

Figure S1. A population of Poln is being cleaved in *Poln-S14A* and *Poln-S14A T612A* mutants. (A) Protein levels of Myc-tagged Poln-phosphorylation site mutants, during G_2/M arrest. The Western blot here is the same as the one in Figure 2A, showing the α -Myc bands from 39 kDa and above. (B) Protein levels of Myc-tagged *Poln-S14A* single and - *S14A T612A* double mutants. Cdc11 was used as loading control. Blue arrows in (A) and (B) indicate the cleavage product. (C) Protein stability of the Poln-phosphorylation mutants in summary, together with the proposed actions of Poln-S14 and T547 phosphorylation shown in the box. 3B/0G, three hours benomyl/zero hour time-point of *GAL*-induction; 1G, one hour *GAL*-induction; p, phosphorylated; x, mutated residue(s).

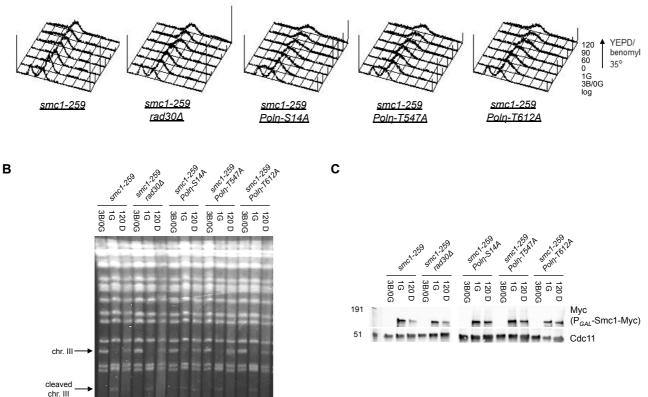


Figure S2. UV sensitivities of cohesin mutants at restrictive temperature. (A-B) Each strain was grown to mid-log phase and the following 10-fold serial dilutions were spotted on YEPD, with or without follow-on UVC exposures. Scc2 and Scc1 are inactivated at 33°; Smc1 is inactivated at 34.5°. All plates were documented on the third day. RT, room temperature. One representative experiment from two independent spot assays performed is shown.

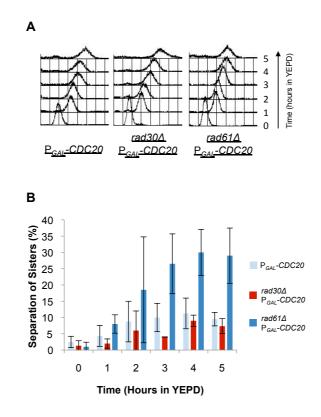


Figure S3. UV sensitivities and nuclear accumulation of selected Poln point mutants controlled by the constitutive strong *ADH* promoter. (A) UV spot assay of P_{ADH} -*Poln-S14A* and P_{ADH} -*Poln-in vivo KR*. Each strain was grown to mid-log phase. Ten-fold serial dilutions were then spotted on YEPD plates and exposed to 35 J/m² UVC. Plates were documented after three days at room temperature. (B) Quantitation of *Poln-S14A* nuclear accumulation. In situ staining was performed, the percent of cells displaying nuclear accumulation was determined as the cells positive for anti-Myc, with overlapping anti-Myc and DAPI signals. *Poln-S14A*-Myc controlled by the alternative constitutive strong promoter *GPD* was used for comparison. Means ± STDEV from at least two independent experiments are shown. YEPD, YEP media supplemented with glucose.

Figure S4. Examples of included controls for a typical damage-induced cohesion experiment. Shown here are the controls for the damage-induced cohesion experiment of the single Polη-phosphorylation mutants in Figure 6C. (A) FACS analysis to confirm benomyl induced G_2/M arrest. (B) Pulsed-field gel electrophoresis to monitor efficiency of break induction on Chr. III (P_{GAL}-HO). (C) Western blot to monitor expression of ectopic P_{GAL} -SMC1-MYC (Smc1 WT). Cdc11 was used as loading control. 3B/0G, three hours benomyl/zero hour time-point of GAL-induction; 1G, one hour GAL-induction; 120 D, 120 minutes in YEP media supplemented with glucose at 35°; Chr., chromosome; HO, Homothallic switching endonuclease.

Figure S5. Sister chromatid cohesion maintenance is independent of Poln. (A) FACS analysis to monitor cell cycle distribution. Cells were initially synchronized in G_1 by α -factor in YEPG, and subsequently released into YEPD for arrest in G_2 /M by inactivating *CDC20* expression. (B) Sister chromatids separation was monitored at the *URA3* locus on Chr. V by the Tet-O/TetR-GFP system (see materials and methods for details). Means ± STDEV from at least two independent experiments are shown. YEPG, YEP media supplemented with galactose; YEPD, YEP media supplemented with glucose; Chr., chromosome.