a gamete 𝑔, which can be used at any even ploidy level 𝑣 and under any double-reduction model,

whose expression is

𝑇 (𝑔 |𝐺) =

⌊𝑣/4⌋∑︁
𝑖=0

∑︁
𝑗1+𝑗2+...+𝑗𝐾=𝑖

∏︀𝐾
𝑘=1 𝛿𝑘

(︀
𝑛𝑘

𝑗𝑘

)︀(︀
𝑛𝑘−𝑗𝑘
𝑚𝑘−2𝑗𝑘

)︀(︀
𝑣
𝑖

)︀(︀
𝑣−𝑖

𝑣/2−2𝑖

)︀ 𝛼𝑖, (A7)

where 𝑛𝑘 (or 𝑚𝑘) is the number of copies of the 𝑘th allele in 𝐺 (or in 𝑔), 𝛼𝑖 is a double-reduction rate,

and 𝛿𝑘 is a binary variable, which is used to exclude the values outside the variation range 𝐷 of 𝑗𝑘, such

that 𝛿𝑘 = 1 if 𝑗𝑘 ∈ 𝐷, or 𝛿𝑘 = 0 if 𝑗𝑘 /∈ 𝐷. The variation range 𝐷 of 𝑗𝑘 can be expressed as

max(0,𝑚𝑘 − 𝑛𝑘) 6 𝑗𝑘 6 min(𝑛𝑘,𝑚𝑘/2).

In fact, for the binomial coefficient
(︀
𝑛𝑘

𝑗𝑘

)︀
, 𝑛𝑘 and 𝑗𝑘 should satisfy the condition 0 6 𝑗𝑘 6 𝑛𝑘. Similarly,

for
(︀

𝑛𝑘−𝑗𝑘
𝑚𝑘−2𝑗𝑘

)︀
, we have 0 6 𝑚𝑘 − 2𝑗𝑘 6 𝑛𝑘 − 𝑗𝑘, or equivalently 𝑚𝑘 − 𝑛𝑘 6 𝑗𝑘 6 𝑚𝑘/2. Therefore, the

expression of 𝐷 holds.

E Likelihoods under phenotype method

Under the phenotype method, if self-fertilization is not considered, the likelihoods for the first

category in a parentage analysis can be expressed as

ℒ(𝐻1) = Pr(𝒫𝐴)
[︀
(1− 𝑒)2𝑇 (𝒫𝑂 | 𝒫𝐴) + 2𝑒(1− 𝑒) Pr(𝒫𝑂) + 𝑒2 Pr(𝒫𝑂)

]︀
,

ℒ(𝐻2) = Pr(𝒫𝐴) Pr(𝒫𝑂).

For the second category, the likelihoods can be expressed as
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ℒ(𝐻1) = Pr(𝒫𝑀 ) Pr(𝒫𝐴)
{︀
(1− 𝑒)3𝑇 (𝒫𝑂 | 𝒫𝐴,𝒫𝑀 )

+𝑒(1− 𝑒)2
[︀
𝑇 (𝒫𝑂 | 𝒫𝑀 ) + 𝑇 (𝒫𝑂 | 𝒫𝐴) + Pr(𝒫𝑂)

]︀
+3𝑒2(1− 𝑒) Pr(𝒫𝑂) + 𝑒3 Pr(𝒫𝑂)

}︀
,

ℒ(𝐻2) = Pr(𝒫𝑀 ) Pr(𝒫𝐴)
{︀
(1− 𝑒)3𝑇 (𝒫𝑂 | 𝒫𝑀 ) + 𝑒(1− 𝑒)2

[︀
𝑇 (𝒫𝑂 | 𝒫𝑀 ) + 2Pr(𝒫𝑂)

]︀
+3𝑒2(1− 𝑒) Pr(𝒫𝑂) + 𝑒3 Pr(𝒫𝑂)

}︀
.

For the third category, they can be expressed as

ℒ(𝐻1) = Pr(𝒫𝐴𝑀 ) Pr(𝒫𝐴)
{︀
(1− 𝑒)3𝑇 (𝒫𝑂 | 𝒫𝐴,𝒫𝐴𝑀 )

+𝑒(1− 𝑒)2
[︀
𝑇 (𝒫𝑂 | 𝒫𝐴𝑀 ) + 𝑇 (𝒫𝑂 | 𝒫𝐴) + Pr(𝒫𝑂)

]︀
+3𝑒2(1− 𝑒) Pr(𝒫𝑂) + 𝑒3 Pr(𝒫𝑂)

}︀
,

ℒ(𝐻2) = Pr(𝒫𝐴𝑀 ) Pr(𝒫𝐴) Pr(𝒫𝑂),

where Pr(𝒫𝐴), Pr(𝒫𝑂), Pr(𝒫𝑀 ) and Pr(𝒫𝐴𝑀 ) are calculated by Equation (A5), 𝑇 (𝒫𝑂 | 𝒫𝐴), 𝑇 (𝒫𝑂 | 𝒫𝑀 )

and 𝑇 (𝒫𝑂 | 𝒫𝐴𝑀 ) by Equation (3), and 𝑇 (𝒫𝑂 | 𝒫𝐴,𝒫𝑀 ) and 𝑇 (𝒫𝑂 | 𝒫𝐴,𝒫𝐴𝑀 ) by Equation (4).

If self-fertilization is considered, like the situations of Appendix B, each pair of likelihood formulas

can be obtained by modifying the existing formulas. For the first category, the likelihood formulas are

ℒ(𝐻1) = Pr(𝒫𝐴)
[︀
(1− 𝑒)2𝑇𝑠1 + 2𝑒(1− 𝑒) Pr(𝒫𝑂) + 𝑒2 Pr(𝒫𝑂)

]︀
,

ℒ(𝐻2) = Pr(𝒫𝐴) Pr(𝒫𝑂),

where 𝑇𝑠1 = (1− 𝑠)𝑇 (𝒫𝑂 | 𝒫𝐴) + 𝑠𝑇 (𝒫𝑂 | 𝒫𝐴,𝒫𝐴). For the second category, if 𝐴 ̸≡ 𝑀 , then

ℒ(𝐻1) = Pr(𝒫𝑀 ) Pr(𝒫𝐴)
{︀
(1− 𝑒)3𝑇 (𝒫𝑂 | 𝒫𝐴,𝒫𝑀 )

+𝑒(1− 𝑒)2
[︀
𝑇 (𝒫𝑂 | 𝒫𝑀 ) + 𝑇 (𝒫𝑂 | 𝒫𝐴) + Pr(𝒫𝑂)

]︀
+3𝑒2(1− 𝑒) Pr(𝒫𝑂) + 𝑒3 Pr(𝒫𝑂)

}︀
,

ℒ(𝐻2) = Pr(𝒫𝑀 ) Pr(𝒫𝐴)
{︀
(1− 𝑒)3𝑇𝑠2 + 𝑒(1− 𝑒)2

[︀
𝑇𝑠2 + 2Pr(𝒫𝑂)

]︀
+3𝑒2(1− 𝑒) Pr(𝒫𝑂) + 𝑒3 Pr(𝒫𝑂)

}︀
,

where 𝑇𝑠2 = (1− 𝑠)𝑇 (𝒫𝑂 | 𝒫𝑀 ) + 𝑠𝑇 (𝒫𝑂 | 𝒫𝑀 ,𝒫𝑀 ); if 𝐴 ≡ 𝑀 , then

ℒ(𝐻1) = Pr(𝒫𝐴)
{︀
(1− 𝑒)2𝑇 (𝒫𝑂 | 𝒫𝐴,𝒫𝐴) + 2𝑒(1− 𝑒) Pr(𝒫𝑂) + 𝑒2 Pr(𝒫𝑂)

}︀
,

ℒ(𝐻2) = Pr(𝒫𝐴)
{︀
(1− 𝑒)2𝑇 (𝒫𝑂 | 𝒫𝐴) + 2𝑒(1− 𝑒) Pr(𝒫𝑂) + 𝑒2 Pr(𝒫𝑂)

}︀
,

where 𝑇 (𝒫𝑂 | 𝒫𝐴,𝒫𝐴) and 𝑇 (𝒫𝑂 | 𝒫𝑀 ,𝒫𝑀 ) are calculated by Equation (4). For the third category, if

𝐴 ̸≡ 𝐴𝑀 , then
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ℒ(𝐻1) = Pr(𝒫𝐴𝑀 ) Pr(𝒫𝐴)
{︀
(1− 𝑒)3𝑇 (𝒫𝑂 | 𝒫𝐴,𝒫𝐴𝑀 )

+𝑒(1− 𝑒)2
[︀
𝑇 (𝒫𝑂 | 𝒫𝐴𝑀 ) + 𝑇 (𝒫𝑂 | 𝒫𝐴) + Pr(𝒫𝑂)

]︀
+3𝑒2(1− 𝑒) Pr(𝒫𝑂) + 𝑒3 Pr(𝒫𝑂)

}︀
,

ℒ(𝐻2) = Pr(𝒫𝐴𝑀 ) Pr(𝒫𝐴) Pr(𝒫𝑂);

if 𝐴 ≡ 𝐴𝑀 , then

ℒ(𝐻1) = Pr(𝒫𝐴)
{︀
(1− 𝑒)2𝑇 (𝒫𝑂 | 𝒫𝐴,𝒫𝐴) + 2𝑒(1− 𝑒) Pr(𝒫𝑂) + 𝑒2 Pr(𝒫𝑂)

}︀
,

ℒ(𝐻2) = Pr(𝒫𝐴) Pr(𝒫𝑂).

F Estimation of genotyping error rate (continuous)

In this appendix, we will use the trio mismatches to describe how to estimate the genotyping error

rate. The trio mismatch in a true parents-offspring trio may be caused by the genotyping errors in

this offspring or in the parents. If the offspring or if both parents encounter a genotyping error, the

probability of observing a trio mismatch is equal to the exclusion rate for the third category, denoted by

𝛿𝑜. If only one parent encounters a genotyping error, the probability of observing a trio mismatch is equal

to the exclusion rate for the second category, denoted by 𝛿𝑝. Moreover, if each individual in a selfed trio

encounters a genotyping error, the probability of observing a trio mismatch is denoted by 𝛿𝑠. Therefore,

the probability 𝛾 of observing a trio mismatch in a true parents-offspring trio can be expressed as

𝛾 = 𝑒[(1− 𝑠𝑡)(𝛿𝑜 + 2𝛿𝑝) + 2𝑠𝑡𝛿𝑠] + 𝑒2[(1− 𝑠𝑡)(𝛿𝑜 − 4𝛿𝑝)− 𝑠𝑡𝛿𝑠] + 𝑒3(1− 𝑠𝑡)(𝛿𝑜 − 2𝛿𝑝), (A8)

where 𝑠𝑡 is the frequency of selfing in the reference trios.

The values of 𝑠𝑡 and 𝛾 can be estimated from the reference trios identified from a single application

or from multiple applications based on the same dataset, and 𝛿𝑜 and 𝛿𝑠 can be estimated from a similar

Monte-Carlo algorithm mentioned above. The procedures are broadly as follows: randomly sample three

(or two) individuals, considering them as a trio (or a selfed trio), and next calculate the probability that

the genotypes/phenotypes at a locus of this trio (or this selfed trio) are mismatched, which is used as 𝛿𝑜

(or 𝛿𝑠) at this locus.

Under the assumption of random mating, the joint distribution of parental genotypes/phenotypes is

the product of two observed genotypic/phenotypic frequencies, such that we can randomly sample two

individuals and assume they are parents in the estimation of 𝛿𝑜. However, in the estimation of 𝛿𝑝, the

joint distribution of parent-offspring genotypes/phenotypes cannot be estimated via this method. That is

because the parent-offspring genotypes are correlated. As an alternative, we use the empirical distribution

of genotypes/phenotypes of reference pairs to approximate the joint distribution of parent-offspring geno-

types/phenotypes. More specifically, we randomly sample a matched pair (as a mother-offspring pair)
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from the reference pairs and an individual (as an alleged father) from all samples, considering them as a

trio, and calculate the probability that the genotypes/phenotypes at a locus of this trio are mismatched,

which is used as 𝛿𝑝 at this locus.

The single-locus estimate 𝑒𝑙 at the 𝑙th locus can be obtained by solving Equation (A8), whose

variance Var(𝑒𝑙) can be approximately expressed as Var(𝑒𝑙) ≈ 𝑒/(𝑛𝑟𝑙𝛿𝑙). Moreover, the multi-locus

estimate 𝑒 is the weighted average of single-locus estimates across all loci, that is 𝑒 =
∑︀

𝑙 𝑤𝑙𝑒𝑙, where

𝑤𝑙 = 𝑛𝑟𝑙𝛿𝑙/
(︀∑︀

𝑙′ 𝑛𝑟𝑙′𝛿𝑙′
)︀
. The variance Var(𝑒) can be approximately expressed as Var(𝑒) ≈ 𝑒/

(︀∑︀
𝑙 𝑛𝑟𝑙𝛿𝑙

)︀
.

G Estimation of sample rate (continuous)

Assume that the assignment rates 𝑎𝑐 and 𝑎𝑢 as well as the selfing rate 𝑠𝑢 can be reliably estimated

under an application and a confidence level, and that 𝑛𝑐 is the number of cases. Because the number of

assigned cases 𝑛𝑎 obeys the binomial distribution B(𝑛𝑐; 𝑎), the assignment rate 𝑎 can be estimated by

�̂� = 𝑛𝑎/𝑛𝑐. Therefore, the sample rate 𝑝𝑠 can be estimated by Equations (5), (6) or (7), and the variance

Var(𝑝𝑠) can be calculated by the formula Var(𝑝𝑠) = E(𝑝2𝑠)− [E(𝑝𝑠)]
2.

However, it is unfortunate that the true value of 𝑎 is unknown, then we cannot directly apply the

binomial distribution B(𝑛𝑐; 𝑎) to perform various calculations. As an alternative, we select the uniform

distribution U(0, 1) as the prior distribution obeyed by 𝑎, and then give the posterior distribution obeyed

by 𝑎 according to the Bayes formula, where the expected value E(𝑎) for the posterior distribution is

E(𝑎) =
𝑛𝑎 + 1

𝑛𝑐 + 2
.

Now, we can perform various calculations so long as we let the value of 𝑎 in B(𝑛𝑐; 𝑎) be equal to 𝑛𝑎+1
𝑛𝑐+2 .

In actual conditions, multiple applications and multiple confidence levels will be used jointly to

increase the accuracy of sample rate estimation. For convenience, we denote 𝑝𝑠𝑖 for the estimated value

of 𝑝𝑠 under an application and a confidence level. According to the previous derivations, 𝑝𝑠𝑖 together with

its variance can be calculated under the assumption that 𝑎𝑐, 𝑎𝑢 and 𝑠𝑢 can be reliably estimated. Like the

estimation of genotyping error rate, the estimate 𝑝𝑠 is the weighted average of the estimated values of 𝑝𝑠

under all selected applications and all selected confidence levels, symbolically 𝑝𝑠 =
(︀∑︀

𝑖 𝑤𝑖𝑝𝑠𝑖
)︀
/
(︀∑︀

𝑖 𝑤𝑖

)︀
,

where 𝑤𝑖 = 1/Var(𝑝𝑠𝑖).

Finally, let’s consider the estimation of selfing rate 𝑠𝑢 under multiple confidence levels. In actual

conditions, the loci may be insufficient, causing that there are only few cases to assign the parent at a

high confidence level (e.g. Δ > Δ0.99). Besides, the genotyping error rate may be high, causing that the

false parent may be assigned at a low confidence level (e.g. Δ > 0) when the true parent is not sampled.

To avoid these problems, we jointly use three confidence levels (80%, 95% and 99%) in polygene for

each application.

The estimated value 𝑠𝑢 is the ratio of 𝑛𝑠 to 𝑛𝑎, i.e. 𝑠𝑢 = 𝑛𝑠/𝑛𝑎 under an application and a confidence

level, where 𝑛𝑠 is the number of selfing cases. If we select the three confidence levels 99%, 95% and 80%,
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then 𝑠𝑢 is the weighted average of the corresponding ratio values of 𝑛𝑠 to 𝑛𝑎, that is

𝑠𝑢 =
𝑛𝑠,0.99 + 𝑛𝑠,0.95 + 𝑛𝑠,0.80

𝑛𝑎,0.99 + 𝑛𝑎,0.95 + 𝑛𝑎,0.80
.

H Pseudo-dominant approach

The pseudo-dominant approach was used in Rodzen et al. (2004) and Wang and Scribner (2014). In

this approach, the codominant data are converted into the dominant data. More specifically, each visible

allele is defined as a virtual dominant marker, whose observed phenotype is either present (denoted

by {𝐴}) if this allele is detected, or absent (denoted by ∅) if this allele is not detected. We denote

𝒫𝐷 for the phenotype at a dominant marker. Moreover, the LOD scores are calculated by the diploid

likelihood formulas listed below. These formulas are originally derived in Gerber et al. (2000) by using

the transitional probability 𝑇 (𝒢 |𝐺) from a true genotype 𝐺 to an observed genotype 𝒢 based on an

alternative genotyping error model, where

𝑇 (𝒢 |𝐺) = (1− 𝑒) Pr(𝒢)ℬ𝐺=𝒢 + 𝑒ℬ𝐺 ̸=𝒢 .

The above formula is different to that listed in Equation (1). Because the possible phenotypes at a

dominant marker are {𝐴} and ∅, the degree-of-freedom is only one. Therefore, the null allele frequency,

the selfing rate and the negative amplification rate cannot be estimated. Besides, we will use the formulas

and the model given in Rodzen et al. (2004) to evaluate the efficiency of this approach.

Next, the transitional probability from one phenotype or a pair of phenotypes to another phenotype

at a dominant marker is described in Tables 1 and 2 in Gerber et al. (2000).

The phenotypic frequency at a dominant marker in diploids is

Pr(𝒫𝐷) =

{︃
(1− 𝑝)2 if 𝒫𝐷 = ∅,

1− (1− 𝑝)2 if 𝒫𝐷 = {𝐴},

where 𝑝 is the frequency of the dominant allele 𝐴 at this dominant marker, and 𝑝 is estimated from the

observed phenotypic frequencies, whose estimated expression is 𝑝 = 1−
√︁̂︀Pr(𝒫𝐷 = ∅).

Now, the likelihood formulas listed below can be used for the actual calculation by using these

transitional probabilities and phenotypic frequencies: for the first category in a parentage analysis,

ℒ(𝐻1) = (1− 𝑒)2𝑇 (𝒫𝐷
𝑂 | 𝒫𝐷

𝐴 ) Pr(𝒫𝐷
𝐴 ) + 𝑒(1− 𝑒)

[︀
Pr(𝒫𝐷

𝑂 ) + Pr(𝒫𝐷
𝐴 )

]︀
+ 𝑒2,

ℒ(𝐻2) = (1− 𝑒)2 Pr(𝒫𝐷
𝑂 ) Pr(𝒫𝐷

𝐴 ) + 𝑒(1− 𝑒)
[︀
Pr(𝒫𝐷

𝑂 ) + Pr(𝒫𝐷
𝐴 )

]︀
+ 𝑒2;

for the second category,
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ℒ(𝐻1) = (1− 𝑒)3𝑇 (𝒫𝐷
𝑂 | 𝒫𝐷

𝐴 ,𝒫𝐷
𝑀 ) Pr(𝒫𝐷

𝐴 ) Pr(𝒫𝐷
𝑀 ) +

𝑒(1− 𝑒)2
[︀
Pr(𝒫𝐷

𝐴 ) Pr(𝒫𝐷
𝑀 ) + 𝑇 (𝒫𝐷

𝑂 | 𝒫𝐷
𝑀 ) Pr(𝒫𝐷

𝑀 ) + 𝑇 (𝒫𝐷
𝑂 | 𝒫𝐷

𝐴 ) Pr(𝒫𝐷
𝐴 )

]︀
+

𝑒2(1− 𝑒)
[︀
Pr(𝒫𝐷

𝑂 ) + Pr(𝒫𝐷
𝐴 ) + Pr(𝒫𝐷

𝑀 )
]︀
+ 𝑒3,

ℒ(𝐻2) = (1− 𝑒)3𝑇 (𝒫𝐷
𝑂 | 𝒫𝐷

𝑀 ) Pr(𝒫𝐷
𝐴 ) Pr(𝒫𝐷

𝑀 ) +

𝑒(1− 𝑒)2
[︀
Pr(𝒫𝐷

𝐴 ) Pr(𝒫𝐷
𝑀 ) + 𝑇 (𝒫𝐷

𝑂 | 𝒫𝐷
𝑀 ) Pr(𝒫𝐷

𝑀 ) + Pr(𝒫𝐷
𝑂 ) Pr(𝒫𝐷

𝐴 )
]︀
+

𝑒2(1− 𝑒)
[︀
Pr(𝒫𝐷

𝑂 ) + Pr(𝒫𝐷
𝐴 ) + Pr(𝒫𝐷

𝑀 )
]︀
+ 𝑒3;

for the third category,

ℒ(𝐻1) = (1− 𝑒)3𝑇 (𝒫𝐷
𝑂 | 𝒫𝐷

𝐴 ,𝒫𝐷
𝑀 ) Pr(𝒫𝐷

𝐴 ) Pr(𝒫𝐷
𝑀 ) +

𝑒(1− 𝑒)2
[︀
Pr(𝒫𝐷

𝐴 ) Pr(𝒫𝐷
𝑀 ) + 𝑇 (𝒫𝐷

𝑂 | 𝒫𝐷
𝑀 ) Pr(𝒫𝐷

𝑀 ) + 𝑇 (𝒫𝐷
𝑂 | 𝒫𝐷

𝐴 ) Pr(𝒫𝐷
𝐴 )

]︀
+

𝑒2(1− 𝑒)
[︀
Pr(𝒫𝐷

𝑂 ) + Pr(𝒫𝐷
𝐴 ) + Pr(𝒫𝐷

𝑀 )
]︀
+ 𝑒3,

ℒ(𝐻2) = (1− 𝑒)3 Pr(𝒫𝐷
𝑂 ) Pr(𝒫𝐷

𝐴 ) Pr(𝒫𝐷
𝑀 ) +

𝑒(1− 𝑒)2
[︀
Pr(𝒫𝐷

𝐴 ) Pr(𝒫𝐷
𝑀 ) + Pr(𝒫𝐷

𝑂 ) Pr(𝒫𝐷
𝑀 ) + Pr(𝒫𝐷

𝑂 ) Pr(𝒫𝐷
𝐴 )

]︀
+

𝑒2(1− 𝑒)
[︀
Pr(𝒫𝐷

𝑂 ) + Pr(𝒫𝐷
𝐴 ) + Pr(𝒫𝐷

𝑀 )
]︀
+ 𝑒3.

I Exclusion approach

Although the exclusion approach is not as accurate as the likelihood approach, the number of mis-

matches can be used as a reference. Here, we extend the exclusion approach to polysomic inheritances,

and this extended approach can be incorporated into our framework, such that the effects of double-

reduction, null alleles, negative amplifications and self-fertilization can all be freely accommodated.

The logic of the exclusion approach is relatively simple: if the alleged parents are able to produce

the offspring, they cannot be excluded. We will here give two extended definitions of matches by using

the genotypic data.

Given an alleged parent-offspring pair, if there exists a gamete 𝑔𝐴 produced by the alleged parent

at a locus, such that 𝑔𝐴 is a subset of the offspring genotype 𝒢𝑂 at this locus, then such a pair is

termed matched at this locus. The condition in this definition can be described by symbols as follows:

∃𝑔𝐴 ⊂ 𝒢𝐴 ⊎ 𝒢𝐴, such that 𝑔𝐴 ⊂ 𝒢𝑂; or equivalently, max
{︀
ℬ𝑔′

𝐴⊂𝒢𝑂
| 𝑔′𝐴 ⊂ 𝒢𝐴 ⊎ 𝒢𝐴

}︀
= 1, where 𝒢𝐴 is the

genotype of the alleged parent at this locus.

Given an alleged parents-offspring trio, if there exist two gametes 𝑔𝐹 and 𝑔𝑀 produced by the alleged

father and the alleged mother at a locus, respectively, such that the fusion of 𝑔𝐹 and 𝑔𝑀 results in the

offspring genotype 𝒢𝑂 at this locus, then such a trio is termed matched at this locus. Similarly, the

conditions in this definition can be described as follows: ∃𝑔𝐹 ⊂ 𝒢𝐴𝐹 ⊎ 𝒢𝐴𝐹 , ∃𝑔𝑀 ⊂ 𝒢𝐴𝑀 ⊎ 𝒢𝐴𝑀 , such

that 𝑔𝐹 ⊎ 𝑔𝑀 = 𝒢𝑂; or equivalently,
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max
{︀
ℬ𝑔′

𝐹⊎𝑔′
𝑀=𝒢𝑂

| 𝑔′𝐹 ⊂ 𝒢𝐴𝐹 ⊎ 𝒢𝐴𝐹 , 𝑔
′
𝑀 ⊂ 𝒢𝐴𝑀 ⊎ 𝒢𝐴𝑀

}︀
= 1,

where 𝒢𝐴𝐹 (or 𝒢𝐴𝑀 ) is the genotype of the alleged father (or the alleged mother) at this locus.

Finally, it is important to highlight that under the RCS model or the PES model with 𝑟𝑠 = 0, the

expressions, used to describe the two definitions and involved in the double-reduction, should be revised,

i.e. we must replace 𝑔𝐴 ⊂ 𝒢𝐴 ⊎ 𝒢𝐴 by 𝑔𝐴 ⊂ 𝒢𝐴, 𝑔𝐹 ⊂ 𝒢𝐴𝐹 ⊎ 𝒢𝐴𝐹 by 𝑔𝐹 ⊂ 𝒢𝐴𝐹 and 𝑔𝑀 ⊂ 𝒢𝐴𝑀 ⊎ 𝒢𝐴𝑀

by 𝑔𝑀 ⊂ 𝒢𝐴𝑀 .

J Allele frequency estimation

We adopt an expectation-maximization (EM) algorithm (Dempster et al., 1977) to estimate the allele

frequencies for phenotypic data. This algorithm follows the methods of Kalinowski and Taper (2006),

which is an iterative algorithm used to maximize the genotypic likelihood. The genotypic likelihood at a

locus is defined as the product of genotypic frequencies of all individuals at this locus, denoted by ℒgeno,

whose logarithmic expression is

lnℒgeno =
∑︁
𝒫

∑︁
𝒢B𝒫

Pr(𝒢 |𝒫) ln[Pr(𝒢)],

in which 𝒫 is taken from the phenotypes of all individuals at this locus, 𝒢 is taken from all genotypes

determining 𝒫 at the same locus, Pr(𝒢 |𝒫) is the posterior probability of 𝒢 determining 𝒫, and Pr(𝒢) is

the frequency of 𝒢.

The initial frequencies of amplifiable alleles are assumed to be equal to 1/𝐾, where 𝐾 is the number

of alleles, including the null allele 𝐴𝑦. The updated frequency 𝑝′𝑘 of the 𝑘th allele 𝐴𝑘 is the weighted

average of frequencies of 𝐴𝑘 in all genotypes at a locus, with the posterior probabilities of these genotypes

as their weights, whose expression is

𝑝′𝑘 =

∑︀
𝒫
∑︀

𝒢B𝒫 Pr(𝒢 |𝒫) Pr(𝐴𝑘 | 𝒢)∑︀
𝒫
∑︀

𝒢B𝒫 Pr(𝒢 |𝒫)
, 𝑘 = 1, 2, · · · ,𝐾,

where Pr(𝐴𝑘 | 𝒢) is the frequency of 𝐴𝑘 in 𝒢.

Our algorithm also includes simultaneously the estimation of negative amplification rate 𝛽. Because

the final estimated value of 𝛽 is independent to the initial value, the initial value can be arbitrarily

selected (e.g. 0.05). The updated negative amplification rate 𝛽′ can be expressed as

𝛽′ =
𝑁∅𝛽/Pr(𝒫 = ∅)

𝑁
,

where 𝑁∅ is the number of negative phenotypes at this locus, 𝑁 is the number of all individuals, 𝛽 is

the current negative amplification rate, and 𝛽/Pr(𝒫 = ∅) is the posterior probability that a negative

phenotype is the result of negative amplification.
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If max{|𝑝𝑘 − 𝑝′𝑘| | 𝑘 = 1, 2, · · · ,𝐾} and |𝛽 − 𝛽′| are less than a predefined threshold (e.g. 10−5) or if

the iterative times reach 2000, the iteration is terminated, where 𝑝𝑘 is the current frequency of 𝐴𝑘.

Null alleles and negative amplifications can both be freely incorporated into our model. If the null

alleles are not considered, the candidate genotypes extracted from a phenotype only need to be set as

‘not containing 𝐴𝑦’. If the negative amplifications are not considered, the initial value of 𝛽 only needs to

be set as zero. If both factors are not considered, the negative phenotype cannot be explained, and so ∅

is discarded in the allele frequency estimation together with the subsequent analyses.

We also nest a downhill simplex algorithm (Nelder and Mead, 1965) outside the EM algorithm to

estimate the selfing rate 𝑠. The estimated value 𝑠 is obtained by maximizing the phenotypic likelihood

ℒpheno, that is 𝑠 = argmax
𝑠∈[0,1]

ℒpheno, where ℒpheno =
∏︀
𝒫
Pr(𝒫).

K Reasons for computational difficulty

In the absence of selfing, the generalized form of genotypic frequencies can be obtained by two

methods (Huang et al., 2019). The first method is the non-linear method. In this method, we estab-

lish a non-linear equation set with the frequencies Pr(𝐺1),Pr(𝐺2), · · · ,Pr(𝐺𝐼),Pr(𝑔1), · · · ,Pr(𝑔𝐽) as the

unknowns and the frequencies 𝑝1, 𝑝2, · · · , 𝑝𝐾 as the parameters, whose expression is as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Pr(𝐺𝑖) =

𝐽∑︁
𝜇=1

Pr(𝑔𝜇) Pr(𝐺𝑖 ∖ 𝑔𝜇), 𝑖 = 1, 2, · · · , 𝐼,

Pr(𝑔𝑗) =

𝐼∑︁
𝜈=1

Pr(𝐺𝜈)𝑇 (𝑔𝑗 |𝐺𝜈), 𝑗 = 1, 2, · · · , 𝐽,

𝑝𝑘 =

𝐼∑︁
𝜈=1

Pr(𝐺𝜈) Pr(𝐴𝑘 |𝐺𝜈), 𝑘 = 1, 2, · · · , 𝐾,

(A9)

where 𝐼 =
(︀
2𝑣
𝑣

)︀
, 𝐽 =

(︀
𝑣/2+𝑣
𝑣/2

)︀
, 𝐾 = 𝑣 + 1 (𝐼, 𝐽 and 𝐾 are the numbers of zygotes, gametes and alleles at

a locus, respectively), Pr(𝐺𝑖 ∖ 𝑔𝜇) = Pr(𝑔 = 𝐺𝑖 ∖ 𝑔𝜇), 𝑇 (𝑔𝑗 |𝐺𝜈) is the transitional probability from 𝐺𝜈

to 𝑔𝑗 , and 𝑝𝑘 and Pr(𝐴𝑘 |𝐺𝜈) are the frequencies of 𝐴𝑘 in the population and in 𝐺𝜈 , respectively. If the

ploidy level 𝑣 is equal to 4, 6, 8 or 10, the number of equations in Equation set (A9) is 90, 1015, 13374 or

187770, and the number of unknowns is 85, 1008, 12265 or 187759. We now see that these numbers will

increase rapidly with an increase in ploidy level. Therefore, this will cause a computational difficulty for

Equation set (A9) at a high ploidy level.

In order to overcome such a computational difficulty, we adopt another method, named the linear

method, to obtain the zygote frequencies. For this method, briefly speaking, we will first use Equation

set (A9) to calculate the gamete frequencies at a biallelic locus. Next, we split these alleles one by one at

this locus until they are split into 𝑣/2 + 1 alleles so as to more expediently obtain the zygote frequencies

at a multi-allelic locus. Finally, we use the former 𝐼 equations in Equation set (A9), i.e.
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Pr(𝐺𝑖) =

𝐽∑︁
𝜇=1

Pr(𝑔𝜇) Pr(𝐺𝑖 ∖ 𝑔𝜇), 𝑖 = 1, 2, · · · , 𝐼,

to calculate the zygote frequencies. This method can be described by a linear equation set Ax = b.

Because there are no sufficient constraint conditions to obtain a unique solution for such linear equation

set when 𝑣 > 12, this method can only be applied from tetrasomic to decasomic inheritances (Huang

et al., 2019).

In the presence of selfing, for the linear method, although the gamete frequencies can be solved for

𝑣 < 12, the zygote frequencies cannot be easily calculated from the gamete frequency. That is because

for any 𝑖 ∈ 𝐼, the 𝑖th equation in Equation set (A9) should be modified as

Pr(𝐺𝑖) = (1− 𝑠)

𝐽∑︁
𝜈=1

Pr(𝑔𝜈) Pr(𝐺𝑖 ∖ 𝑔𝜈) + 𝑠

𝐼∑︁
𝜇=1

𝐽∑︁
𝜈=1

Pr(𝐺𝜇)𝑇 (𝑔𝜈 |𝐺𝜇)𝑇 (𝐺𝑖 ∖ 𝑔𝜈 |𝐺𝜇).

For the non-linear method, the calculation is more difficult when the ploidy level is high.
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L Supplementary figures
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Figure S2: The correct assignment rate as a function of the number of loci 𝐿 by using the phenotypic
data at the selfing rate 0. The ploidy levels, applications, methods, confidence levels and the definitions
of bars together with their shading are as for Figure 2.
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Figure S3: The correct assignment rate as a function of the number of loci 𝐿 by using the phenotypic
data at the selfing rate 0.3. The remaining are as for Figure ??.
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(ê
)

Diploids Tetraploids Hexaploids

9 15 21

.03

.06

.09

R
M
S
E
(p̂

s
)

9 15 21

Number of loci (L)
9 15 21

Figure S4: The RMSE of the estimated genotyping error rate 𝑒 or the estimated sample rate 𝑝𝑠 as a
function of the number of loci 𝐿 at 𝑒 = 0.02 and 𝑝𝑠 = 0.8. The remaining are as for Figure ??.
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