Gene	Available Lines	Germline mRNA	Observed phenotype
		depletion achieved	
CG5003	v26680	80%	Early embryonic arrest or delay
	v26679	65%	n.p.*
	BL51408	75%	n.p.
	BL31061	n.d.^	n.p.
	BL51403	n.d.	n.p.
$T_{\rm em}07F$	v109600	95%	n.p.
TSP97E	v4391	95%	n.p.
CC6066	v105934	65%	n.p.
CG0900	BL51409	95%	Low penetrance mitotic defect
CG14230	BL51412	93%	Abnormal nurse cell number
stim	v47073	n/a	n.p.
CG30377	BL51386	n.d.	n.p.
CG14516	BL35802	65%	n.p.
CDD	v5680	n.d.	n.p.
СВР	v104064	n.d.	n.p.
	v14420	40%	n.p.
TotC	v106379	55%	n.p.
	BL51407	n.d.	n.p.
CG8188	v103362	85%	n.p.
CC 4001	v108419	n.d.	n.p.
CG4991	BL44450	80%	n.p.
N7 1 1	v102319	n.d.	n.p.
Nanoaa	BL51683	n.d.	n.p.
Itp-r83A	v6484	n.d.	n.p.
	BL51686	50%	n.p.
Rcal	BL51680	n.d.	n.p.
	BL51450	n.d.	n.p.
CG7730	BL36851	98%	n.p.
Fur2	BL51743	92%	n.p.
	BL42577	80%	n.p.
CG11151	BL51413	97%	n.p.
CG17018	BL57024	n.d.	n.p.
Crag	BL33594	n.d.	n.p.
CAH2	BL41836	44%	n.p.
lin19	BL36601	94%	n.p.

Table S1 – RNAi lines tested

kdm4A	BL34629	n/a	n.p.
RAF2	BL34395	94%	n.p.
pz.g	BL35448	75%	n.p.
CG17528	BL26292	9%	n.p.
	BL51404	55%	n.p.
CG7840	BL34954	n/a	n.p.
	BL32379	7%	n.p.
NaPi-III	BL29408	90%	Abnormal embryonic divisions
CG7627	BL32337	38%	n.p.
	BL51679	23%	n.p.
CG4476	BL38930	n.d.	n.p.
M1BP	BL32858	60%	n.p.
0010054	BL51687	n.d.	n.p.
CG10234	v108657	n.d.	n.p.
mad(mda4)	BL33907	n.d.	Abnormal embryonic divisions
mod(mdg4)	BL32995	n.d.	Abnormal embryonic divisions
CG6962	BL51682	98%	n.p.
CG6927	BL51684	90%	Low penetrance mitotic defect
	BL42001	n.d.	n.p.
CG7777	BL44464	50%	n.p.
	BL50695	50%	n.p.
fzr2	BL38223	88%	n.p.
CG2924	v104482	n.d.	n.p.
sip2	BL33691	n.d.	n.p.
tlk	BL35298	63%	n.p.
ATPalpha	BL32913	n.d.	n.p.
	BL33646	n.d.	n.p.
	BL51411	n.d.	n.p.
mCherry	BL35785	-	-

*No observable phenotype (n.p.) ^No data (n.d.)

Gene	Tested lines	Associated allele	Observed phenotype	
CC5002	BL18566	CG5003f02616	Early embryonic arrest or delay	
CG3003	BL22065	CG5003DP01070		
Tsp97E	BL37653	Tsp97Ем104380	n.p.*	
	BL19152	CG30377d00826		
CG30377	BL30598	СG30377м100023	Eggs not fertilized	
	BL43832	СG30377м107499		
CG17734	BL19856	CG17734ey06693	n.p.	
CG4586	BL18419	CG4586f01234	n.p.	
CG4991	BL24186	СG4991мв03239	n.p.	
D 1	BL9162	Rca11x	Low penetrance embryonic	
KCAI	BL11294	<i>Rca103300</i>	phenotype	
E2	BL11429	Fur2ep1493		
F Ur 2	BL57092	Fur2A	n.p.	
1-1-	BL6962	kokoed2		
коко	BL21798	kokodp00113	n.p.	
	BL32630	yinG10332		
yın	BL19172	y in d02176	n.p.	
CG15570	BL43789	СG15570м106763	Abnormal nurse cell number	
WRNexo	BL18267	WRNex0e04496	n.p.	
	BL36987	Fas1 <i>M</i> 103699		
Fas1	BL21537	Fas1DG16410	n.p.	
	BL19855	Fas1ey0662		
CG17018	BL57930	СG17018м112332	n.p.	
CAUD	BL42463	САН2м107079	Forly embryonic emeat or delay	
CATIZ	BL25562	САН2мв07616	Early embryonic arrest or delay	
	BL24077	СИЕ МВ03598	n.p.	
сие	BL655	сие2		
	BL15336	СИС ЕҮ01263		
mai D26	BL25717	mei-P26mfs2	Arrest in early oogenesis	
met-F20	BL25919	mei-P26mfs1		
	BL13992	ССб178кд05318	n.p.	
CG6178	BL17104	CG6178ep3251		
	BL17388	CG6178ey0763		
CC15721	BL25490	СG15721мв06259		
0015/21	BL18718	CG15721f03962	n.p.	

Table S2 – Transposable element insertion lines tested

NaPi-III	BL24722	NaPi-Шмв04559	Abnormal embryonic divisions
CG7627	BL18426	CG7627f01338	n.p.
CC 1176	BL19350	CG4479d11470	Low penetrance embryonic
CG4470	BL30944	СG4476м100100	arrest or delay
CC10060	BL37000	СG10960м103549	Abnormal embryonic divisions
010900	BL24047	СG10960мв03129	Abilormal emoryonic divisions

*No observable phenotype (n.p.)

Gene	RNAi lines Tested
Trehalase (Treh)	BL50585
Hexokinase C (HK)	BL57404
Phosphoglucosemutase (Pgm)	BL34345
UTD alwage 1 phase bate with hitsen afonges (UCD)	BL50902
01Pgiucose-1-phosphale urlayiyuransjerase (UGP)	BL52968
Glycogenin	BL42565
Chuccom surth and (Chuc)	BL34930
Glycogen syninase (GlyS)	BL50956
1 4 Alaha Chuan Barrahina Enamera (ACDE)	BL40860
1,4-Aipna-Giucan Branching Enzyme (AGBE)	BL42753
Glycogen phosphorylase (GlyP)	BL33634

Table S3 – Glycogen pathway enzyme gene RNAi lines tested

nebu RNAi

Figure S1. *nebu* RNAi recapitulates the *nebu* mutant embryonic phenotype. RNAi against *nebu* was driven during late oogenesis using a *mat* α -*GAL4* driver, also driving expression of *UAS-Dicer2*. (A) Defects in mitosis were observed in *nebu* RNAi embryos; multipolar spindles and seemingly polyploid nuclei (insets) were present as in embryos from mothers with the transposon insertion alleles of *nebu*. DNA is shown in magenta, and anti-tubulin is shown in green. (B) Embryos from two different *nebu* RNAi lines exhibit mitotic defects (10.5% and 11.9%, respectively), whereas only 4.2% of a *mCherry* RNAi control showed mitotic defects. The difference between the observed phenotypic frequency in *nebu* RNAi and control was significant (Binomial test, p < 0.0001). (C) Q-PCR analysis of mature oocyte samples shows depletion of *nebu* mRNA in *nebu* RNAi lines relative to an *mCherry* control, with greater than 75% of total *nebu* mRNA being depleted in both lines (mRNA reduced to 20.7±12.9% of control for *nebu* RNAi #1 and 13.1±12.10% for *nebu* RNAi #2).

Primer set

Figure S2. Generation of a *nebu* **null allele by CRISPR-mediated deletion.** (A) *nebu* CRISPR deletion strategy. We generated gRNAs targeting the ends of the *nebu* locus. To induce homology-directed repair, we co-injected the gRNA plasmids with a donor plasmid carrying a *dsRED* marker and two homology arms to the regions immediately outside the gRNA target sites. (B) PCR confirmation of *nebu* CRISPR deletion. Primers sets used were designed to span the junction between the *dsRED* marker and the flanking genomic region.

Figure S3. Disruption of glycogen metabolic enzyme leads to mitotic defects in early embryogenesis. (A) Schematic of the glycogen metabolic pathway. Once glucose is converted into glucose-6-phosphate by hexokinase C (HK), it can enter glycolysis and produce pyruvate, or it can be converted into glucose-1-phosphate by phosphoglucomutase (Pgm). UTP-glucose-1phosphate uridylyltransferase (UGP) converts glucose-1-phosphate into UDP-glucose, which is then used by glycogenin to produce α -D-glucosylglycogenin, which is used by glycogen synthase (GlyS) to kick start glycogen production. GlyS then produces UDP-glucose $\alpha(1\rightarrow 4)$ -glycogenin (linear glycogen) by subsequent addition of UDP-glucose monomers. Branching in the glycogen polymer can be catalyzed by 1,4-alpha-glucan branching enzyme (AGBE) which produces $\alpha(1\rightarrow 6)$ branching. Glycogen phosphorylase is the main catalytic enzyme in glycogen breakdown, catalyzing the production of glucose-1-phosphate from a glycogen polymer. The released glucose-1-phosphate can be either reused for glycogen synthesis or feed into glycolysis. (B) Quantification of embryonic phenotype in knockdown of glycogen metabolic enzymes. RNAi against different enzymes of the glycogen pathway was driven with mat α -GAL4 germline driver, also driving expression of UAS-Dicer2, and 2-hour embryos were collected, fixed and stained for DNA and tubulin. The fraction of embryos with mitotic defects are shown out of the total number of collected, and mitotic defects refer to arrested or delayed mitoses, and multipolar spindles. GlyP RNAi embryos exhibited mitotic phenotypes at a significantly different frequency than in the *mCherry* RNAi control (Binomial test, p < 0.0001), and was comparable to the frequency observed in nebu RNAi.

Primer set

Figure S4. CG7777 is dispensable for female fertility. (A) CRISPR deletion of *CG7777*. We generated gRNAs targeting the ends of the *CG7777* locus. To induce homology-directed repair, we co-injected the gRNA plasmids with a donor plasmid carrying a *dsRED* marker and two homology arms to the regions immediately outside the gRNA target sites. (B) PCR confirmation of *CG7777* CRISPR deletion. Primers sets used were designed to span the junction between the *dsRED* marker and the flanking genomic region. (C) Hatching assay analysis of eggs laid by *CG7777* null females. Only the difference between *CG7777det/CG7777det* and *CG7777det/+* is significant (two-tailed t-test, p < 0.05).