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1 Fixation probability of mutants

1.1 Derivation

Here, we present the derivation of the fixation probability pfix(i0, t0) of i0 mutants present at time t0 (Parzen
1999; Uecker and Hermisson 2011; Alexander and Bonhoeffer 2012), along similar lines as in (Uecker
and Hermisson 2011). We assume that the number of wild-type microorganisms is initially much larger than the
number of mutants (NW (t0)� i0). As explained in the main text, the selective pressure due to the competition
with the wild-type is felt by the mutants through their division rate fM (t)[1−N(t)/K], and in the initial phase
where this competition is important, the total population size N(t) can be approximated by N(t) ≈ NW (t). Thus,
competition is felt through the effective mutant fitness f eff

M (t) = fM (t)[1 −NW (t)/K]. In addition, we treat the
number of mutants stochastically, but the number NW (t) of wild-type organisms deterministically (see Eq. 3 and
Fig. 1).

The master equation that describes the evolution of the probability P (i, t|i0, t0) of having i mutants at time t
knowing that there are i0 mutants at time t0 is given by:

∂P (i, t|i0, t0)

∂t
= f eff

M (t)(i− 1)P (i− 1, t|i0, t0) + gM (i+ 1)P (i+ 1, t|i0, t0)− (f eff
M (t) + gM )iP (i, t|i0, t0) . (S1)

Eq. S1 allows to establish the partial differential equation satisfied by the probability generating function φi0,t0(z, t) =∑+∞
i=0 z

iP (i, t|i0, t0):
∂φi0,t0
∂t

= (z − 1)(f eff
M (t)z − gM )

∂φi0,t0
∂z

. (S2)

The method of characteristics then yields (Kendall 1948; Parzen 1999):

φi0,t0(z, t) =

[
1 +

(
eρ(t)

z − 1
−
∫ t

t0

f eff
M (u)eρ(u)du

)−1
]i0

, (S3)

where:

ρ(t) =

∫ t

t0

(gM − f eff
M (u))du . (S4)

Note that ρ depends on the number of wild-type microbes NW (t) and on the carrying capacity K only through the
ratio NW (t)/K, whose dynamics is system size-independent, i.e. independent from K (see Eq. 3).

The probability generating function φi0,t0 allows to calculate the fixation probability pfix(i0, t0) of i0 mutants
present at time t0, through pfix(i0, t0) = 1− limt→∞ P (0, t|i0, t0) = 1− limt→∞ φi0,t0(0, t). This yields

pfix(i0, t0) = 1−

(
gM
∫∞
t0
eρ(t)dt

1 + gM
∫∞
t0
eρ(t)dt

)i0
, (S5)

where we used: ∫ t

t0

(gM − f eff
M (u))eρ(u)du = eρ(t) − 1 . (S6)

Since ρ does not depend on the carrying capacity K, as noted above, this is also true for pfix (see Fig. S8A).
In the main text, we focus on the fixation probability of a single mutant that appears at time t0, and denote it

as pfix(t0) = pfix(1, t0) (see Eq. 4, which corresponds to Eq. S5 with i0 = 1).

1.2 Additional results

Fig. S1 shows the same data as in Fig. 2A for the fixation probability pfix of G and S mutants versus their time
of appearance t0 in the deteriorating environment. However, here, t0 is rescaled by the average extinction time
τW of the wild-type population in the absence of mutation (see Fig. 1). This rescaling illustrates the convergence
of pfix toward asymptotes independent of n as τW is approached. These asymptotes correspond to the extinction
probabilities of mutants that exist in the absence of competition: mutants fix unless their lineage undergoes rapid
stochastic extinction.
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Fig S1. Fixation probability of mutants. Fixation probability pfix of G and S mutants versus their time of
appearance t0 in the deteriorating environment, rescaled by the average extinction time τW of the wild-type
population for different Hill coefficients n characterizing the steepness of the environment deterioration (see Eq. 1).
Here, S mutants satisfy m = n, i.e. they have the same sensitivity to the environment as W organisms (see Eq. 2).
Horizontal dashed line: pfix = 1− gG/fG. Horizontal solid line: pfix = 1− gS . Markers correspond to averages over
104 replicate stochastic simulations. Dashed and solid lines correspond to numerical integrations of Eq. 4 for G and
S mutants, respectively. Parameter values: gW = gG = gS = 0.1, K = 103, N0

W = 10 and θ = 103. Vertical dotted
lines: t0 = θ. Main panels: linear scale; insets: semi-logarithmic scale. Same data as in Fig. 2A.

2 Application to different types of mutants

2.1 Antimicrobial resistance evolution

An important application of the study of evolutionary rescue regards antimicrobial resistance evolution, where rescue
of the microbial population corresponds to the fixation of resistance. In line with our model comprising two types
of individuals, let us consider sensitive wild type microbes W, and resistant mutants M. Furthermore, because we
consider variable fitnesses and constant death rates (as throughout this work), we here model the effect of biostatic
antimicrobials, and not biocidal ones. However, our model could easily be extended to the biocidal case. Let us
assume that the concentration of antimicrobial gradually increases from 0 to some value which is above the minimum
inhibitory concentration (MIC) of the sensitive strain but below the MIC of the resistant strain. Then, appearance
and fixation of resistant mutants is necessary for the microbial population to be rescued. Let us model the fitness of
resistant mutants M by

fM (t) =
f0
M − f∞M

1 + (t/θ′)n
+ f∞M , (S7)

which is equal to f0
M for t = 0 and tends to f∞M for t → ∞ (see Fig. S2). Because antimicrobial resistance often

comes with a fitness cost in the absence of drug (Borman et al. 1996; Andersson and Hughes 2010; zur Wiesch
et al. 2011), we will consider f0

M < 1. Since the final concentration is assumed to be above the mutant MIC,
we have f∞M > gM , which ensures that a resistant population does not go extinct deterministically in the final
environment. We further allow for the inflection point θ′ to be different from that of fW , which is θ (see Eq. 1), so
that θ′ > θ may reflect the fact that M is less sensitive to the environment change than W. Indeed, compared to
that of sensitive microorganisms, the dose-response curve of resistant microorganisms is usually shifted towards
higher drug concentrations (Gullberg et al. 2011; Yu et al. 2018). Note that the functional forms taken for fW
and fM (see Eqs. 1 and S7) are realistic e.g. in the case of a linear drug concentration increase with time, given the
usual pharmacodynamics of antibiotics (Regoes et al. 2004).
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Fig S2. Fitnesses of the wild-type and mutant microbes in a model of antimicrobial resistance
evolution. Fitnesses fW and fM of the wild-type sensitive microorganisms (W) and resistant mutants (M) versus
time t (see Eqs. 1 and S7). Parameter values: n = 5, θ = 1000, θ′ = 1050, f0

M = 0.9 and f∞M = 0.5. Vertical dotted
lines: t = θ and t = θ′. Horizontal dashed lines: f0

M and f∞M .

Fig. S3 shows the results obtained for rescue within this model, and a comparison to the generalist (G) mutant
with fG = 0.5 studied in the main text. The agreement between our numerical simulations and our analytical
predictions is very good. Larger values of θ′ or of f∞M increase the mutant fixation probability pfix and the rescue
probability pr, consistently with the fact that they lead to higher mutant fitnesses. Despite minor quantitative
differences associated to these parameter values, the rescue probability behaves qualitatively in the same way in this
model as with the generalist mutant and as with the specialist mutant studied in the main text. This illustrates the
generality of our findings with respect to the exact mutant fitness form, as long as the mutant is able to grow in the
new environment and rescue the population.
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Fig S3. Fixation probability of mutants and probability of rescue in a model of antimicrobial
resistance evolution. A. Fixation probability pfix as a function of the time of appearance of the mutants t0 for
mutants M with different values of ∆θ = θ′ − θ and f∞M = 0.5 (see Eqs. 1 and S7) and for generalist (G) mutants
with fG = 0.5. Vertical dotted line: t0 = θ. B. Same as in panel A, but with ∆θ = 50 and different values of f∞M . C.
Rescue probability pr as a function of the mutation probability µ upon division for mutants M with different values
of ∆θ = θ′ − θ and f∞M = 0.5 (see Eqs. 1 and S7) and for generalist (G) mutants with fG = 0.5, as in panel A. D.
Same as in panel C, but with ∆θ = 50 and different values of f∞M , as in panel B. In all panels, markers correspond
to the average over 103 − 104 replicate stochastic simulations, and dashed curves correspond to our analytical
predictions. Parameter values: gW = gM = gG = 0.1, f0

M = 0.9, K = 103, N0
W = 10, n = 5 and θ = 103.
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2.2 Additional results for various generalist mutants

In the main text, we consider generalist (G) mutants with fitness fG = 0.5, corresponding to the case of specialist
(S) mutants with m = 0 (see Eq. 2). Fig. S4 shows results obtained for various values of fG that satisfy fG > gG,
ensuring that the mutant can grow and rescue the population. Mutant fixation and rescue are more difficult for
smaller values of fG, but the overall behavior remains similar and is well described by our analytical predictions.
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Fig S4. Additional results for generalist mutants. A. Fixation probability pfix as a function of the time of
appearance of the mutants t0 for different fitnesses fG of G mutants (in the rest of the paper, fG = 0.5). Vertical
dotted line: t0 = θ. Horizontal dotted lines: pfix = 1− gG/fG. B. Rescue probability pr as a function of the
mutation probability µ upon division for different fitnesses fG. C. Mean appearance time τaf of a mutant that fixes
as a function of the fitness fG for the mutation probability upon division µ = 10−5. Vertical dotted line: τaf = θ. D.
Mean time to extinction τ0 as a function of the time of appearance of the mutants t0 for different fitnesses fG.
Vertical dotted line: t0 = θ. In all panels, markers correspond to the average over 103 − 104 replicate stochastic
simulations, error bars (in panels C and D, often smaller than markers) are 95% confidence intervals and dashed
curves correspond to our analytical predictions. Parameter values: gW = gG = 0.1, K = 103, N0

W = 10, n = 5 and
θ = 103.
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3 Robustness of the results to different initial conditions

In Fig. S5, we show that our results are robust to varying N0
W as long as it is not very small, since starting with

N0
W = 10 (as is done throughout) gives the same results as starting with N0

W = K[1− gW /fW (0)] = 0.9K, which
corresponds to the stationary population size in the initial environment within a deterministic description (see Eq. 3).
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Fig S5. Impact of the initial number N0
W of wild-type organisms on rescue. A. Fixation probability pfix

of G and S mutants versus their time of appearance t0 in the deteriorating environment, for N0
W = 10 and

N0
W = 0.9K. Vertical dotted line: t0 = θ. B. Rescue probability pr of different types of mutants versus the

mutation probability µ upon division, for N0
W = 10 and N0

W = 0.9K. G mutants and S mutants are considered. C.
Mean time τaf of appearance of a G or S mutant that fixes versus µ, for N0

W = 10 and N0
W = 0.9K. Horizontal

dotted line: τaf = θ. Vertical dash-dotted line: Kµ = 1. In all panels, the Hill coefficient characterizing the
steepness of the environment deterioration (see Eq. 1) is n = 5. Furthermore, S mutants satisfy m = n, i.e. they
have the same sensitivity to the environment as W organisms (see Eq. 2). Markers correspond to averages over
103 − 104 replicate stochastic simulations. Dashed and solid lines correspond to our analytical predictions for G and
S mutants, respectively. Parameter values: gW = gG = gS = 0.1, K = 103 and θ = 103.
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4 Additional results regarding the appearance of mutants

4.1 Appearance of mutants during the environment deterioration

0 500 1000 1500 2000 2500 3000

Time t

0

0.5

1

1.5

N
u

m
b

e
r 

N
Ma

p
p

o
f 

m
u

ta
n

t 
a

p
p

e
a

ra
n

c
e

 e
v
e

n
ts

n=2

n=5

n=10

n=20

n=50

n=100

T
h

e
o

ry

S
im

u
la

ti
o

n

0 0.2 0.4 0.6 0.8 1

Normalized time t/
W

0

0.5

1

1.5

N
u

m
b

e
r 

N
Ma

p
p

o
f 

m
u

ta
n

t 
a

p
p

e
a

ra
n

c
e

 e
v
e

n
ts

n=2

n=5

n=10

n=20

n=50

n=100

T
h

e
o

ry

S
im

u
la

ti
o

n

A B

Fig S6. Appearance of mutants. A. Average number Napp
M of mutant appearance events that can occur

between times 0 and t, plotted versus time t, for different Hill coefficients n characterizing the steepness of the
environment deterioration. Vertical dotted line: t = θ. Markers correspond to averages over 104 replicate stochastic
simulations (“Simulation”), where mutants that appear are replaced immediately by wild-type organisms to avoid
any mutant fixation events and count all potential mutant appearance events. Solid lines correspond to numerical
integrations of Napp

M (t) =
∫∞

0
NW (t)fW (t)(1−NW (t)/K)µdt (“Theory”), which corresponds to the number of

mutants that appear, assuming that NM (t)� NW (t) when they appear (see main text above Eq. 7). B. Same data,
rescaled by the average extinction time τW of the wild-type population in the absence of mutation. Vertical dotted
lines: t = θ. Parameter values: gW = 0.1, K = 103, θ = 103, µ = 10−5 and N0

W = 10. Data is shown for t < τW .
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4.2 Time of appearance of the mutants that fix
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Fig S7. Probability density function of the time of appearance of the mutants that fix. Probability
density function Fτ̂af of the time τ̂af of appearance of a mutant that fixes versus time t, for different Hill coefficients
n. Results for the generalist (G) and specialist (S) mutants are shown in panels A and B, respectively. Vertical
dotted line: t = θ. Histograms are computed over 103 replicate stochastic simulations (“Simulation”). Solid lines
correspond to numerical integrations of Eq. 11 (“Theory”). Parameter values: gW = gG = gS = 0.1, K = 103,
θ = 103, µ = 10−5, n = m = 5, and N0

W = 10.
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5 Results for the impact of population size on rescue
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Fig S8. Impact of population size on rescue. A. Fixation probability pfix of G and S mutants versus their
time of appearance t0 in the deteriorating environment, for different carrying capacities K. Vertical dotted line:
t = θ. Main panel: linear scale; inset: semi-logarithmic scale. B. Rescue probability pr of different types of mutants
versus the product Kµ of the carrying capacity K and the mutation probability µ upon division, for different
carrying capacities K. G mutants and S mutants are considered. Vertical dash-dotted line: Kµ = 1. C. Mean time
τaf of appearance of a G or S mutant that fixes versus Kµ. Simulation results are shown both for a fixed mutation
probability upon division µ = 10−5 and a variable carrying capacity K, and for a fixed K = 103 and a variable µ.
Horizontal dotted line: τaf = θ. Vertical dash-dotted line: Kµ = 1. In all panels, the Hill coefficient characterizing
the steepness of the environment deterioration (see Eq. 1) is n = 5. Furthermore, S mutants satisfy m = n, i.e. they
have the same sensitivity to the environment as W organisms (see Eq. 2). Markers correspond to averages over
103 − 104 replicate stochastic simulations (“Sim.”). Dashed and solid lines correspond to our analytical predictions
(“Theory”) for G and S mutants, respectively. Parameter values: gW = gG = gS = 0.1, N0

W = 10 and θ = 103.
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6 Extinction time of mutants that do not fix

In the case where the mutant that appears does not fix, how long does its lineage take to go extinct? As for the
fixation probability pfix, the time of extinction of a mutant will depend on its time of appearance t0. The average
time of extinction is the average of the first-passage time τ̂

′

0 to the state i = 0 where i denotes the number of mutants.
Then, we can compute the probability dp(τ̂

′

0 ∈ [t, t+ dt] | i0, t0) that τ̂
′

0 belongs to the interval [t, t+ dt], provided
that the initial number of mutants is i0 at time t0:

dp(τ̂
′

0 ∈ [t, t+ dt] | i0, t0) = P (0, t+ dt|0,∞; i0, t0)− P (0, t|0,∞; i0, t0) , (S8)

where P (0, t|0,∞; i0, t0) is the probability to have 0 mutant at time t, provided that the initial number of mutants is
i0 at time t0 and the final number is i∞ = 0, corresponding to extinction. Using Bayes’ theorem and the Markov
property yields

P (0, t|0,∞; i0, t0) =
P (0, t|i0, t0)P (0,∞|0, t; i0, t0)

P (0,∞|i0, t0)
=
P (0, t|i0, t0) (1− pfix(0, t))

1− pfix(i0, t0)
=

P (0, t|i0, t0)

1− pfix(i0, t0)
, (S9)

where we have employed pfix(0, t) = 0, as having 0 mutant is an absorbing state of the system. Thus,

dp(τ̂
′

0 ∈ [t, t+ dt] | i0, t0) =
P (0, t+ dt|i0, t0)− P (0, t|i0, t0)

1− pfix(i0, t0)
=

1

1− pfix(i0, t0)

dP (0, t|i0, t0)

dt
dt . (S10)

We can now express the mean time of extinction τ
′

0 = 〈τ̂ ′0〉 of a mutant that appeared at t0 using Eq. S10 as

τ
′

0 =

∫ ∞
t0

t dp(τ̂
′

0 ∈ [t, t+ dt] | i0, t0) =
1

1− pfix(i0, t0)

∫ ∞
t0

t
dP (0, t|i0, t0)

dt
dt . (S11)

The previous equation can be rewritten using the probability generating function φi0,t0(z, t) =
∑+∞
i=0 z

iP (i, t|i0, t0)
by noting that P (0, t|i0, t0) = φi0,t0(0, t):

τ
′

0 =
1

1− pfix(i0, t0)

∫ ∞
t0

t
∂φi0,t0
∂t

(0, t) dt . (S12)

Using Eqs. S3 and S6 and introducing Λ(t) = gM
∫ t
t0
eρ(u)du then yields

τ
′

0 =
i0gM

1− pfix(i0, t0)

∫ ∞
t0

teρ(t)
Λi0−1(t)

(1 + Λ(t))i0+1
dt . (S13)

Numerical integration of Eq. S13 is discussed in section 9 below.
Fig. S9 shows the average lifetime τ0 = τ

′

0 − t0, or time to extinction, of the lineage of a single mutant (i0 = 1)
that finally goes extinct, versus the time t0 when this mutant appears during the environment degradation. We
obtain a very good agreement between the results of our stochastic simulations and our analytical prediction in
Eq. S13. For t0 < θ, mutants are less fit than wild-type organisms, and S mutants are less fit than G mutants
(see Eq. 2). Conversely, for t0 > θ, mutants are fitter than wild-type organisms, and S mutants are fitter than G
mutants: hence, S mutants are always more extreme than G mutants. Because of this, intuition based e.g. on the
fixation times within the Moran process (Ewens 1979; Teimouri and Kolomeisky 2019; Teimouri et al. 2019)
with constant population size make us expect that S mutants will have their fates sealed faster, and thus will get
extinct faster provided that they are destined for extinction (note that related results exist in the framework of the
Wright-Fisher model, see e.g. (Maruyama and Kimura 1974)). This is indeed what we obtain (see Fig. S9). In
particular, the largest extinction time is obtained close to t0 = θ, where G and S mutants are neutral. In addition,
for t0 � θ, S mutants have a fitness fS ≈ 0 (see Eq. 2). Then, they generally go extinct in about one generation, i.e.
in τ0 ≈ 10 time units (in our simulations, the death rate, which sets the division rate when the population is close to
its steady-state size K(1− gW /fW ), is taken equal to 0.1): this is what is obtained in Fig. S9. Still for t0 � θ, G
mutants are such that fG = 0.5 while fW ≈ 1 (see Eq. 1): then, the extinction time of the mutant lineage can be
obtained within the framework of the Moran process assuming a constant population size K(1− gW /fW ): it yields
τ0 ≈ 15 (Ewens 1979), consistently with Fig. S9. Furthermore, Fig. S9A shows that for t0 < θ, the bigger the Hill
coefficient n characterizing the steepness of the environment degradation (see Eq. 1), the smaller the mean time to
extinction. In particular, as long as t0 < θ, we have fS ≈ 0 and fW ≈ 1, and therefore the results obtained just
before for t0 � θ hold. Finally, Fig. S9B shows that τ0 does not depend on the carrying capacity K. This can be
understood from Eq. S13, given that pfix is independent from K, as well as ρ, as explained in Section 1.
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Fig S9. Mean time to extinction. A. Mean time to extinction τ0 of G and S mutants versus their time of
appearance t0 in the deteriorating environment, for K = 103 and for different Hill coefficients n characterizing the
steepness of the environment deterioration (see Eq. 1). B. Mean time to extinction τ0 of G and S mutants versus
their time of appearance t0 in the deteriorating environment, for different carrying capacities K and a fixed Hill
coefficient n = 5 characterizing the decay of fW (see Eq. 1). In both panels, markers correspond to averages over
103 − 104 replicate stochastic simulations. Solid (resp. dashed) curves correspond to numerical integrations of Eq.
S13 for S (resp. G) mutants. Here, S mutants satisfy m = n, i.e. they have the same sensitivity to the environment
as W organisms (see Eq. 2). Parameter values: gW = gG = gS = 0.1, N0

W = 10 and θ = 103. Vertical dotted lines:
t0 = θ.

7 Analytical approximations for a sudden environment degradation

Here, we derive analytical approximations for the fixation probability pfix, the probability pr of rescue and the mean
time τaf of appearance of a mutant that fixes in the case of a sudden environment degradation. We thus consider
that the Hill coefficient n describing the decay of W fitness fW tends to infinity (see Eq. 1), as well as m, which
describes the increase of S mutant fitness fS (see Eq. 2), i.e. n,m→∞. Then, the fitness transition around t = θ is
very abrupt, and we therefore consider that fW = 1 and fS = 0 if t < θ while fW = 0 and fS = 1 if t > θ.

As soon as fW = 0, i.e. for t > θ, W microbes stop dividing. In a deterministic description, their number
decreases exponentially according to the function NW (t) = Ne

W e
−gW (t−θ), where Ne

W = K(1−gW ) is the equilibrium
size of the fully wild-type population if fW = 1, i.e. for t < θ. For analytical convenience, we make the approximation
that NW (t) = Ne

W if t < θ + τ1/2 and NW (t) = 0 otherwise, where τ1/2 is the time such that NW (τ1/2) = K/2 (i.e.
τ1/2 = ln(2Ne

W /K)/gW ). While the exact choice of θ + τ1/2 as a threshold is somewhat arbitrary, it is important
to choose a threshold that reflects the decay timescale of the W population. Indeed, it allows to effectively take
into account the demographic pressure that mutants undergo because of the presence of W organisms during the
decline of the W population. Considering a threshold θ instead of θ + τ1/2 would lead one to underestimate the
demographic pressure on mutants and thus to overestimate their fixation probability. Conversely, considering a
threshold θ + τ0, where τ0 is the mean time of W population extinction when W microbes no longer divide, would
lead one to overestimate the demographic pressure on mutants and thus to underestimate their fixation probability.

7.1 Fixation probability

7.1.1 Generalist mutant

Let us first focus on the fixation probability pGfix(t0) of a single generalist (G) mutant that appears at time t0. Recall
that the fitness of G mutants is constant. In most of our work, we take fG = 0.5, but here, for the sake of generality,
we will retain fG in our expressions, assuming that fG > gG. Within our approximation, the fate of a mutant will
strongly depend on whether t0 < θ̃ = θ + τ1/2 or t0 > θ̃. We start from Eq. 4, which reads

pGfix(t0) =
1

1 + gG
∫∞
t0
eρG(t)dt

. (S14)
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Two regimes need to be distinguished:
� If t < θ̃, then NW (t) = K(1− gW );
� If t ≥ θ̃, then NW (t) = 0.

For t0 < θ̃, Eq. 5 yields

ρG(t) =

{
− (fGgW − gG) (t− t0) if t0 < t < θ̃,

−(fG − gG)(t− t0) + fG(1− gW )(θ̃ − t0) if t0 < θ̃ < t.
(S15)

Thus, Eq. S14 simplifies as:

pGfix(t0) =
(fG − gG)(fGgW − gG)

fGgW (fG − gG)− e−(gG−fGgW )(t0−θ̃)fGgG(1− gW )
. (S16)

For t0 > θ̃, NW = 0, and Eq. 5 yields

ρG(t) = − (fG − gG) (t− t0) . (S17)

Then, Eq. S14 gives
pGfix(t0) = 1− gG/fG , (S18)

which corresponds to the probability that the mutant lineage survives rapid stochastic extinction in a constant-rate
birth-death process, in the absence of competition (Ovaskainen and Meerson 2010; Coates et al. 2018; Marrec
and Bitbol 2020). This makes sense, because within our approximation, t0 > θ̃ formally corresponds to introducing
a mutant in the absence of any W individual.

Let us summarize Eqs. S16 and S18:

pGfix(t0) =

{
(fG−gG)(fGgW−gG)

fGgW (fG−gG)−e−(gG−fGgW )(t0−θ̃)fGgG(1−gW )
if t0 < θ̃ ,

1− gG/fG if t0 > θ̃ .
(S19)

7.1.2 Specialist mutant

Let us now turn to the fixation probability pSfix(t0) of a single specialist (S) mutant that appears at time t0. Again,
we start from Eq. 4, which reads

pSfix(t0) =
1

1 + gS
∫∞
t0
eρS(t)dt

. (S20)

Note that we assume gS < 1. Three regimes need to be distinguished:
� If t < θ, then NW (t) = K(1− gW ) and fS(t) = 0;
� If θ < t ≤ θ̃, then NW (t) = K(1− gW ) and fS(t) = 1;
� If t ≥ θ̃, then NW (t) = 0 and fS(t) = 1.

If t0 < θ, Eq. 5 yields

ρS(t) =


gS(t− t0) if t0 < t < θ,

gS(θ − t0) + (gS − gW )(t− θ) if θ < t < θ̃,

gS(θ − t0) + (gS − gW )(θ̃ − θ) + (gS − 1)(t− θ̃) if θ̃ < t .

(S21)

Note that the second term in the second and the third lines of the previous equation both vanish if gS = gW . In this
case, Eq. S20 simplifies as:

pSfix(t0) =
e−gS(θ−t0)(1− gS)

1 + gS(1− gS)(θ̃ − θ)
. (S22)

If θ < t0 < θ̃, Eq. 5 yields

ρS(t) =

{
(gS − gW )(t− t0) if t0 < t < θ̃,

(gS − gW )(θ̃ − t0) + (gS − 1)(t− θ̃) if θ̃ < t .
(S23)
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If in addition gS = gW , Eq. S20 then gives

pSfix(t0) =
1− gS

1 + gS(1− gS)(θ̃ − t0)
. (S24)

If t0 > θ̃, Eq. 5 yields
ρS(t) = (gS − 1)(t− t0) . (S25)

Thus, Eq. S20 simplifies as:
pSfix(t0) = 1− gS . (S26)

Again, this is the probability that the mutant lineage escapes rapid stochastic extinctions, in the absence of any
competition.

Let us summarize Eqs. S22, S24 and S26:

pSfix(t0) =


e−gS(θ−t0)(1−gS)

1+gS(1−gS)(θ̃−θ) if t0 < θ ,
1−gS

1+gS(1−gS)(θ̃−t0)
if θ < t0 < θ̃ ,

1− gS if θ̃ < t0 .

(S27)
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Fig S10. Fixation probability for a sudden environment degradation. Fixation probability pfix of S or G
mutants versus their time of appearance t0 in the deteriorating environment, for Hill coefficients n,m→∞ (see
Eqs. 1 and 2) corresponding to an instantaneous, stepwise, environment change. Markers correspond to averages
over 104 replicate stochastic simulations. Light dashed (resp. solid) curves correspond to our analytical predictions
in Eq. 4 for G (resp. S) mutants. Dark dashed (resp. solid) curves correspond to our approximations in Eq. S19
(resp. Eq. S27) for G (resp. S) mutants in the different regimes discussed. Vertical dotted line: t0 = θ. Vertical
dash-dotted line: t0 = θ̃ = θ + τ1/2. Parameter values: gW = gG = gS = 0.1, K = 103, N0

W = 10, n = m = 1010,
θ = 103 and τ1/2 = 5.9. Main panel: linear scale; inset: semi-logarithmic scale.

Fig. S10 shows that Eqs. S19 and S27 provide good approximations in the appropriate regimes, i.e. for t0
substantially smaller or larger than θ. (Our approximation that the decay of the W population occurs instantaneously
is least valid when t0 is close to θ.)
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7.2 Rescue probability

Now, let us focus on the rescue probability pr, which satisfies pr = 1− e−Σ (see Eq. 9), where Σ is given by Eq. 10.
Since here fW (t) = 0 for t > θ and fW (t) = 1 for t < θ, Eq. 10 simplifies into

Σ = µNW

(
1− NW

K

)∫ θ

0

pfix(t)dt = µK(1− gW )gW

∫ θ

0

pfix(t)dt , (S28)

where we have employed NW = K(1− gW ). Thus, we obtain a simplified formula for the rescue probability:

pr = 1− exp

(
−µK(1− gW )gW

∫ θ

0

pfix(t)dt

)
, (S29)

which holds both for generalist and for specialist mutants.
Specifically, in the case of a generalist mutant, Eq. S19 yields∫ θ

0

pGfix(t)dt =
1

fGgW
log

(
gG(1− gW )e(gG−fGgW )θ̃ − gW (fG − gG)

gG(1− gW )e(gG−fGgW )θ̃ − gW (fG − gG)e(gG−fGgW )θ

)
. (S30)

And in the case of a specialist mutant, Eq. S27 gives∫ θ

0

pSfix(t)dt =
(1− e−gSθ)(1− gS)

gS + g2
S(1− gS)(θ̃ − θ)

. (S31)

Fig. S11A shows that there is a good agreement between our approximated analytical predictions and our
numerical simulation results. Moreover, we observe that the transition between small and large values of pr occurs
for µK of order 1. Indeed for abrupt environment degradations such that W fitness gets to 0 right at the transition
point θ, preexisting mutants are necessary to ensure rescue.

In a previous work (Marrec and Bitbol 2020), we proposed an expression for the probability of extinction
of a microbial population subjected to a periodic presence of antimicrobial in the weak-mutation regime Kµ� 1.
We then assumed that the antimicrobial was instantaneously added and removed from the environment, which
thus corresponds to instantaneous environment changes. For a perfect biostatic antimicrobial that completely stops
growth, wild-type fitness goes to 0 in the presence of antimicrobial, corresponding to the case studied here. When in
addition the alternation period is long enough for extinction to occur at the first phase with antimicrobial if no
resistant mutants preexist, our prediction in Eq. 1 of (Marrec and Bitbol 2020) gives a good approximation
of our present results, as shown by Fig. S11B. Therefore, the present work generalizes this prediction beyond the
weak-mutation regime Kµ� 1. Note that in (Marrec and Bitbol 2020) we made the assumption Kµ� 1 in
particular when calculating the probability that at least one mutant be present when antimicrobial is added. Indeed,
we expressed it as as the ratio of the average lifetime of a mutant lineage (destined for extinction in the initial
environment) to the average time of appearance of a new mutant lineage. This assumes that at most one mutant
lineage is present in the population.
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Fig S11. Rescue probability for a sudden environment degradation. A. Rescue probability pr versus the
product Kµ of the carrying capacity K and the mutation probability µ upon division, for different carrying
capacities K. Markers correspond to averages over 104 replicate stochastic simulations. Light dashed (resp. solid)
curves correspond to our analytical predictions in Eq. 9 for G (resp. S) mutants. Dark dashed (resp. solid) curves
correspond to our approximations, corresponding to Eq. S29 with Eq. S30 (resp. Eq. S31) for G (resp. S) mutants,
with τ1/2 = 5.9. B. Rescue probability pr versus Kµ. The present results for G mutants are compared to those of
our previous work (Marrec and Bitbol 2020) for K = 103. Markers correspond to averages over 103 − 104

replicate stochastic simulations. Dashed orange curve: analytical prediction in Eq. 9 for G mutants. Solid green
curve: analytical prediction pr = 1− p0 with p0 in Eq. 1 of (Marrec and Bitbol 2020), valid for Kµ� 1.
Vertical dash-dotted lines in both panels: Kµ = 1. Parameter values: gW = gG = gS = 0.1, N0

W = 10,
n = m = 1010, θ = 103.

7.3 Appearance time of a mutant that fixes

Finally, we derive an approximated analytical prediction for the mean time of appearance τaf of a mutant that
fixes in the population before it goes extinct. Let us recall that the probability density function of τ̃af satisfies
Fτ̃af

(t) = (1/pr)(dpaf/dt) (see Eq. 11 and above). Thus, for an abrupt environment degradation such that fW (t) = 0
for t > θ, the mean time of appearance τaf is given by:

τaf =

∫ θ

0

tFτ̃af
(t)dt =

1

pr

∫ θ

0

t
dpaf

dt
dt = θ − 1

pr

∫ θ

0

paf(t)dt = θ − 1

pr

∫ θ

0

(1− e−σ(t))dt , (S32)

where we have performed an integration by parts, employed Eq. 8 (and the formula for paf(t) just above it), and used
paf(θ) = pr (see Eq. 9, and recall that here, fW (t) = 0 for t > θ). Using Eq. 12 with fW = 1 and NW = K(1− gW )
for t < θ, we have

σ(t) = µKgW (1− gW )

∫ t

0

pfix(u)du . (S33)

Eq. S32 is valid for both generalist and specialist mutants. One just needs to compute pr by using Eq. S29 with Eq.
S30 (resp. Eq. S31) for G (resp. S) mutants and pfix by using Eq. S19 (resp. Eq. S27) for G (resp. S) mutants.

Fig. S12 shows that there is a very good agreement between our approximated analytical predictions and
the results of our numerical simulations in the weak-to-moderate mutation regime Kµ . 1 where our analytical
derivations were conducted (see main text, “Rescue probability” section). Recall also that τaf only depends on K
and µ via Kµ (see main text).
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Fig S12. Mean time of appearance for a sudden environment degradation. Mean time τaf of appearance
of a G or S mutant that fixes versus the product Kµ of the carrying capacity K and the mutation probability µ.
Here, µ was varied at constant carrying capacity K = 103. Horizontal dotted line: τaf = θ. Vertical dash-dotted line:
Kµ = 1. Markers correspond to averages over 103 replicate stochastic simulations (“Simulation”). Dashed and solid
lines correspond to our analytical predictions (“Theory”) for G and S mutants, respectively (see Eq. S32).
Parameter values: gW = gG = gS = 0.1, N0

W = 10, m = n = 1010, θ = 103 and τ1/2 = 5.9 and θ = 103.

8 From the stochastic model to the deterministic limit

In our analytical calculations, we consider the deterministic description for the population of W organisms (see Eq.
3). Here, we present a full derivation of the deterministic limit of the stochastic model for large population sizes.
This derivation is similar to those of (Traulsen et al. 2005; Traulsen and Hauert 2009; Marrec and Bitbol
2018) that address the case of the Moran model.

In a fully wild-type (W) population, the probability P (j, t|j0) of having j W microorganisms at time t, knowing
that j0 W microorganisms were present at time t = 0, satisfies the master equation

∂P (j, t|j0)

∂t
= fW (t)

(
1− j − 1

K

)
(j − 1)P (j − 1, t|j0) + gW (j + 1)P (j + 1, t|j0)

−
[
fW (t)

(
1− j

K

)
+ gW

]
jP (j, t|j0) . (S34)

Let us introduce x = j/K and ρ(x, t|x0) = KP (j, t|j0), and perform a Kramer-Moyal expansion (Van Kampen
1981; Gardiner 1985), which focuses on the regime 1/K � x. To first order in 1/K, one obtains the following
diffusion equation (Ewens 1979) (also known as Fokker-Planck equation or Kolmogorov forward equation):

∂ρ(x, t|x0)

∂t
= − ∂

∂x
{[fW (t)x(1− x)− gWx] ρ(x, t|x0)}+

1

2K

∂2

∂x2
{[fW (t)x(1− x) + gWx] ρ(x, t|x0)} . (S35)

Note that the first term on the right hand-side of this equation corresponds to the selection term (known as the drift
term in physics), while the second one corresponds to the genetic drift term (known as the diffusion term in physics).

In the limit K →∞, to zeroth order in 1/K, one can neglect the diffusion term, yielding:

∂ρ(x, t|x0)

∂t
= − ∂

∂x
{[fW (t)x(1− x)− gWx] ρ(x, t|x0)} . (S36)

In this limit, one obtains an equation on the average population size (scaled by K), 〈x(t)〉 =
∫ 1

0
xρ(x, t|x0)dx:

∂〈x〉
∂t

= [fW (t)− gW ] 〈x〉 − fW (t)〈x2〉 . (S37)

Further assuming that the distribution of x is very peaked around its mean (〈x〉 ≈ x) and in particular neglecting the
variance (〈x2〉 ≈ 〈x〉2 ≈ x2), which is acceptable for very large systems with demographic fluctuations, one obtains:

∂x

∂t
= [fW (t)(1− x)− gW ]x . (S38)
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Multiplying this ordinary differential equation by the carrying capacity K yields Eq. 3, where j is denoted by NW .

9 Numerical integration methods

In this work, we derived analytical predictions for the fixation probability pfix, the rescue probability pr and the
mean time of extinction τ ′0 (see Eqs. 4, 9 and S13, respectively). Since these equations involve improper integrals,
it is necessary to appropriately choose the values of the (finite) integral boundaries in order to obtain a good
approximation of these improper integrals by numerical integration. These choices are discussed below. The built-in
function NIntegrate from Wolfram Mathematica was then employed to perform numerical integrations.

First, in order to compute numerically pfix from Eq. 4, let us introduce a parameter τ1 such that:

pfix(t0) = 1−
gM
∫∞
t0
eρ(t)dt

1 + gM
∫∞
t0
eρ(t)dt

≈ 1−
gM
∫ t0+τ1
t0

eρ(t)dt

1 + gM
∫ t0+τ1
t0

eρ(t)dt
, (S39)

One should choose τ1 such that it is much larger than the mean time of extinction of the mutants τ ′0. Otherwise,
some mutants destined for extinction will be considered as mutants that fix. Fig. S13A illustrates this point: for the
parameters employed in this figure, the largest value of τ0 is max(τ0) ∼ 30, and accordingly, we observe that for
τ1 � 30, the agreement between the analytical prediction calculated numerically via Eq. S39 and the simulated data
is very good.

Similarly, in order to compute numerically pr from Eq. 9, we introduce a parameter τ2 such that:

pr = 1−exp

[
−µ
∫ ∞

0

pfix(t)NW (t)fW (t)

(
1− NW (t)

K

)
dt

]
≈ 1−exp

[
−µ
∫ τ2

0

pfix(t)NW (t)fW (t)

(
1− NW (t)

K

)
dt

]
,

(S40)
Choosing τ2 so that it is larger than the mean time of spontaneous extinction of wild-type microbes should ensure
that we capture the whole time range over which mutants can appear and fix. As can be seen in Fig. 1, for the
parameter values chosen in Fig. S13B, the mean time of spontaneous extinction is ∼ 1750. Indeed, Fig. S13B shows
that a good agreement between numerical predictions and simulated data is obtained for τ2 > 1750.

Similarly, in order to compute numerically τ0 = τ
′

0 − t0 from Eq. S13 with i0 = 1, we introduce a parameter τ3
such that:

τ
′

0 =
gM

1− pfix(t0)

∫ ∞
t0

teρ(t)

(1 + Λ(t))2
dt ≈ gM

1− pfix(t0)

∫ t0+τ3

t0

teρ(t)

(1 + Λ(t))2
dt . (S41)

The parameter τ3 must be chosen so that it is larger than all times for which the probability density function of
τ̂0 is significant. In practice, we may choose τ3 as larger than the variance of the distribution of extinction times.
Assuming that this distribution is exponential (it is close to exponential in simulations), one should choose τ3 � τ2

0 .
Accordingly, Fig. S13C demonstrates a very good agreement with simulated data for τ3 � max(τ0)2 ∼ 900, where
max(τ0) is the largest value of τ0 for the parameters involved in this figure.

In practice, in each figure of this paper, we chose the values of τ1, τ2 and τ3 so that they were large enough
to satisfy the criteria outlined here in the worse case of the figure (i.e. the one requiring the largest value of this
parameter).

August 26, 2020 18/23



500 1000 1500

Time of appearance t
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

F
ix

a
ti
o

n
 p

ro
b

a
b

ili
ty

 p
fi
x

1
=50

1
=100

1
=200

1
=500

1
=1000

Sim.

10
-8

10
-6

10
-4

10
-2

Mutation probability upon division

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

R
e

s
c
u

e
 p

ro
b

a
b

ili
ty

 p
r

2
=1000

2
=2000

2
=5000

Sim.

200 400 600 800 1000 1200 1400 1600

Time of appearance t
0

5

10

15

20

25

30

M
e

a
n

 t
im

e
 t

o
 e

x
ti
n

c
ti
o

n
0

3
=500

3
=1000

3
=2000

Sim.

A B

C

Fig S13. Robustness of parameters and numerical integrations. A. Fixation probability pfix of G mutants
versus their time of appearance t0 in the deteriorating environment. Solid curves correspond to numerical
integrations of Eq. S39 with different values of τ1. B. Rescue probability pr of a W population in a deteriorating
environment by G mutants, versus mutation probability µ upon division. Solid curves correspond to numerical
integrations of Eq. S40 with different values of τ2. C. Mean time of extinction τ ′0 of G mutants versus their time of
appearance t0 in the deteriorating environment. Solid curves correspond to numerical integrations of Eq. S41 with
different values of τ3. In all panels, gray markers correspond to averages over 103 replicate stochastic simulations,
and error bars in panel C (often smaller than markers) to 95% confidence intervals. Parameter values: fG = 1
(recall that generally we take fG = 0.5), gW = gG = gS = 0.1, K = 103, N0

W = 10, n = 5 and θ = 103.
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10 Numerical simulation methods

In this work, all numerical simulations are performed using a Gillespie algorithm (Gillespie 1977). Because the
sampled time intervals ∆t between successive individual event satisfy ∆t < 1 (see Fig. S14), which is smaller than
the timescales of all processes considered here, we neglect fitness variations between individual events. In practice,
the sampled time intervals between each individual event tend to get larger close to extinction events, since the
total number of microbes then substantially decreases, but even then, they remain smaller than 1. Note that,
in order to take into account the time variability of fitness at a higher resolution than that of events, one could
employ e.g. the approach described in (Thanh and Priami 2015). In the following, we provide details about the
simulations used in each part of our work. Matlab implementations of our numerical simulations are freely available
at https://doi.org/10.5281/zenodo.3993272.
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Fig S14. Time interval between two events. Probability that the sampled time interval ∆t between two
events in the Gillespie simulation is smaller than the threshold time interval T plotted versus T for different Hill
coefficients n (see Eqs. 1). Markers correspond to the average over 102 replicate stochastic simulations of a purely
W population (µ = 0). Parameter values: gW = 0.1, K = 103, N0

W = 10 and θ = 103.

10.1 Population decay in a deteriorating environment

In our simplest simulations, presented in Fig. 1, only W microorganisms were considered (no mutation, µ = 0). For
each replicate simulation, we saved the number of W individuals present at regular time intervals, i.e. at time points
0, δt, 2δt... The elementary events that can occur are:

� W → 2W : Division of a wild-type microbe with rate k+
W = fW (t)(1−NW /K), where the value of fW (t) is

taken at the time t of the last event that occurred.

� W → ∅: Death of a wild-type microbe with rate k−W = gW .

The total rate of events is R = (k+
W + k−W )NW . Simulation steps are the following:

1. Initialization: The microbial population starts from NW = N0
W wild-type microorganisms at time t = 0, and

the value of fW is set at fW (0).

2. The time increment ∆t is sampled randomly from an exponential distribution with mean 1/R, where R =
(k+
W + k−W )NW . The next event to occur is chosen randomly, with probabilities k/R proportional to the rate k

of each event.

3. The time t is increased to t = t+ ∆t and the event chosen at Step 2 is executed, i.e. NW is updated. The
value of fW is also updated from fW (t) to fW (t+ ∆t).

4. The number of wild-type microbes NW is saved at the desired time points falling between t and t+ ∆t.

5. We go back to Step 2 and iterate until the total number of microbes reaches zero (NW = 0), corresponding to
extinction.
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10.2 Fixation probability and time of extinction of mutants

In our simulations concerning the fixation probability and the time of extinction of mutants, both wild-type
microorganisms (W) and mutants (M) are considered, but no random mutations are allowed, i.e. µ = 0. Indeed, the
aim is to determine the fate of i0 mutants that are introduced at a controlled time t0 (generally we take i0 = 1 to
model the appearance of a single mutant). The elementary events that can occur are:

� W → 2W : Division of a wild-type microbe with rate k+
W = fW (t)(1− (NW +NM )/K), where the value of

fW (t) is taken at the time t of the last event that occurred.

� W → ∅: Death of a wild-type microbe with rate k−W = gW .

� M → 2M : Division of a mutant microbe with rate k+
M = fM (t)(1− (NW +NM )/K), where the value of fM (t)

is taken at the time t of the last event that occurred. Note that for G mutants, fM is constant, but for S
mutants, it varies in time.

� M → ∅: Death of a mutant microbe with rate k−M = gM .

The total rate of events is R = (k+
W + k−W )NW + (k+

M + k−M )NM . Simulation steps are the following:

1. Initialization: The microbial population starts from NW = N0
W wild-type microorganisms and NM = 0 mutant

at time t = 0, and the values of fW and fM are set at fW (0) and fM (0), respectively.

2. The time increment ∆t is sampled randomly from an exponential distribution with mean 1/R, where R =
(k+
W +k−W )NW +(k+

M+k−M )NM . The next event to occur is chosen randomly, with probabilities k/R proportional
to the rate k of each event.

3. If t+ ∆t ≥ t0 for the first time, the time is set to t = t0, i0 wild-types microbes are replaced by i0 mutants
(NW = NW − i0 and NM = NM + i0) and the event determined at Step 2 is not executed. Otherwise, the
time t is increased to t = t+ ∆t and the event determined at Step 2 is executed, i.e. NW or NM is updated.
The values of fW and fM (in the case of an S mutant) are also updated.

4. We go back to Step 2 and iterate until the total number of microbes is zero (NW +NM = 0), corresponding to
extinction of the population, or there are only mutants (NW = 0 and NM 6= 0). In the latter case, we also
check that the mutant lineage does not undergo rapid stochastic extinction by assessing whether it dies out or
not before reaching a size of 100 individuals. If it reaches such a size, we consider that fixation of the mutant
has occurred.

10.3 Rescue of a population by mutants

Finally, our simulations concerning the rescue of a population by mutants, both wild-type microorganisms (W) and
mutants (M) are considered, with a probability µ of mutation from W to M upon division. The elementary events
that can occur are:

� W → 2W : Division without mutation of a wild-type microbe with rate k+
W = fW (t)(1− (NW +NM )/K)(1−µ),

where the value of fW (t) is taken at the time t of the last event that occurred.

� W →W +M : Division with mutation of a wild-type microbe with rate kWM = fW (t)(1− (NW +NM )/K)µ.

� W → ∅: Death of a wild-type microbe with rate k−W = gW .

� M → 2M : Division of a mutant microbe with rate k+
M = fM (t)(1− (NW +NM )/K), where the value of fM (t)

is taken at the time t of the last event that occurred. Note that for G mutants, fM is constant, but for S
mutants, it varies in time.

� M → ∅: Death of a mutant microbe with rate k−M = gM .

The total rate of events is R = (k+
W + k−W + kWM )NW + (k+

M + k−M )NM . Simulation steps are the following:

1. Initialization: The microbial population starts from NW = N0
W wild-type microorganisms and NM = 0 mutant

at time t = 0, and the values of fW and fM are set at fW (0) and fM (0), respectively.
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2. The time increment ∆t is sampled randomly from an exponential distribution with mean 1/R, where R =
(k+
W + k−W + kWM )NW + (k+

M + k−M )NM . The next event to occur is chosen randomly, with probabilities k/R
proportional to the rate k of each event.

3. The time t is increased to t = t+ ∆t and the event determined at Step 2 is executed, i.e. NW and NM are
updated. The value of fW and fM (in the case of an S mutant) are also updated.

4. We go back to Step 2 and iterate until the total number of microbes is zero (NW +NM = 0), corresponding to
extinction of the population, or there are only mutants (NW = 0 and NM 6= 0), corresponding to fixation of
the mutant and rescue of the population.
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