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S1. General case for direct descent1

Label the starting generation 0, so that the offspring generation is 1, the grand-offspring generation 2, etc. For an individual in2

generation 0, one of its descendants in generation t, and a locus k, let P(t)
k be a random variable that takes the value 1 if an allele carried3

by the generation-t descendant at locus k was inherited from the generation-0 individual, and takes the value 0 otherwise. When4

segregation follows Mendel’s first law (as we assume throughout),5
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and because P(t)
k takes only the values 0 or 1, E[P(t)
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10

Case 1: No sex differences in recombination. Consider two loci, i and j. For the alleles at these loci in the generation-t descendant11

both to have been inherited from the generation-0 ancestor requires that the loci were not recombinant in any of the gametes, from12

the gamete produced by the generation-1 descendant through to that produced by the generation-[t− 1] descendant, that link the13

generation-t descendant and the specified generation-0 ancestor (probability 1− rij for each of the t − 1 relevant gametes) and,14

conditional on this, that the appropriate alleles co-segregated to the gamete in each relevant meiosis (probability 1/2 each time).15

Therefore,16
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t−1, (S.3)17

so that18
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23

Assume that there are L loci in total, with L very large, and let P(t) be the proportion of the generation-t descendant’s genome inherited24

from the generation-0 ancestor: P(t) = 1
L ∑L

k=1 P(t)
k . Then25
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and27
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(S.7)32

33

where a bar represents the average taken with respect to all locus pairs, and (t−1
τ ) =

(t−1)!
τ!(t−1−τ)! . The limit in Eq. (S.6) follows from the34

fact that 1/L→ 0, L(L− 1)/L2 → 1, and the number of pairs (i, j) such that i 6= j is L(L− 1). The series in Eq. (S.7) derives from the35

binomial expansion of (1− r)t−1 in Eq. (S.6).36

Variation in genetic relatedness—Supporting Material 1



Finally, let IBD(t) be the fraction of the generation-t individual’s (diploid) genome that is inherited identically by descent from the37

generation-0 ancestor. IBD(t) = P(t)/2, so38
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and40
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43

In the special case of the descendant being a grand-offspring (t = 2), Eq. (S.9) becomes44
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L→∞

1
8

(
(1− r)− 1

2

)
=

1
8

(
1
2
− r̄
)

, (S.11)45

which is Eq. (2) in the Main Text.46

47

Case 2: Sex differences in recombination. Let r ♀
ij and r ♂

ij be the sex-specific recombination rates between loci i and j. If, among the48

t− 1 individuals in the lineage between the generation-0 ancestor and the focal generation-t descendant, there are f females and49

m = t− 1− f males, then50
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so that, by a similar calculation to Eq. (S.9) above,52

Var
(

IBD(t)
)
=

1
2t+1

(
(1− r ♀) f (1− r ♂)m − 1
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If the number of females in the lineage is not known, it can be taken to be binomially distributed with parameter 1/2, in which case54

the average in Eq. (S.13) is calculated across all locus pairs and all possible numbers of females f = 0, 1, . . . , t− 1 (with associated55

probabilities (t−1
f )/2t−1).56
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S2. General case for indirect relationships57

Relationships with one common ancestor58

Consider an individual (generation 0) and two of its descendants (generation t1 and t2) who have no more recent common ancestor59

than the generation-0 individual, and no other recent common ancestor that is not also an ancestor of their shared generation-0 ancestor.60

The two generation-1 ancestors of the focal descendants (which could be the focal descendants themselves if t1 = t2 = 1) are half-sibs.61

Let P(t1,t2)
k be a random variable that takes the value 1 if both focal descendants carry, at locus k, an allele inherited identically from62

their common generation-0 ancestor. Assuming Mendelian segregation,63
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Now consider two loci, i and j. For alleles at both loci in both descendants to have been inherited identically from their common67

ancestor in generation 0 requires that:68

(i) The two generation-1 ancestors carry alleles IBD at both loci. This requires that the two loci be recombinant in both or neither of69

the generation-0 ancestor’s two gametes that produced the generation-1 ancestors [probability (1− rij)
2 + r2

ij = 1− 2rij(1− rij)],70

and, given this, that the same alleles segregated to the two gametes (probability 1/2).71

(ii) Given (i), the two loci are then not recombinant in any subsequent gamete leading to the focal generation-t1 and generation-t272

descendants, which occurs with probability (1− rij)
t1+t2−2.73

(iii) Given (i) and (ii), the ancestor’s alleles always segregate into the gametes leading to the focal descendants, which occurs with74

probability 1/2t1+t2−2.75

Therefore,76
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so that78
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83

Now let IBD(t1,t2) be the fraction of the genome that both the focal descendants have inherited from their common generation-084

ancestor: IBD(t1,t2) = 1
2L ∑L
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k . Then85
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93
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In the special case of the focal descendants being half-sibs (t1 = t2 = 1), Eq. (S.18) becomes94

Var(IBDh-sib) = Var
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)
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(
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)
, (S.19)95

which is Eq. (3) in the Main Text. Here, 2rij(1− rij) is the probability that i and j are recombinant in exactly one of two gametes, and96

r̄(2) is the average value of r̄ calculated from the pooled crossovers of two independent meioses of the common parent.97

Relationships with two common ancestors98

Consider an unrelated mating pair (generation 0) and two of its descendants (generation t1 and t2) who have no more recent common99

ancestors than the generation-0 mating pair, and no other recent common ancestor that is not an ancestor of one member of the100

generation-0 mating pair. If t1 = t2 = 1, the focal descendants are full-siblings.Note that we have restricted attention to two-ancestor101

pedigrees where the two ancestors were a mating pair; i.e., we have excluded from attention pedigrees such as that depicted in Fig. S1B102

below.103

focal descendants

common ancestors

focal descendants

common ancestorsA. B.

Figure S1 Examples of the general kinds of two-ancestor pedigrees we do consider (A) and do not consider (B). In pedigree A,
t1 = 5 and t2 = 4.

Let IBD(t1,t2) be the proportion of the focal descendants’ genomes that they share IBD. Label the members of the mating pair 1 and104

2 (female and male, respectively), and let P(t1,t2)
k,m be a random variable that takes the value 1 if both focal descendants carry, at locus k,105

an allele inherited from member m ∈ (1, 2) of the mating pair. Then IBD(t1,t2) = 1
2L ∑L

k=1

(
P(t1,t2)

k,1 + P(t1,t2)
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)
. Notice that, if t1, t2 > 1,106

then P(t1,t2)
k,1 = 1 ⇒ P(t1,t2)

k,2 = 0. Therefore, we consider three separate cases:107

108

Case 1: t1 = t2 = 1 (full-sibs). In the case of full-sibs, because they each inherit their maternal and paternal genomes independently,109

the random variables P(1,1)
i,1 and P(1,1)

j,2 are independent for all (i, j), and have the same distribution as P(1,1)
k defined in the subsection110

‘Relationships with one common ancestor’ above. Moreover, the random variables 1
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distribution as 1
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k , with the appropriate recombination process—female and male, respectively—substituted in each case.112

Therefore,113

E [IBDsib] = E
[
IBD(1,1)

]
= E

[
1

2L

L

∑
k=1

(
P(1,1)

k,1 + P(1,1)
k,2

)]
=

1
L

L

∑
k=1

E
[

P(1,1)
k

]
=

1
2

,114

and115

Var (IBDsib) = Var
(

IBD(1,1)
)
= Var

(
1

2L

L

∑
k=1

(
P(1,1)

k,1 + P(1,1)
k,2

))
116

= Var

(
1

2L

L

∑
k=1

P(1,1)
k,1

)
+ Var

(
1

2L

L

∑
k=1

P(1,1)
k,2

)
117

−−−→
L→∞

1
8

(
1
2
− r̄ ♀

(2)

)
+

1
8

(
1
2
− r̄ ♂

(2)

)
[from Eq. (S.19)]118

=
1
8
(
1− r̄ ♀

(2) − r̄ ♂
(2)

)
,119

120

which is Eq. (4) in the Main Text.121

122

Case 2: t1 = 1, t2 > 1. Without loss of generality, let the first focal individual be an offspring of the ancestral mating pair, and the123

second focal individual a more distant descendant. Then the second individual carries one haploid copy of the genome inherited124
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through the pedigree, while the first individual carries two copies. Let the random variable P(1,t2)
k take the value 1 if the focal125

descendants carry, at locus k, an allele inherited IBD. P(1,t2)
k = P(1,t2)

k,1 + P(1,t2)
k,2 , so that126
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and IBD(1,t2) = 1
2L ∑L

k=1 P(1,t2)
k . Now consider two loci, i and j. For P(1,t2)

i = P(1,t2)
j = 1, we require one of the following mutually128

exclusive events to occur:129
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j,1 = 1. This requires that the generation-1 siblings inherited the same maternal alleles at i and j (probability131
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• P(1,t2)
i,1 = P(1,t2)

j,2 = 1. This requires that the generation-1 siblings inherited the same maternal allele at i (probability 1/2) and the143

same paternal allele at j (probability 1/2), that these two alleles were transmitted together to the generation-2 individual in the144

lineage of the focal generation-t2 descendant (probability rij/2), and that these two alleles were then transmitted together to the145

focal generation-t2 descendant (probability (1− rij)
t2−2/2t2−2).146
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Total probability: rij(1− rij)
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same maternal allele at j (probability 1/2), that these two alleles were transmitted together to the generation-2 individual in the151
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focal generation-t2 descendant (probability (1− rij)
t2−2/2t2−2).153
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Total probability: rij(1− rij)
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Therefore,157
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If the sex of members of the pedigree other than the ancestral mating pair is known, then it is clear where in the above calculations163

to substitute specific male or female values of rij.164

From the calculations above,165
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169

Using this result, and from calculations similar to those throughout this paper,170
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is the coefficient of relationship (e.g., 1/4 for aunt-nephew [t2 = 2]), while172
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175

Case 3: t1, t2 > 1. Let the random variable P(t1,t2)
k take the value 1 if the focal descendants have inherited, within the focal pedigree,176

the same allele at locus k. Then177
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the same paternal allele at j (probability 1/2), that both generation-1 siblings transmitted these two alleles in producing the195

generation-2 cousins (probability r2
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ij/4), and that the allele pair was then transmitted faithfully to both focal descendants203

(probability (1− rij)
t1+t2−4/2t1+t2−4).204

205

Total probability: r2
ij(1− rij)

t1+t2−4/2t1+t2 .206

207

Therefore,208

Prob
(

P(t1,t2)
i = P(t1,t2)

j = 1
)
=
[
(1− r ♀

ij)
2 + r ♀

ij
2
]
(1− rij)

t1+t2−2/2t1+t2−1
209

+
[
(1− r ♂

ij )
2 + r ♂

ij
2
]
(1− rij)

t1+t2−2/2t1+t2−1
210

+ 2r2
ij(1− rij)

t1+t2−4/2t1+t2211

=
1

2t1+t2−1

(
(1− rij)

t1+t2−2
[
(1− r ♀

ij)
2 + r ♀

ij
2 + (1− r ♂

ij )
2 + r ♂

ij
2 + r2

ij(1− rij)
−2
])

.212
213

Again, if the sex of members of the pedigree other than the ancestral mating pair is known, then it is clear where in the above214

calculations to substitute specific male or female values of rij.215

From the calculations above,216

Cov
(

P(t1,t2)
i , P(t1,t2)

j

)
= E

[
P(t1,t2)

i P(t1,t2)
j

]
−E

[
P(t1,t2)

i

]
E
[

P(t1,t2)
j

]
217

= Prob
(

P(t1,t2)
i = P(t1,t2)

j = 1
)
−
(

1
2t1+t2−2

)2
218

=
1

2t1+t2−1

(
(1− rij)

t1+t2−2
[
(1− r ♀

ij)
2 + r ♀

ij
2 + (1− r ♂

ij )
2 + r ♂

ij
2 + r2

ij(1− rij)
−2
]
− 1

2t1+t2−3

)
. (S.23)219

220

6 Veller et al.



Using this result, and from calculations similar to those throughout this paper,221

E
[
IBD(t1,t2)

]
=

1
2L

L

∑
k=1

E
[

P(t1,t2)
k

]
=

1
2L

L

∑
k=1

1
2t1+t2−2 =

1
2t1+t2−1 (S.24)222

is the coefficient of relationship (e.g., 1/8 for full cousins [t1 = t2 = 2]), while223

Var
(

IBD(t1,t2)
)
−−−→
L→∞

1
4

Cov
(

P(t1,t2)
i , P(t1,t2)

j

)
224

=
1

2t1+t2+1 (1− rij)t1+t2−2
[
(1− r ♀

ij)
2 + r ♀

ij
2 + (1− r ♂

ij )
2 + r ♂

ij
2 + r2

ij(1− rij)−2
]
− 1

22t1+2t2−2 . (S.25)225
226
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S3. Mathematical differences between calculations of the variance of bp versus cM genetic relatedness.227

The calculations in Sections S1 and S2 define genetic relatedness as the proportion of total physical genome length (in bp) shared by228

relatives IBD. An alternative definition of genetic relatedness is the proportion of total genetic length (in cM) shared IBD. cM genetic229

relatedness suffers from several fundamental problems that bp genetic relatedness does not suffer from, as discussed in the Main Text,230

but here we focus on technical differences between calculations of the variance of bp versus cM genetic relatedness. These differences231

are not obvious at first—in both sets of calculations, the variance of genetic relatedness boils down to a sum, across all distinct pairs of232

loci i and j, of the covariance of identity by descent at the two loci:233

Var(IBD) ∝ ∑
i 6=j

Covij. (S.26)234

[Compare, for example, the calculations in Sections S1 and S2 with calculations of the variance of cM genetic relatedness in Hill and235

Weir (2011).] The covariance of IBD state between loci i and j is always some function of the recombination fraction between i and236

j (see Sections S1 and S2). In calculations of the variance of cM genetic relatedness, it is typically further assumed that crossover237

interference is absent, so that recombination fractions translate to a simple exponential function of genetic map distances, according to238

Haldane’s map function.239

The fundamental difference between the two sets of calculations lies only in the fact that calculations of the variance of cM genetic240

relatedness implicitly assume that the loci indexed by i and j are uniformly spaced along the genetic map, i.e., that there is a constant241

cM distance between each pair of adjacent loci (Franklin 1977). Our calculations, on the other hand, implicitly assume that the loci are242

uniformly spaced along the physical map—as would be the case, for example, if we took our set of loci to be the set of all base pairs in243

the genome. That calculations of the variance of cM and bp genetic relatedness assume even spacing of loci along the genetic and244

physical maps, respectively, can be seen in the fact that, in both sets of calculations, Covij is given the same weight for each locus pair245

(i, j).246

The fact that the loci are assumed to be evenly spaced along the genetic and physical maps in the two sets of calculations implies247

that the number of loci on a given chromosome is proportional to that chromosome’s genetic length (for cM genetic relatedness)248

or its physical length (for bp genetic relatedness). This observation allows us to compare the effect of independent assortment of249

chromosomes on the variance of bp versus cM genetic relatedness. Suppose that the length of chromosome k (measured in bp or250

cM, depending on the definition of genetic relatedness being employed) is lk, and that the total genome length is L = ∑n
k=1 lk. The251

proportion of loci that lie on chromosome k is therefore lk/L, and the proportion of locus pairs such that both loci lie on chromosome k252

is (lk/L)2. Now, when loci i and j lie on different chromosomes (and therefore recombine freely), the covariance of identity by descent253

at the two loci is zero for every pedigree relationship [see, e.g., Eqs. (S.4), (S.12), (S.16), (S.20), and (S.23) above]. Therefore, for every254

pair of unlinked loci i and j, the term Covij falls out of the sum in Eq. (S.26). The greater the fraction of locus pairs (i, j) for which Covij255

falls out of Eq. (S.26), the greater the negative effect of independent assortment of chromosomes on the variance of genetic relatedness.256

This fraction of locus pairs is given by257

1−
n

∑
k=1

(lk/L)2, (S.27)258

which is the Gini-Simpson index for chromosome lengths, and is also proportional (by a factor of 1/2) to the contribution of independent259

assortment of chromosomes to r̄, r̄(2), and analogs (Veller et al. 2019). For a fixed number of chromosomes, the Gini-Simpson index260

measures the homogeneity of chromosome lengths—the more homogenous they are, the larger is the Gini-Simpson index, and thus261

the greater is the fraction of locus pairs that fall out of Eq. (S.26), causing independent assortment of chromosomes to have a stronger262

negative effect on the variance of genetic relatedness. Therefore, to compare the effect of independent assortment of chromosomes on bp263

versus cM genetic relatedness, we calculate how homogenous chromosome lengths are in the two cases according to the Gini-Simpson264

index. In humans, for both males and females, it turns out that chromosome lengths are more homogenous when measured in cM265

than in bp: the Gini-Simpson index for autosomal chromosome lengths measured in bp is 0.9460; for autosomal chromosome lengths266

measured in cM, the Gini-Simpson index is 0.9488 in males and 0.9479 in females. Thus, in humans, independent assortment of267

chromosomes has a weaker negative effect on the genome-wide variance of bp genetic relatedness than on the genome-wide variance268

of cM genetic relatedness, as we have noted in the Main Text.269

8 Veller et al.



S4. Variance calculations for relatedness to grandparents and to siblings270

.271

Table S1 Standard deviations of genetic relatedness to paternal and maternal grandparents, and to siblings, in humans.
Grandparent Sibling

Paternal Maternal

bp, linkage bp, linkage bp, linkage bp, linkage bp, cytolog. bp, linkage bp, linkage

Chrom. bp, cytolog. (Kosambi) (Haldane) cM (Kosambi) (Haldane) cM + link. (Kos.) (Kosambi) (Haldane) cM

1 0.145 0.149 0.166 0.156 0.115 0.133 0.126 0.146 0.147 0.163 0.147

2 0.152 0.155 0.171 0.161 0.117 0.135 0.130 0.152 0.151 0.167 0.152

3 0.164 0.166 0.180 0.168 0.126 0.144 0.138 0.165 0.164 0.181 0.162

4 0.171 0.174 0.187 0.174 0.127 0.145 0.139 0.170 0.171 0.187 0.166

5 0.173 0.175 0.188 0.176 0.128 0.146 0.142 0.173 0.172 0.188 0.169

6 0.183 0.183 0.195 0.181 0.133 0.151 0.145 0.184 0.183 0.198 0.175

7 0.179 0.177 0.190 0.178 0.135 0.153 0.148 0.181 0.178 0.194 0.176

8 0.187 0.192 0.201 0.184 0.139 0.157 0.152 0.192 0.194 0.209 0.183

9 0.186 0.193 0.202 0.186 0.149 0.166 0.157 0.199 0.203 0.217 0.188

10 0.184 0.189 0.199 0.182 0.139 0.157 0.152 0.188 0.191 0.206 0.181

11 0.187 0.191 0.201 0.189 0.142 0.160 0.157 0.193 0.195 0.210 0.190

12 0.179 0.185 0.196 0.182 0.140 0.158 0.154 0.183 0.188 0.204 0.183

13 0.177 0.184 0.196 0.192 0.152 0.169 0.170 0.192 0.196 0.211 0.204

14 0.175 0.182 0.194 0.195 0.160 0.176 0.178 0.195 0.198 0.214 0.214

15 0.180 0.185 0.196 0.197 0.154 0.170 0.172 0.196 0.197 0.213 0.209

16 0.190 0.201 0.209 0.194 0.155 0.171 0.169 0.207 0.214 0.228 0.204

17 0.193 0.196 0.205 0.195 0.150 0.167 0.168 0.204 0.204 0.218 0.204

18 0.198 0.202 0.209 0.201 0.158 0.173 0.173 0.213 0.214 0.228 0.213

19 0.199 0.223 0.226 0.203 0.178 0.191 0.182 0.226 0.250 0.261 0.223

20 0.195 0.211 0.217 0.211 0.167 0.181 0.184 0.213 0.229 0.242 0.231

21 0.198 0.214 0.219 0.219 0.189 0.199 0.205 0.235 0.249 0.261 0.260

22 0.201 0.207 0.214 0.218 0.188 0.199 0.205 0.236 0.241 0.254 0.259

Genome 0.040 0.041 0.044 0.040 0.031 0.035 0.034 0.041 0.041 0.045 0.040

Key: bp: Genetic relatedness defined as the proportion of total physical genome length shared IBD.

cM: Genetic relatedness defined as the proportion of the total genetic map length shared IBD. For relatedness to paternal grandparent, this is the male map;

cM: for relatedness to maternal grandparent, it is the female map; for relatedness of siblings, it is the sex-averaged map.

Kosambi: Linkage map distances d converted to recombination fractions r using Kosambi’s map function, r = 1
2 tanh (2d).

Haldane: Linkage map distances d converted to recombination fractions r using Haldane’s map function, r = 1
2 (1− e−2d).

bp, cytolog. + link. (Kos.): Cytological data used for male meiosis; linkage data used (with Kosambi’s map function) for female meiosis.
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S5. Calculating the variance across instances of a given pedigree relationship272

The calculations in Sections S1 and S2 deal with variation in genetic relatedness in a given instance of some pedigree relationship,273

generated by the randomness of recombination and segregation in the meiotic processes of the individuals involved in the pedigree.274

Often, however, we will be interested in the variance of genetic relatedness across instances of a given pedigree relationship. For275

example, Visscher et al. (2006) use the fact that sibling pairs vary in how genetically related they are to develop a method for estimating276

the heritability of traits. Since there can be systematic differences across individuals in their recombination processes, this must be277

taken into account in calculating the cross-pedigree variance, or ‘population variance’, of genetic relatedness.278

Consider a specified pedigree relationship, and let R represent all information about the meioses involved in determining identity-279

by-descent sharing for a given instance of this relationship. E.g., if the relationship is grandoffspring to paternal grandparent, then,280

for a given instance of this relationship, R carries all information about the recombination process of the father in question, e.g., his281

recombination fraction rij for every pair of loci (i, j), his degree of crossover covariation across chromosomes, etc. In general, for282

our purposes, R can be thought of as a probability distribution over all possible crossover configurations in the relevant meioses. R283

itself varies across instances of the specified pedigree relationship, because the recombination process can vary systematically across284

individuals of the same sex.285

The calculations in Sections S1 and S2 implicitly condition on a particular R, and reveal that, conditional on R, the variance of286

genetic relatedness can be written in the form287

Var(IBD|R) ∝ ∑
i,j

Cov(IBDi, IBDj|R) = ∑
i,j

f (rij),288

where IBDk is the identity-by-descent state at locus k, and the rij are the recombination fractions associated with the particular R.289

To calculate the population variance of genetic relatedness, variation in R must be taken into account. From the law of total variance,

Var(IBD) = ER [Var(IBD|R)] + VarR (E[IBD|R]) ,

where ER and VarR are the expectation and variance taken with respect to the distribution of R. E[IBD|R] is a constant (1/2 for290

siblings, etc.), so VarR (E[IBD|R]) = 0, and291

Var(IBD) = ER [Var(IBD|R)] ∝ ER

[
∑
i,j

f (rij)

]
= ∑

i,j
ER[ f (rij)].292

Therefore, in calculating the unconditional/population variance Var(IBD), the population average of f (rij) can be calculated separately293

for each pair of loci i and j, with the results then summed across all locus pairs. An immediate implication is that, because each locus294

pair can be treated separately in this calculation, the covariation of crossovers across chromosomes within individual gametes does295

not affect Var(IBD), just as it does not affect Var(IBD|R). Similarly, covariation across individuals of recombination rates on different296

chromosomes (caused, for example, by inter-individual differences in the average lengths of the chromosome axes at meiotic prophase297

I) does not affect Var(IBD).298

In general, therefore, calculation of the population variance of genetic relatedness is similar in form to calculation of the variance in299

a given instance of the specified pedigree relationship—in the latter case, the average of f (rij) is taken over all locus pairs, while in the300

former case, the average of f (rij) is taken over all locus pairs and recombination processes R. An important practical point arises301

when f is a nonlinear function of rij, as it is for all pedigree relationships except grandoffspring-grandparent. In such cases, because302

ER
[

f (rij)
]
6= f

(
ER[rij]

)
, it is technically invalid to use population-averaged recombination fractions ER[rij] (as would be obtained, for303

example, from linkage maps) in the calculation of Var(IBD). Instead, f (rij) itself should be estimated for each individual instance of304

the pedigree relationship, with the results then averaged across instances. Therefore, in general, it is preferable to use disaggregated305

data of crossover positions in individual nuclei (meiocytes or gametes) to calculate the population variance of genetic relatedness.306

We note that this is not an issue in the particular relationship of grandoffspring-grandparent, because, in this case, f (rij) =
1
8
( 1

2 − rij
)
,307

so that ER
[

f (rij)
]
= ER

[ 1
8
( 1

2 − rij
)]

= 1
8
( 1

2 −ER[rij]
)
= f

(
ER[rij]

)
. Therefore, in this case, it is valid to use population-averaged308

recombination rates to calculate the population variance of genetic relatedness.309

Consider the other focal relationship in our Main Text, that of siblings (we’ll concentrate on half-siblings, for simplicity). In310

this case, f (rij) = 1
8
( 1

2 − 2rij(1− rij)
)
. Because f is nonlinear, ER

[
f (rij)

]
6= f

(
ER[rij]

)
; in fact, because f is strictly concave in rij,311

ER
[

f (rij)
]
> f

(
ER[rij]

)
as long as there is variation in R. So, using population-averaged recombination rates will systematically lead312

to underestimation of the true population variance of genetic relatedness of siblings (or half-siblings). The size of the error introduced313

by using population-averaged recombination rates can be calculated precisely. The true population variance of the genetic relatedness314

of half-siblings is given by V = ER
[ 1

8
( 1

2 − 2rij(1− rij)
)]

, where the overbar represents an average across all locus pairs. The estimate315
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obtained using population-averaged recombination rates is V′ = 1
8
( 1

2 − 2ER[rij](1−ER[rij])
)
. The amount by which V exceeds V′ is316

V −V′ = ER

[
1
8

(
1
2
− 2rij(1− rij)

)]
− 1

8

(
1
2
− 2ER[rij](1−ER[rij])

)
317

=
1
4

(
−ER[rij(1− rij)] + ER[rij](1−ER[rij])

)
318

=
1
4

(
−ER[rij(1− rij)] + ER[rij](1−ER[rij])

)
319

=
1
4

(
−ER[rij] + ER[r2

ij] + ER[rij]− (ER[rij])2
)

320

=
1
4

(
ER[r2

ij]− (ER[rij])2
)

321

=
1
4

VarR(rij).322
323

Therefore, the error introduced by using population-averaged recombination rates to estimate the population variance of the relatedness324

of half-siblings (and siblings) is simply proportional to the average, taken across locus pairs, of the population variance of pairwise325

recombination rates.326

To see how large this error can be in practice, we made use of what—to our knowledge—is the richest available dataset of crossover327

positions in individual nuclei, generated by Bell et al. (2020) by single-cell sequencing of large numbers of sperm from 20 human male328

donors (∼1000–2000 sperm per donor). We set 100 loci evenly spaced along the genomic map of each chromosome, and calculate,329

for each individual and each pair of linked loci i and j, the proportion of gametes in which loci i and j were recombinant. Given330

these recombination fractions rij for each individual (and assuming that rij = 1/2 when i and j are on different chromosomes), we331

calculate r̄(2) = 2rij(1− rij) for each individual. Averaging these individual values of r̄(2) across the 20 donors yields an estimate of the332

population-averaged value of r̄(2), which is the relevant value for calculating the population variance of genetic relatedness of paternal333

half-siblings in human.334

At the same time, by first averaging the rij across individuals, we calculate a pooled-recombination-rate value of r̄(2), which, the335

above considerations predict, should be larger than the value of r̄(2) averaged across individuals (leading to a lower estimate of336

the variance of genetic relatedness of half-siblings). The calculations just described were performed for the whole genome and for337

each chromosome (using chromosome-specific values of r̄(2)), allowing us to compute the variance of genetic relatedness of paternal338

half-siblings using the correct and incorrect measures both genome-wide and per-chromosome.339

We find that, as predicted, using a value of r̄(2) calculated from pooled recombination fractions leads to a smaller estimate of340

the variance of genetic relatedness of paternal half-siblings than if we calculate this variance using a value of r̄(2) averaged across341

individuals. However, the size of the error is small. The estimate of the genome-wide variance, based on the correct averaging of r̄(2), is342

1.187× 10−3, while the estimate based on the incorrect averaging is 1.184× 10−3, a difference of only 0.25%. The associated standard343

deviations differ by only 0.13% The chromosome-specific proportional errors are of the same order, and in fact are typically smaller344

than the genome-wide error.345

Therefore, in the case of human siblings, we conclude that, although it is technically invalid to use population-averaged recombina-346

tion rates to calculate the variance of genetic relatedness, in practice the errors introduced are likely to be small.347
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