- 1 **Title:** Differential gene expression between polymorphic zooids of the marine
- 2 bryozoan Bugulina stolonifera
- 3 Authors: Kira A. Treibergs and Gonzalo Giribet
- 4

5 SUPPLEMENTAL INFORMATION

- 6
- 7 Table S1: Sample preparation dates for RNA-sequencing of *Bugulina stolonifera*
- 8 tissue-specific samples (three biological replicates each) and one sample of
- 9 Rhodomonas salina.

Sample	Cultured	Fixed	Dissected	Extracted	cDNA	PCR Amp.	qPCR	Sequencing
Autozooid, Mature 1	7/1/2015	8/17/2015	4/1/2016	4/1/16	4/1/16	4/5/2016	4/25/17	5/4/17
Autozooid, Mature 2	7/1/2015	8/17/2015	2/9/2016	2/9/2016	3/11/16	4/5/2016	4/25/17	5/4/17
Autozooid, Mature 3	7/1/2015	8/17/2015	3/9/16	3/9/16	3/11/16	4/5/2016	4/25/17	5/4/17
Autozooid, Bud 1	7/1/2015	8/17/2015	4/1/16	4/1/16	3/11/16	4/5/2016	4/25/17	5/4/17
Autozooid, Bud 2	6/17/2016	8/16/2016	3/24/17	3/24/17	3/25/17	3/26/17	4/25/17	5/4/17
Autozooid, Bud 3	7/1/2015	8/17/2015	3/9/16	3/9/16	3/11/16	4/5/2016	4/25/17	5/4/17
Avicularium, Mature 1	6/17/2016	8/14/16	8/15/16	2/17/17	3/11/17	3/11/17	4/25/17	5/4/17
Avicularium, Mature 2	6/17/2016	8/14/16	8/15/16	2/17/17	3/11/17	3/11/17	4/25/17	5/4/17
Avicularium, Mature 3	6/17/2016	8/14/16	8/16/16	2/17/17	3/11/17	3/11/17	4/25/17	5/4/17
Avicularium, Bud 1	6/17/2016	8/14/16	8/15/16	2/17/17	3/11/17	3/11/17	4/25/17	5/4/17
Avicularium, Bud 2	6/17/2016	8/14/16	8/16/16	2/17/17	3/11/17	3/11/17	4/25/17	5/4/17
Avicularium, Bud 3	6/17/2016	8/14/16	8/16/16	2/17/17	3/11/17	3/11/17	4/25/17	5/4/17
Rhizoid, Network 1	7/1/2015	8/17/2015	4/1/16	4/1/16	4/1/16	4/5/2016	4/25/17	5/4/17
Rhizoid, Network 2	6/17/2016	8/14/16	3/24/17	3/24/17	3/25/17	3/26/17	4/25/17	5/4/17
Rhizoid, Network 3	6/17/2016	8/14/16	3/24/17	3/24/17	3/25/17	3/26/17	4/25/17	5/4/17
Rhizoid, Autozooid 1	7/1/2015	8/17/2015	4/1/16	4/1/16	4/1/16	4/5/2016	5/25/16	5/27/16
Rhizoid, Autozooid 2	6/17/2016	8/14/16	3/24/17	3/24/17	3/25/17	3/26/17	4/25/17	5/4/17
Rhizoid, Autozooid 3	6/17/2016	8/14/16	3/24/17	3/24/17	3/25/17	3/26/17	4/25/17	5/4/17
Rhodomonas salina	6/11/2016	8/8/16	8/8/16	8/8/16	8/12/16	8/13/16	8/28/16	8/29/16

-	Stats based on all transcriptome contigs:			Stats based on longest isoform per gene:					
	Genes		GC	Contig N50	Median Contig	Average Contig	Total Bases		
-	(#)	(#)	(%)	(bp)	(bp)	(bp)	(#)		
.2 -	57,502	64,951	53.19	416	286	404.69	26,285,090		
3									
4									
.5									
6									
7									
.8									
9									
20									
21									
-1									
22									
23									
24									
25									
26									
.0									
27									
28									
29									
80									
31									

11 Table S2: Trinity transcriptome assembly metrics for *Rhodomonas salina*.

32 Table S3. Annotation of differentially expressed genes up-regulated in autozooid

- 33 **and avicularium tissue** (4-fold expression, FDR p<0.001). Annotated transcripts of
- 34 selected differentially expressed genes from the 'Autozooid and Avicularium'
- 35 transcriptome, with annotations are listed for several functional categories including
- 36 WNT and Notch signaling pathways, heat response, nervous system and muscular
- 37 system.

	Zooid Type Up-regulated	Transcript ID	log Fold Change	PValue	False Discovery Rate	Uniprot ID	Protein Name	Gene Na
▼ WNT	signaling pathw	ay						
	Autozooid	138519_c0_g1	11.65	6.26E-12	6.25E-08	RN213_HUMAN	E3 ubiquitin-protein ligase	RNF213
	Autozooid	104535_c1_g10	9.21	4.83E-08	2.32E-05	NPHP3_XENTR	Nephrocystin-3	nphp3
	Autozooid	97261_c0_g3	8.99	2.63E-07	7.78E-05	RN213_MOUSE	E3 ubiquitin-protein ligase	RNF213
	Avicularium	144339_c0_g1	7.64	1.4E-06	0.00024827	GBLP_RAT	Receptor of activated protein C kinase 1	Rack1
▼ Notch	n signaling pathy	vay						
	Autozooid	95770_c0_g2	5.99	4.6E-06	0.000578	DTX3_PONAB	Probable E3 ubiquitin-protein ligase	DTX3
	Avicularium	104168_c1_g1	4.35	9.21E-10	1.59E-06	NOTC1_XENTR	Neurogenic locus notch homolog protein 1	notch1
▼ Heat	Response							
	Avicularium	55059_c0_g2	9.76	5.01E-09	4.63E-06	HS902_ARATH	Heat Shock Protein 90-2	HSP90-2
	Avicularium	190626_c0_g1	8.64	5.03E-06	0.000602	KCRM_CHICK	Creatine kinase M-type	СКМ
	Avicularium	102041_c0_g5	7.92	4.05E-10	1.02E-06	HSP70_MAIZE	Heat Shock 70 Protein	HSP70
	Avicularium	102041_c0_g4	6.50	3.74E-06	0.000497	MD37C_ARATH	Heat Shock 70 kDa Protein 4	HSP70-4
▼ Nervo	ous System	_						
	Autozooid	9660_c0_g1	11.62	8.08E-10	1.51E-06	RL10_DROME	60X ribosomal protein L10	RpL10
	Autozooid	104015_c0_g1	8.11	1.1E-06	0.000209	CFI1_CAEEL	AT-rich interactive domain-containing pr otein cfi-1	cfi-1
	Autozooid	107873_c0_g4	7.73	9.58E-09	7.51E-06	FBX38_HUMAN	F-box only protein 38	FBX039
	Autozooid	106834_c0_g1	6.18	6.65E-06	0.000721	IF4G1_MOUSE	Eukaryotic translation initiation factor 4 gamma 1	Eif4g1
	Autozooid	109181_c0_g1	6.00	1.91E-08	1.18E-05	CPEB1 HUMAN	Cytoplasmic polyadenylation element-binding pr otein 1	CPEB1
	Autozooid	107498_c0_g1	5.54	6.06E-09	5.32E-06	MATN2_MOUSE	Matrilin-2	Matn2
	Autozooid	101264_c0_g2	4.46	3.15E-07	9.03E-05	CEL_RAT	Bile salt-activated lipase	Cel
	Avicularium	147413_c0_g1	9.29	4.34E-06	0.000558	APOD_BOVIN	Apolipoprotein D	APOD
	Avicularium	82063_c0_g1	9.26	1.45E-08	9.89E-06	APOD_RAT	Apolipoprotein D	APOD
	Avicularium	136775_c0_g1	8.65	4.59E-06	0.000578	IF4E_DROME	Eukaryotic translation initiation factor	elF4E1
	Avicularium	193557_c0_g1	8.43	3.25E-06	0.000447	TEN3_DANRE	Teneurin-3	tenm3
	Avicularium	165368_c0_g1	7.48	2.65E-07	7.83E-05	TENA_MOUSE	Tenascin	Tnc
	Avicularium	-	6.90	4.57E-06	0.000577		Tenascin	Tnc
	Avicularium	71212_c0_g1 190643_c0_g1	6.88	4.57E-06	0.000522	TENA_MOUSE	Teneurin-1	TENM1
		190643_C0_g1	0.00	3.99E-06	0.000522	TENT_CHICK		TENINT
▼ Musc	ular System							
	Autozooid	104015_c0_g1	8.11	1.1E-06	0.000209	DRI_DROME	Protein dead ringer	retn
	Autozooid	109395_c1_g3	7.36	1.33E-06	0.000242	RHOAA_DANRE	Rho-related GTP-binding protein RhoA-A	rhoaa
	Autozooid	88683_c0_g1	6.08	6.59E-07	0.000151	M10L1_MOUSE	RNA helicase Mov10l1	Mov10 1
	Avicularium	147413_c0_g1	9.29	4.34E-06		APOD_BOVIN	ApolipoproteinD	APOD
	Avicularium	82063_c0_g1	9.26	1.45E-08		BLC_ECOLI	Outer membrane lipoprotein Blc	blc
	Avicularium	136775_c0_g1	8.65	4.59E-06	0.000578	IF4E_DROME	Eukaryotic translation initiation factor 4E1	elF4E1
	Avicularium	162086_c0_g1	8.32	2.03E-06	0.000321	RAC1_DROME	Res-related protein Rac1	Rac1
	Avicularium	85049_c0_g3	7.70	6.6E-06	0.000718	TCAF_XENLA	TRPM8 channel-associated factor homolog	tcaf
	Avicularium	165368_c0_g1	7.48	2.65E-07	7.83E-05	TENA_MOUSE	Tenascin	Tnc
	Avicularium	71212_c0_g1	6.90	4.57E-06	0.000577	TENA_MOUSE	Tenascin	Tnc
	Avicularium	115838_c0_g1	6.71	4.5E-06	0.000572	TITIN_MOUSE	Titin	Ttn
	Avicularium	112663_c0_g1	4.53	3.34E-08	1.76E-05	CO4A1_CAEEL	Collagen alpha-1(IV) chain	emb-9
			4.22	4.27E-07	0.000114	UNC87_CAEEL	Protein unc-87	unc-87
	Avicularium	98082_c1_g1	4.22	4.27 2-07	0.000114	UNCOT_CALLE		4110 01

Figure S1: Bryozoan collection sites. A) Eel Pond, located at 41°31'32.40" N
70°40'13.25" W. Scale bar is 100 M. DBD- Drawbridge Dock, DD- Dinghy Dock, and
MSD- MBL St. Dock. B) MBL St. Dock, zoomed in to show collection transects. C)
Drawbridge Dock (to west) and Dinghy Dock (to east) collection transects. Adapted
from Google Earth.

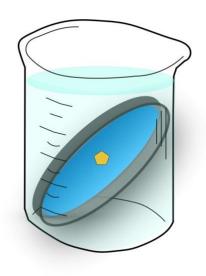


Figure S2: Bryozoan culture. Each individual (yellow), metamorphosed onto a 45 mm acetate disc (blue), was seated into a 45mm diameter petri dish (grey). Dishes were oriented vertically in 150 mL beakers, such that ancestrulae were oriented downwards, and beakers were filled with 125 mL Eel Pond Seawater (EPSW). 30 mm glass dishes were wedged over the petri dishes to keep them submerged and suspended in place (not depicted).

53

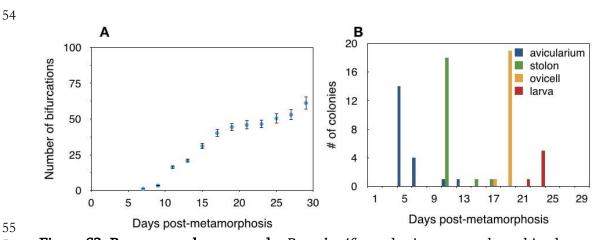
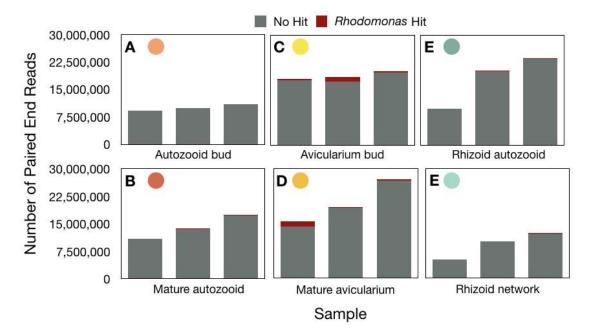
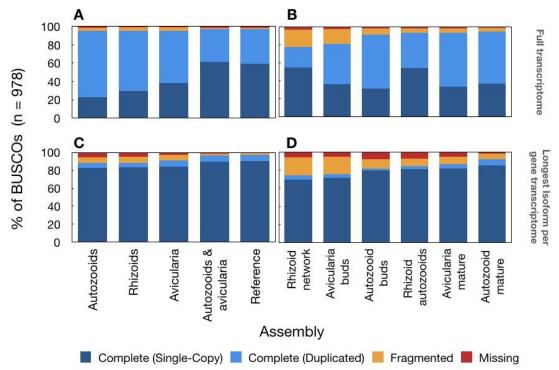



Figure S3: Bryozoan colony growth. *B. stolonifera* colonies were cultured in the
lab for one month, from metamorphosis on July 2, 2015. A) Colony growth
(measured as number of bifurcations) is plotted over time. Error bars indicate
Standard Error. B) Each colony was monitored every other day for the first

appearance of polymorphic zooids (avicularia, stolons, ooecia) and larvae. The


61 days post-metamorphosis of the first appearance of these polymorphic zooids is

62 plotted over the course of one month of culturing. (n = 23 colonies)

Figure S4: Removal of *R. salina* contamination All bryozoan paired reads were

- 65 mapped to a transcriptome of the cryptophyte using Bowtie2. In cases where one
- or both pairs mapped to the *R. salina* transcriptome, those reads were removed
- 67 from the dataset.

71 72 Figure S5: BUSCO analysis of assembly completeness for A, C) tissue-specific and

73 **B,D**) sample-specific assemblies of *B. stolonifera*, comparing BUSCO results for

- ⁷⁴ the complete transcriptome dataset (all isoforms included) **A**, **B**) with BUSCO
- results for a dataset composed of the longest isoform per gene **C**, **D**).
- 76 Transcriptomes were searched using the *metazoa odb9* database which contains a
- total of 978 curated single-copy gene orthologs.
- 78
- 79

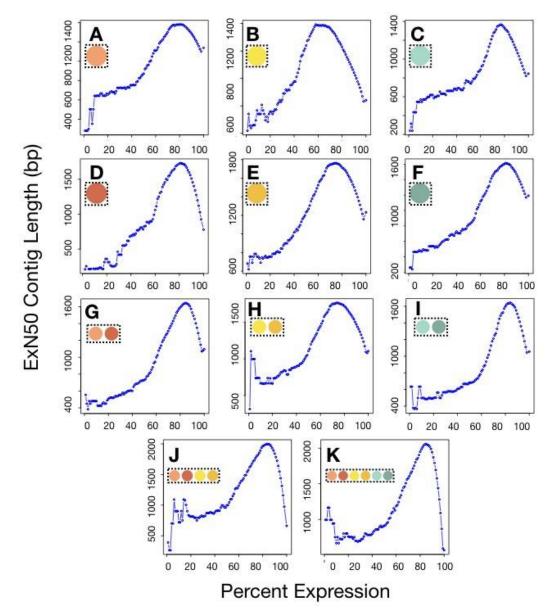
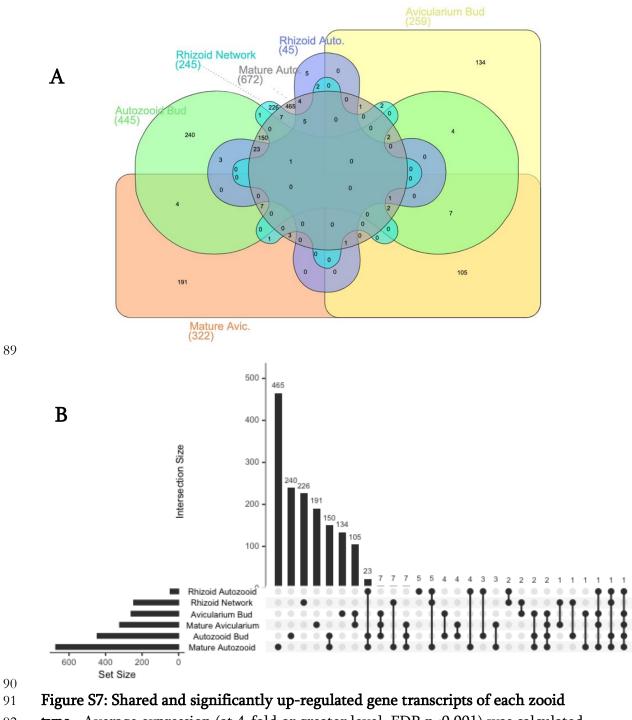


Figure S6: ExN50 Plots. Contig N50 (the size of contigs where half of the

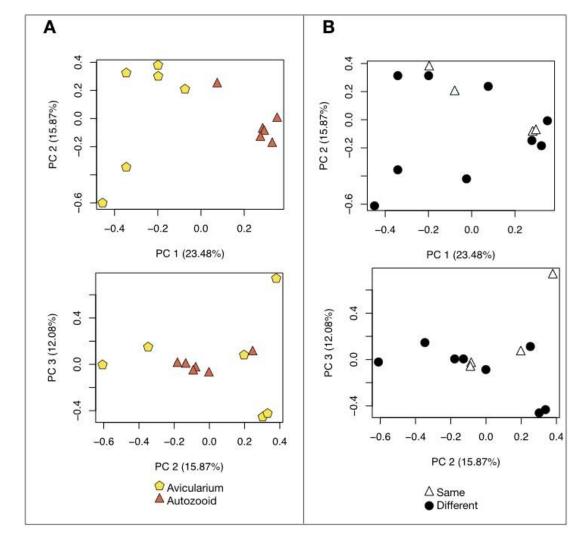
assembled bases are found) is plotted by percent (normalized) gene expression for


each transcriptome assembly. A) Autozooid bud assembly, B) Avicularium bud

assembly, **C)** Rhizoid network assembly, **D)** Mature autozooid assembly, **E)**

85 Mature avicularium assembly, **F)** Rhizoid autozooid assembly, **G)** Autozooid

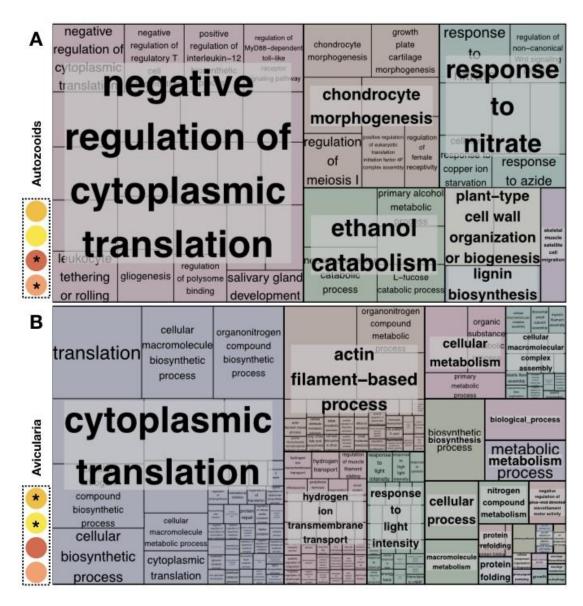
assembly, H) Avicularium assembly, I) Rhizoid assembly, J) Autozooids and


avicularia assembly, and **K**) Reference assembly.

- 92 **type**. Average expression (at 4-fold or greater level, FDR p<0.001) was calculated
- 93 across sample replicates from pairwise comparisons in the reference
- 94 transcriptome and summarized as sample-specific up-regulated gene expression

- 95 for each zooid type. The set of 1,597 differentially differently expressed genes
- ⁹⁶ are depicted as a **A**) six-way Venn diagram (Heberle *et al.*, 2015), with shared
- 97 genes between tissue types depicted as areas of overlap and the count of unique
- genes for each tissue type depicted as areas without overlap, and as an **B**) UpSet
- 99 plot (Conway *et al.*, 2017) where unique differentially expressed gene counts are
- 100 depicted for each unique tissue type as well as for subsets of multiple tissue types.
- 101 Sample abbreviations are as follows: "Mature Auto." = Mature autozooid, "Mature
- 102 avic." = Mature avicularium, "Rhizoid auto." = Rhizoid autozooid.
- 103

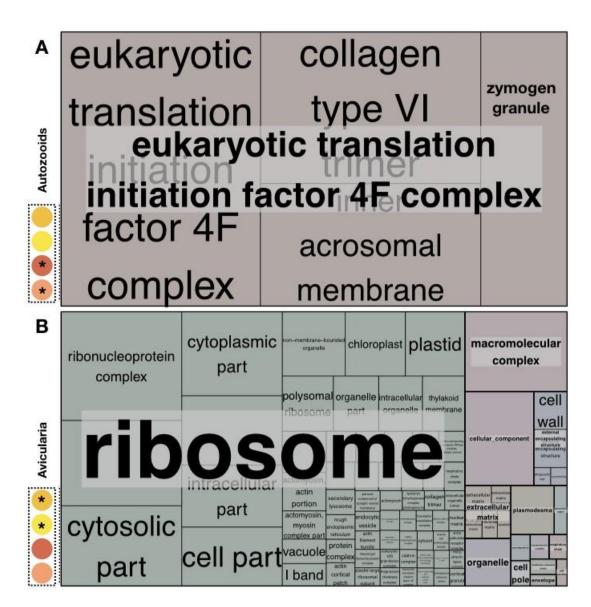
107 Figure S8: Autozooid and avicularium transcriptome sample relationships.

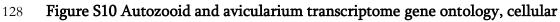

108 Principal components analysis (plotted as PC1 vs. PC2 and PC2 vs. PC3) of the

109 log2 gene count matrix demonstrates the relative similarity of transcripts in each

- sample in the autozooid and avicularium transcriptome assembly. A) Samples are
- 111 labeled by tissue type and developmental stage ('auto' = mature autozooid and
- 112 autozooid bud samples, 'avic ' = avicularium bud and mature avicularium
- samples). **B)** Samples are labeled by genetic individual, where samples labeled
- 'diff.' originate from genetically distinct colonies and samples labeled 'same'

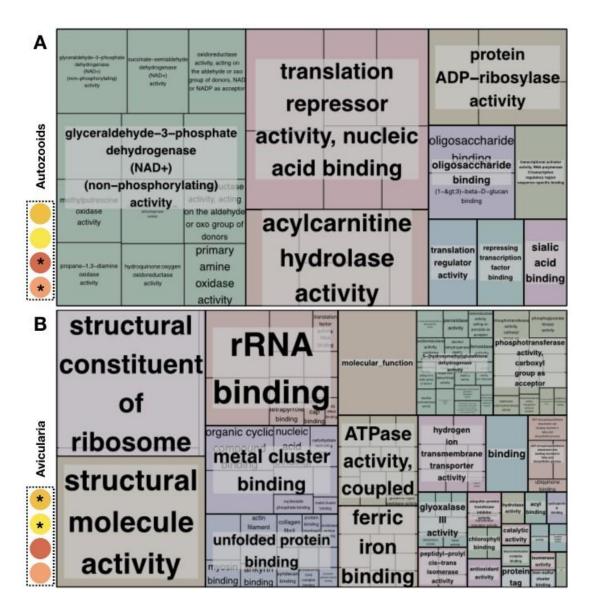
represent six tissue samples of different zooid type and stage, that originated from


116 the same genetic individual.


- 121 Figure S9: Autozooid and avicularium transcriptome gene ontology, biological
- **processes. A)** enriched GO terms found in genes that are up-regulated in

```
123 autozooids B) enriched GO terms found in genes that are up-regulated in
```

```
124 avicularia. Allowed similarity = 0.7, enriched = p < 0.05.
```



127


```
129 components. A) enriched GO terms found in genes that are up-regulated in
```

```
130 autozooids B) enriched GO terms found in genes that are up-regulated in
```

```
131 avicularia. Allowed similarity = 0.7, enriched = p < 0.05.
```


135 Figure S11: Autozooid and avicularium transcriptome gene ontology, molecular

- **function. A)** enriched GO terms found in genes that are up-regulated in
- 137 autozooids **B**) enriched GO terms found in genes up-regulated in in avicularia.
- 138 Allowed similarity = 0.7, enriched = p < 0.05.