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1 Simulations: additional results

1.1 Agent-based model simulations

In the main text we report on the abundances of advantageous, neutral, and
disadvantageous mutants in spatial and well-mixed system. Some further results
are presented in figure S1. In particular, panels (a) and (b) study advantageous
mutants. In (a), the advantage is manifested through an increased division rate,
and in (b) through a decreased death rate of mutants. Varied is the rate that
is unaffected by the mutation under consideration, which is the death rate in
(a) and the reproduction rate in (b). As expected, we observe that the number
of advantageous mutants is higher in a spatial system (red) compared to the
well-mixed system (black) for both types of mutants. The difference increases
with death rate (see panel (a)) and decreases with the reproduction rate (panel
(b)); in other words, the difference between well-mixed and spatial models is
larger for cells with an overall slower expansion rate.

Next, we turn to disadvantageous mutants. In figure S1(c) we study mutants
characterized by a lower reproduction rate, and in figure S1(d) the mutants’
death rate is higher compared to that for wild type cells. Again, in both panels,
the rate unaffected by mutations is varied, and the mutant abundance in spatial
(red) and well-mixed (black) system compared at the same population size. As
reported in the main text, we observe that mutants with a lower reproduction
rate are more abundant in a spatial model. As seen in panel (c), the differences
becomes smaller with an increased death rate of cells.

In panel (d) of figure S1 we turn to mutants characterized by a larger death
rates. It is reported in the main text that if the disadvantage is sufficiently pro-
nounced, we expect to find more such mutants in a well-mixed system compared
to a spatial system. This is what we see in figure S1(d), when the reproduc-
tion rates are lower than a threshold. This trend reverses, however, when the
reproduction rates become higher. This provides further information about the
phenomenon reported in the main text. The mutant disadvantage must be suf-
ficiently high, for the well-mixed system to accumulate more mutants than the
spatial system, and this advantage is measured against the background repro-
duction rate of the cells. As the reproduction rate gets higher, the difference
between mutant and wild type death rates must also become higher, to observe
more mutants in a well-mixed system compared to the spatial system.

1.2 Patch model simulations

1.2.1 Dependence on reproduction and death rate

We have run numerical simulations of the stochastic patch model to determine
whether spatial arrangement of patches makes a difference for the abundance of
mutants at a given system size. Figure S2 shows the results for neutral (a) and
advantageous (b) mutants, while figure 2 of the main text contains information
about disadvantageous mutants. In figure S2, two types of the patch model are
compared. In the spatial 2D patch model (dark green bars), we used a 2D array

2



Figure S1: The abundance of mutants in spatial 2D simulations (red) and in
a well-mixed system (black), as a function of parameters. (a) Mutants have a
larger reproduction rate (Lw = 0.2, Lm = 0.25); varied is the death rate (equal
for mutants and wild types). (b) Mutants have a smaller death rate (Dw =
0.1, Dm = 0.09); varied is the reproduction rate (equal for mutants and wild
types). (c) Mutants have a smaller reproduction rate (Lw = 0.25, Lm = 0.2);
varied is the death rate (equal for mutants and wild types). (d) Mutants have a
larger death rate (Dw = 0.05, Dm = 0.1); varied is the reproduction rate (equal
for mutants and wild types). The rest of the parameters are as in figure 1(a-e)
of the main text.

of patches, where cells could migrate only between neighboring patches (with
each patch having 8 neighbors as in the Moore model). In the “fragmentation
model” (light green bars) migration could happen between any patches regard-
less of their position. In the latter case, the model cannot be regarded as spatial
per se. Nonetheless, similar trends were observed in both models. For advanta-
geous and neutral mutations, more mutants were observed in the patch model
(a 2D or a fragmented, non-spatial patch system) compared to the well-mixed
system with the same total number of cells; the effect is less pronounced but
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still clearly present in the fragmented system.

Figure S2: Comparison of the number of mutants in stochastic patch model
simulations and a well-mixed system. The bars represent the ratio between the
mean number of mutants in the patch model and the mean number of mutants
in well-mixed systems at equal size, N = 104. Dark green bars correspond
to the 2D patch model with 8 nearest neighbor migration. Light green bars
correspond to the fragmented model where migration happens to all patches.
(a) Neutral mutants. (b) Advantageous mutants. Between 106 and 4 × 107

runs were performed for each bar. Division and death rates are indicated below
each bar. Other parameters are u = 2 × 10−5, k = 100,m = 10−5, n = 31 × 31
patches.

1.2.2 The case of very small patch size

Next, we explore the behavior of the patch model in the regime of very small
patches. It is known that fragmentation/spatial restrictions weaken selection.
In the extreme case of a patch model with very small patch size, this effect
can significantly influence mutant dynamics and even reverse the results for
advantageous mutants. Figure S3 explores this regime.

We observe that in the absence of death, under the patch size of k = 2
and slightly advantageous mutants (figure S3(a)), there are more mutants in
the mass-action compared to the patch model. This reverses when we increase
the path size to k = 3. For a larger mutant advantage (panel (b)), it takes
k = 5 to observe more mutants in the patch model. In the extreme case where
mutants enjoy a 10-fold fitness advantage, even for the patch size k = 100 we
still see more mutants in the mass-action system. This effect disappears if we
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include death in the system. For example, panel (d) shows how results of panel
(c) change if we increase death rate to a modest dw = dm = 0.01: in the case,
there are significantly more mutants in the patch model. Panel (d) shows the
effect of increasing the death rate, where the number of mutants in the patch
system with small patch size (k = 3) becomes significantly larger than that i
the mass-action model even for small (but non-zero) death rates.

The reason for the reversal of the pattern under very small patch size in
the absence of death is the complete selection suppression experienced in such
system. Increasing patch sizes or death rate allows selection to work, leading to
more mutants in the patch model compared to mass action.

Figure S3: Behavior of the patch model with very small patches. The number
of mutants in the patch model (blue bars) and mass-action model (yellow bars)
corresponding to the same total population size. Different bars correspond to
different patch size, k. (a-c) No death, (e) in the presence of death. (d) The
numbers of mutants in the patch model and mass action model as functions of
the death rate. Simulation parameters are market at the top of each bar graph.
Other parameters are N = 103, u = 10−3,m = 10−5, global migration in the
patch model. For panel (d), lw = 0.95, lm = 1, k = 3.

1.2.3 Mutant growth curves

Here we present growth curves for the number of advantageous and neutral mu-
tants in the patch model, figure S4. These were obtained by running a large
number of simulations and recording the number of mutants at different popula-
tion sizes. Mean values are presented, and the standard errors are small and not
visible. The blue symbols correspond to runs with advantageous mutants and
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orange symbols to neutral mutants. For comparison, we also present curves for
the number of advantageous and neutral mutants in well-mixed systems, taken
far from carrying capacity. For non-neutral mutants this is given by formula
(20), and for neutral mutant this simplifies to lwuN lnN/(lw − dw).

Figure S4: The number of mutants in a patch model as a function of the total
population size. Blue circles, advantageous mutants (lm = 1.05), the number
of runs for each point is 27, 061. Orange squares, neutral mutants (lm = 1),
the number of runs for each point is 61, 083. Blue and orange lines represent
advantageous and neutral mutants in a well-mixed system (theoretical, formula
(20)). Other parameters are lw = 1, dw = dm = 0.1,m = 10−5, k = 100, u =
2× 10−5; in the patch model, global migration was implemented.

Fitting a straight line through the data on a log-log scale, we obtain the
following powers: advantageous mutants increase as N1.2, and N1.19. For com-
parison, a similar procedure yielded powers N1.12 and N1.1 for the well-mixed
system (we did not attempt to distinguish between a power law with as power
close to one and an N lnN , which is the “true” growth law in the latter case).

2 Disadvantageous mutants: a deterministic metapop-
ulation model

2.1 Basic formulations and selection mutation balance

Let us denote the wild type population as x(t) and the mutant population as
y(t). Denote the rate of mutations as u, the division and death rates of wild
type cells as lw and dw, and the division and death rates of mutants as lm and
dm. Then the competition dynamics of cells can be formulated as follows:

ẋ = lwx(1− u)

(
1− x+ y

K

)
− dwx, (1)
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ẏ = (lwxu+ lmy)

(
1− x+ y

K

)
− dmy, (2)

where K is the carrying capacity. If the mutants are disadvantageous, that is, if

ν =
dm
dw
− lm
lw

> 0, (3)

then the selection mutation balance predicts that the equilibrium number of
wild type cells is given by

x̄ = K
(

1− dw
lw

)
, (4)

and the number mutants is

ȳ = x̄u

(
dm
dw
− lm
lw

)−1
(5)

(we only took the largest contributions in terms of small u).
In model (1-2), as the population approaches the carrying capacity, the di-

visions slow down, while deaths remain occurring at a constant rate. We will
refer to this model as division-controlled growth, which follows the terminology
of [? ]. Alternatively, we can assume that as the population grows, the death
rate increases, while the division rate stays constant. In the mass action case,
this can be modeled as follows:

ẋ = lwx(1− u)− dwx
(

1 +
x+ y

K

)
, (6)

ẏ = (lwxu+ lmy)− dmy
(

1 +
x+ y

K

)
. (7)

We will refer to this model as death-controlled growth [? ]. In this case, the
equilibrium population size is

x̄ = K
(
lw
dw
− 1

)
, (8)

and the number of mutants in selection mutation balance is again given by
formula (5).

The early dynamics of wild type and mutant populations in models (1-2)
and (6-7) are identical. Assuming that x + y � K, we can solve the resulting
linear equations exactly, to obtain

xlin(t) = e(lw−dw)t, ylin(t) = lwu
e(lw−dw)t − e(lm−dm)t

(lw − dw)− (lm − dm)
. (9)

2.2 Decreased divisions and increased death

A mutant is disadvantageous if inequality (3) holds. If we fix lw and dw, the
division and the death rates of the wild type cells, this inequality defines a half
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plane in the (lm, dm) space, where mutants are disadvantageous (more precisely,
it is the region above the line dm/lm = dw/lw, see figure S8, the red line). Note
that this definition is not equivalent to using the linear growth rate to define
fitness, because instead of linear initial expansion of the mutants, it measures
their steady state level in the presence of the wild types. For comparison, the
line where the linear growth rates of mutant and wild-type cells are equal to
each other, is shown in figure S8 in green.

The quantity ν defined in (3) can be seen as a measure of fitness disadvan-
tage. Mutants with equal ν have the same level of disadvantage, which is for
the purposes of this paper defined as the same level of the selection mutation
balance equilibrium. The definition of ν (equation (3)) with fixed lw, dw gener-
ates a one-parametric family of types of equal disadvantage. Disadvantage can
be achieved by different combinations of division and death rates, lm, dm. In
particular, if the mutants have the same death rates as the wild types, and their
disadvantage is achieved through lowered division rates, then we have a type
with decreased divisions,

lm = lw(1− ν), dm = dw; (10)

in figure S8, “decreased division” mutants correspond to all the points on the
horizontal dashed line (in the disadvantageous region). If on the other hand,
the division rate of mutants matches that of the wild types, we have a type with
increased death:

lm = lw, dm = dw(1 + ν); (11)

in figure S8, “decreased death” types correspond to disadvantageous points on
the vertical dashed line. Note that if the two types have the same fitness (i.e.
converge to the same selection-mutation balance), the percentage decrease in
the division rate must be equal to the percentage increase in the death rate.
The linear growth rate of the two types is however different, and is given by

lm − dm =

{
lw − dw − νlw, decreased divisions,
lw − dw − νdw, increased death.

We can see that since lw > dw, the “increased death” mutants are always char-
acterized by a faster growth compared to the “decreased divisions” mutants.

Figure S5(a) shows an example of the numbers of mutants under the as-
sumptions of decreased divisions (blue) and increased deaths (yellow); specific
parameter values are given in the figure caption. The behavior of the wild types
can be seen from the dashed green line that shows x(t)/1000. Before the popu-
lation reaches the carrying capacity, the “increased death” mutants grow faster
than the “decreased divisions” mutants. At later times, they both reach the
same selection mutation equilibrium.

A useful representation of this information is given in panel (b) of figure S5,
where we plot the number of mutants, M(x), contained in the system of size
x. This quantity is presented for both types (decreased divisions and increased
death) in figure S5(b).
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Figure S5: Solutions of system (1-2), where the division and death rates of the
wild types are fixed, and the mutant rates are given by equation (10) for the
“decreased divisions” type, and equation (11) for the ‘increased death” type
(only one type of mutant is included at a time). (a) The level of mutants as a
function of time for the two systems; the wild types are given by the green dashed
line, where the value was divided by 1000 to bring it to the same scale. (b) The
number of mutants plotted as a function of the total cell population for the two
types. The parameters are lw = 1; dw = 0.1, ν = 0.3, u = 0.001,K = 100. The
fitness disadvantage is ν = 0.3.

2.3 The patch model

Consider N patches, such that in each patch cells undergo deterministic mass-
action dynamics of divisions and deaths, subject to a carrying capacity K. We
assume that patches communicate with each other through migrations. Let us
denote the migration matrix as M = {Mij}, where Mij is the probability that,
given that a cell from patch i migrates, it is transferred to patch j; we have∑
j 6=iMij = 1 for all i. We explore two types of such matrices:

1. A 1D spatial model: a ring of patches where only migration between
nearest neighbors is possible:

Mij =

{
1/2, |i− j| = 1,
0, otherwise,

(12)

with the additional nonzero values M1N = MN1 = 1/2.

2. A complete graph model: all patches are connected:

Mij =

{
1/(N − 1), i 6= j,
0, i = j.

The ODEs in each patch are given by equations similar to (1-2) for division-
controlled growth, or (6-7) for death-controlled growth, with K = K and mi-
gration terms included. In the former case, the system at each patch looks like
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this:

ẋi = lwxi(1− u)

(
1− xi + yi

K

)
− dwxi −m

xi − N∑
j=1

Mjixj

 , (13)

ẏi = (lwxiu+ lmyi)

(
1− xi + yi

K

)
− dmyi −m

yi − N∑
j=1

Mjiyj

 , (14)

where xi and yi are the numbers of wild type and mutant cells in patch i,
respectively. The initial value problem is completed with the following initial
condition:

xi(0) =

{
1, i = (N + 1)/2,
0, otherwise,

yi(0) = 0 ∀i (15)

(we assumed an odd number of patches), that is, there is a single wild type cell
in the middle patch, and the rest of the patches are unoccupied.

The results of the N -patch model will be compared with an unfragmented,
mass-action system of size (carrying capacity) K = NK:

Ẋ = lwX(1− u)

(
1− X + Y

KN

)
− dwX, (16)

Ẏ = (lwXu+ lmY )

(
1− X + Y

KN

)
− dmY, (17)

X(0) = 1, Y (0) = 0. (18)

For death-controlled growth, all equations are modified accordingly.

2.4 The number of mutants in fragmented and mass-action
systems

Let us compare the number of mutants obtained in the fragmented system with
migrations and in the mass action system of the same total carrying capacity.
Suppose we are interested in measuring the number of mutant at a total pop-
ulation size Ntot. Then we define the time tfr and tma (for “fragmented” and
“mass-action” respectively) as follows:

N∑
i=1

(xi(tfr) + yi(tfr)) = Ntot, X(tma) + Y (tma) = Ntot.

We want to compare the numbers of mutants,

Mfr(Ntot) =

N∑
i=1

yi(tfr), Mma(Ntot) = Y (tma).

Figures S6(a) and S7(a) show two examples of functionsMfr(Ntot) andMma(Ntot),
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Figure S6: Mutant dynamics in the case of “decreased divisions” mutants. (a)
Comparison of the mutant number as a function of the population size for the
fragmented (blue) and mass-action (red) systems. A particular value of the total
population size, Ntot = 5000, is indicated by a dashed vertical line. (b) The
wild type populations in different patches as functions of time, for t ∈ [0, tfr]
corresponding to Ntot = 5000. The leftmost line corresponds to the middle
patch, and the rest of the lines to consecutive patches moving outward. (d)
Same as (b) for the mutant populations. (c) The total populations (top) and
the mutant populations (bottom) in all the patches at time tfr. The parameters
are N = 201 patches, lw = 1; dw = 0.1, lm = 0.9; dm = 0.1, u = 0.001,K =
100;m = 0.01.

for “decreased divisions” and “increased death” mutants respectively. We ob-
tained numerical solutions of systems (13-14) with initial conditions (15) and
the migration matrix (12) (a 1D ring of patches), to plot Mfr (the blue line) as
a function of the total population size. The corresponding number of mutants
in the mass action system, Mma (the red line), was obtained from system (16-
18). We observe that in figures S6(a) (“decreased divisions”), there are more
mutants in the fragmented, spatial system, and in figures S7(a) (“increased
deaths”), there are more mutants in the mass action system.

Panels (b,c,d) of figures S6 and S7 elucidate some underlying patterns. Pan-
els (b,d) depict population dynamics in the patches. The initial wild type pop-
ulation in the “middle” patch number 101 (out of 200) grows and “seeds” the
neighboring patches, whose population starts increasing, which in turn gives
rise to growth in the next patches, etc, see figures S6(b) and S7(b). Because of
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the symmetries of the ODEs, patches equidistant from the middle have identi-
cal solutions. Figures S6(d) and S7(d) show the numbers of mutants as they
evolve in time, in each patch. Again, the leftmost line corresponds to the middle
patch that was occupied initially. Individual trajectories of mutants in patches
behave differently: “decreased divisions” mutants (figure S6(d)) grow monoton-
ically toward the mutation selection balance (compare the blue line in figure
S5(a)); “increased death” mutants (figure S7(d)) “overshoot” and then decrease
toward the mutation selection balance (compare the yellow line in figure S5(a)).

Figure S8 generalizes these results. It presents the parameter space with
coordinates lm and dm, where the points where Mma(Ntot) = Mfr(Ntot) are
shown as a purple line (parameters other than lm and dm are fixed). In the region
above the purple line (gray shadowing), there are more mutants in the mass
action system, and below it there are more mutants in the fragmented system.
In particular, the system of figure S6 has coordinates (lm, dm) = (0.9, 0.1) and
falls outside the gray region, and the system of figure S7 corresponds to (1, 0.2)
and is inside the gray region; both points are marked by a “∗” in the figure. In
fact, we can see that all the “decreased divisions” mutants (points that lie on the
dashed horizontal line in the disadvantageous region) fall under the purple line,
that is, decreasing division rate leads to having more mutants in the fragmented
system. It is somewhat less straightforward with “increased death” mutants
(disadvantageous mutants on the dashed vertical line): if the increase in death
is sufficiently large, then such points are above the purple line (and there are
more mutants in mass action). For a small increase in death rates, there are
more mutants in the fragmented system.

2.5 A simplified theory of mutant abundance in spatial
and mass-action systems

Simulations in panels (b,d) of figures S6 and S7 were run for time tfr that
corresponds to the fragmented system reaching a specific total size Ntot = 5000,
denoted by the dashed vertical line in panel (a). At that time, the total numbers
of cells per patch and the numbers of mutants per patch are shown in panel (c).
We observe that at time tfr,

(i) not all patches are occupied,

(ii) in most occupied patches, except for the outmost ones, the total popula-
tions have reached the carrying capacity (given by lw(1− dw/lw)), and

(iii) in most patches, the number of mutants is at the selection mutation bal-
ance. The exceptions are again the outmost patches that have not stabi-
lized yet, and the middle patches, where the growth of mutants is slower.

Using the observations of patch dynamics listed above, let us approximate
the number of mutants in a 1D fragmented system. At the time the total
population reaches a size Ntot, we assume that there will be a number of patches
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Figure S7: Mutant dynamics in the case of “increased death” mutants. Same
as in figure S6, except lm = 1, dm = 0.2.

that are completely occupied, with population at carrying capacity, x̄ = K(1−
dw/lw), and a number of patches that have not been reached yet. There are

n =
Ntot

K(1− dw/lw)

such occupied patches. Therefore, the total number of mutants at size Ntot is
given by nȳ, where y is given by equation (5), and we have

Mfr(Ntot) ≈ Ntotu
(
dm
dw
− lm
lw

)−1
. (19)

To calculate the number of mutants in the non-fragmented population, we use
formula (9). We have, using xlin = e(lw−dw)t ≈ Ntot, that

Mma(Ntot) ≈ lwu
Ntot −N

lm−dm
lw−dw
tot

(lw − dw)− (lm − dm)
; (20)

note that this approximation works not only for disadvantageous but for neutral
or advantageous mutants. The solution set of the equation Mfr = Mma using
approximations (19, 20) is shown in figure S8 as a black solid line. Although
it is similar to the full solution (purple line) for small values of lm, it deviates
from it as lm becomes closer to lw.
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Figure S8: Regions in the parameter space (lm, dm), where Mma > Mfr (under
fixed (lw, dw)). The red line indicate sets where mutants and the wild types
have equal fitness (equation (3) with ν = 0; mutants are disadvantageous above
this line); the green line corresponds to equal linear growth rates. The set (21)
is above the dashed horizontal line. The solid black line comes from a numerical
solution of Mma = Mfr with expressions (19,20). The purple solid line is the
solution of the same equation using the values obtained from solving the ODEs.
Ntot = 1000, the rest of the parameters are as in figure S6. The point where
lm = lw and dm = dw is marked by a blue star.

One can further simplify formula (20), assuming that Ntot � N
lm−dm
lw−dw
tot .

Then, solving Mma > Mfr, one obtains a condition that does not depend of
Ntot:

dm
dw
− lm
lw

>
(lw − dw)− (lm − dm)

lw
,

which can be solved for dm to yield:

dm > dw. (21)

In other words, if dm > dw, there are more mutants in the mass action system,
and otherwise there are more mutants in the fragmented system (given that
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the total sizes of the two populations are the same). Figure S8 shows this
approximation as a horizontal dashed line.

2.6 An intuitive explanation

Here we provide an intuitive explanation for the following result:

• If the mutant disadvantage is due to reduced division rates compared to
the wild type, then there tends to me more mutants in the fragmented
system compared to the mass action system of the same size.

• If the mutant disadvantage is due to increased division rates, then the
result is the opposite, and there tends to be more mutants in the mass-
action system. This is true only if the disadvantage is sufficiently strong.

Figure S9: Time series of total populations sizes in patches for (a) a fragmented
system with migrations according to a 1D spatial pattern and (b) a number of
identical, uncoupled, patches that mathematically are equivalent to the mass
action system.

Let us compare two systems: (i) a fragmented system of N patches of carry-
ing capacity K each, where initially there is a single cell in one patch, and popu-
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lations spread from patch to patch by means of migration, reaching their carry-
ing capacity at different times, and (ii) a mass action system, which can be math-
ematically represented an a equivalent system of N decoupled identical systems
of carrying capacity K, with identical initial conditions xi(0) = 1/N, yi(0) = 0.
Figure S9 shows the simulated total population size in a number of patches, for
(a) a 1D chain of fragmented patches and (b) a mass-action system represented
as N identical patches.

If the target population, Ntot, is the maximum size of the mass-action system
(Nx̄ with x given by formula (4) or (8) in the case of the division-controlled or
death controlled growth, respectively), then the above results do not hold, and
the number of mutants in both fragmented and non-fragmented system is simply
Nȳ, formula (5). Let us instead assume that the total population size, Ntot,
is well below maximum. As a consequence, at size Ntot, each of the identical,
disconnected populations in figure S9(b) that represent the mass action system,
have not reached its maximum size. This is shown by a vertical dashed line that
cuts across the growth phases of the N patches in panel (b). A different picture
is observed in the case of a fragmented system (panel (a)). There, since the
growth in different patches happens at different times, by the time some of the
patches have reached their maximum size, others have hardly started growing.
As a consequence, at total size Ntot, we expect that a number of patches are
“full” and others are “empty”, see panel (b).

Now, we can formulate the problem of maximization of the number of mu-
tants as size Ntot in the following way. We can make up size Ntot out of individ-
ual (identical) patches of size x (precisely, Ntot/x patches). The total number
of mutants is then given by

Mtot(x) = Ntot
M(x)

x
, (22)

whereM(x) is the number of mutants in a single patch of size x. What value of
x maximizes the function Mtot(x)? The answer depends on the functionM(x).
If, for example, it is a convex function, then quantity (22) is a growing function
of x, and is maximized by a smaller number of patches, each at its maximum
size (x = x̄). IfM(x) is a concave function, then it Mtot is a decreasing function
of x, and we find a maximum number of mutants if all the N patches contribute
the smallest possible amount into the total.

Functions M(x) have different shapes for different mutant types, see figure
S5(b). For “decreased divisions” mutants, it is always a convex function, and
thus Mtot is maximized by a fragmented system, where at total size Ntot, a
number of patches are already at carrying capacity while other have hardly
began to grow.

For “increased death” mutants, the situation is slightly more complex. We
know that these mutants grow faster than the wild type at the initial stages of
growth (figure S5(a), yellow line), but depending on the degree of disadvantage,
this growth may result in a monotonically growing function y(t) for small degrees
of disadvantage, or in a function y(t) that “overshoots”, for larger degrees of
disadvantage. In the latter cases, the function M(x) has the shape depicted
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in figure S5(b), yellow line. As a consequence, function (22) will have a larger
value for small x (corresponding to the mass-action system where many virtual
identical patches contribute a small amount) than for large x (corresponding to
the fragmented system).

Figure S10: The fraction of mutants as a function of total population size for
“decreased divisions” and “increased death” mutants. Parameters are as in
figure S5.

Figure S10 shows the fraction of mutants as a function of total population
size for “decreased divisions” and “increased death” mutants. For “decreased
divisions” mutants, this is an increasing function of the total population size,
and therefore to increase the percentage of mutants, one needs to maximize
population size. This corresponds to having fewer patches at maximum size.
For “increased death” mutants, the fraction of mutants first increases and the
decreases. It is larger at an intermediate colony size compared to the maximum
size for a large range of sizes, except for the initial stage of growth. Therefore, in
most situations, a colony that is still growing will contain a larger percentage of
mutants than the colony at maximum size. Therefore, we expect more mutations
in the mass action situation where the saturation has not happened yet, and
not in a fragmented system, where most colonies are at maximum size.

2.7 Migrations on a complete graph model: deterministic
and stochastic cases

Note that the intuitive explanation presented above is not specific for a 1D ge-
ometry and holds for any fragmented system where patches are de-synchronized,
that is, they grow to their maximum size at different times. This is a necessary
condition to be able to identify the stage of growth where a subset of patches
is fully grown while the rest are empty. This is why the results described above
(that is, a difference in the behavior of decreased divisions mutants and in-
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creased death mutants) is observed in stochastic simulations where no specific
spatial arrangement of patches is assumed, and migration happens randomly
from a patch to any other patch. In such a stochastic system, some patches will
grow faster than others, and the general growth pattern similar to figure S9(a)
is observed.

This behavior however is not captured by the corresponding system of ODEs.
There, in the presence of equal migration rates to any patch, all patches (except
for the original patch containing the first cell) are synchronized and grow in an
identical manner. In fact, the ODEs in this case can be rewritten as only 2
equations in 2 patches:

ẋ∗ = lwx∗(1− u)

(
1− x∗ + y∗

K

)
− dwx∗ −m

(
x∗ −

1

N − 1
X∗

)
,

ẏ∗ = (lwx∗u+ lmy∗)

(
1− x∗ + y∗

K

)
− dmy∗ −m

(
y∗ −

1

N − 1
Y∗

)
,

Ẋ∗ = lwX∗(1− u)

(
1− X∗ + Y∗

K(N − 1)

)
− dwX∗ −m

(
1

N − 1
X∗ − x∗

)
,

Ẏ∗ = (lwX∗u+ lmY∗)

(
1− X∗ + Y∗

K(N − 1)

)
− dmY∗ −m

(
1

N − 1
Y∗ − y∗

)
,

x∗(0) = 1, y∗(0) = 0, X∗(0) = 0, Y∗(0) = 0.

This system can be thought of as a two-patch model, where the first patch
has population (x∗, y∗) and the carrying capacity K, and the second patch
population (X∗, Y∗) and the carrying capacity K(N − 1). The migration rate
from the small to the large patch is m, and back it is m/(N − 1). Therefore,
because of this artificial symmetry arising from the deterministic description
(which is broken in a stochastic model), the behavior of this system does not
reflect the patterns described above.

3 Disadvantageous mutants: a 2D spatial stochas-
tic model

If mutants are disadvantageous, the quasi-equilibrium level of mutants is defined
by the selection-mutation balance.

Let us calculate equilibrium densities of mutants and wild type cells in a
spatially distributed system at steady state. This will also correspond to the
densities in the core of an expanding system away from the advancing front.

We restrict our description to a 2D square grid, with the von Neumann
neighborhood (that is, each location has 4 nearest neighbors); the methodology
is generalizable to the Moore neighborhood (8 neighbors). We use a method
similar to that of [? ]. Two random variables describe the state of the stochastic
system at each spatial location, x: ρx describes wild type cells, such that

ρx =

{
1, if a wild type cell is at location x,
0, otherwise,
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and ηx describes mutant cells, such that

ηx =

{
1, if a mutant cell is at location x,
0, otherwise.

Note that ρx and ηx cannot be equal to one simultaneously; an empty spot
corresponds to ρx = ηx = 0. We assume that wild type cells have division
and death rates lw and dw, and mutant cells have division and death rates lm
and dm. Wild type cells mutate with probability u, and no back mutations are
considered.

3.1 Equations for the densities

Denote the expectation of ρx and ηx by

〈ρx〉 = ρ, 〈ηx〉 = η,

where we assumed that the expected values do not depend on spatial location,
since we are interested in spatially homogeneous equilibrium solutions. We have

ρ̇ =

〈
lw
Nb

(1− u)(1− ρx)(1− ηx)
∑
k

ρ(k)x − dwρx
〉
, (23)

η̇ =

〈
1

Nb
(1− ρx)(1− ηx)

∑
k

(
lwuρ

(k)
x + lmη

(k)
x

)
− dmηx

〉
, (24)

where the product (1−ρx)(1−ηx) is nonzero only if location x is empty, and the
summation goes over all the neighbors of point x, which reproduce into location
x at rates lw/Nb and lm/Nb if they are wild type of mutant, respectively.

Let us consider the von Neumann neighborhood (Nb = 4). In the right hand
side of equation (23), the terms is the summation have the form

〈(1−ρx)(1−ηx)ρ(k)x 〉 = 〈ρ(k)x 〉−〈ρxρ(k)x 〉−〈ρ(k)x ηx〉+〈ρ(k)x ρxηx〉 = ρ−W−I, (25)

and in equation (24) there are also terms of the form

〈(1−ρx)(1−ηx)η(k)x 〉 = 〈η(k)x 〉−〈ρxη(k)x 〉−〈η(k)x ηx〉+〈η(k)x ρxηx〉 = η−I−M. (26)

In the expressions above, we have 〈ρxρ(k)x η
(k)
x 〉 = 0, because either η

(k)
x or ρ

(k)
x

is zero at location x(k), and the three types of dyads are defined as follows:

• W = 〈ρxρ(k)x 〉 is the probability to have two wild type cells at two neigh-
boring locations,

• I = 〈ρxη(k)x 〉 is the probability to have a wild type cell and a mutant at
two neighboring locations,

• M = 〈ηxη(k)x 〉 is the probability to have two mutant cells at two neighbor-
ing locations.
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Figure S11: Steps in the derivation of equations for a two-component system of
wild type and mutant cells. Blue circles denote wild type, and purple denote
mutant cells. (a) Three configurations, whose correlations appear in equations
(27) and (28). (b) Three types of correlations needed for equations for W , I,
and M .

Figure S11(a) illustrates these three configurations. In terms of these three
correlations, equations (23) and (24) can be rewritten as

ρ̇ = lw(1− u)(ρ−W − I)− dwρ, (27)

η̇ = lwu(ρ−W − I) + lm(η − I −M)− dmη. (28)

The correlations for the three dyads that appear in these equations require their
own equations to close the system. Let us derive an equation for W . We have

Ẇ =

〈
2(1− ρx)(1− ηx)ρ(k)x

∑
j

ρ(j)x
lw
Nb

(1− u)− 2dwW

〉
,

where we assume that one of the points in the dyad contains a wild type cell

(term ρ
(k)
x ), while the other point is empty (term (1 − ρx)(1 − ηx)), and that

one of its neighbors (location x(j)) contains a wild type cell, which reproduces
faithfully into point x at rate lw(1− u)/Nb. Note that either of the two points
could be empty, which results in the multiplier 2 in the first term on the right
hand side. Similarly, either of the dyad’s locations can experience cell death,
resulting in the negative rate 2dw. In order to calculate the average, we need to
consider terms

〈(1− ρx)(1− ηx)ρ(k)x ρ(j)x 〉. (29)

Note that here and below, the operation of averaging makes the expression
independent on the actual location x. Further, the superscripts (k) and (j) do
not refer to any specific neighbor of x, but to any neighbor of x; in particular,
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location x(j) may be the same or different than location x(k). In the case when
the two locations are different, correlation (29) is presented in figure S11(b), on
the left.

In equations for Ṁ and İ, the following expressions appear in addition to
(29):

〈(1− ρx)(1− ηx)ρ(k)x η(j)x 〉, 〈(1− ρx)(1− ηx)η(k)x η(j)x 〉.

These correlations are shown in figure S11(b), center and right. Therefore,
denoting by a and b either ρ or η, we evaluate the average of the form

〈(1− ρx)(1− ηx)a(k)x b(j)x 〉, (30)

which corresponds to a dyad with one of the locations (location x) empty, and
the other (location x(k)) containing type “a”, while a neighbor of x (location
x(j)) contains type “b”. First let us assume that location x(j) is different from
location x(k). Under von Neumann neighborhoods this implies that x(j) are x(k)

are not each other’s neighbors, because on a square grid, there could not be a
non-degenerate triangle with diameter 1 or less. Expression (30) is equal to

P (b(j)x = 1|a(k)x = 1, ρx = ηx = 0)P (a(k)x = 1, ρx = ηx = 0) ≈
P (b(j)x = 1|ρx = ηx = 0)P (a(k)x = 1, ρx = ηx = 0) =

P (b
(j)
x = 1, ρx = ηx = 0)P (a

(k)
x = 1, ρx = ηx = 0)

P (ρx = ηx = 0)
(31)

The expression in the denominator is calculated as follows:

P (ρx = ηx = 0) = 〈(1− ρx)(1− ηx)〉 = 〈1− ρx − ηx + ρxηx〉 = 1− ρ− η.

Depending on the types at location x, the expressions in the numerator of (31)
can be of two types:

P (ρ(k)x = 1, ρx = ηx = 0) or P (η(k)x = 1, ρx = ηx = 0),

and they are calculated in (25) and (26) respectively.
Next, we assume that location x(j) is the same as x(k). Then, if types “a” and

“b” in expression (30) are different, then we obtain 〈(1−ρx)(1−ηx)ρ
(k)
x η

(k)
x = 0.

If the types are the same, then we obtain expression (25) or (26). To summarize,
expressions of type (30) are given as follows:

〈(1− ρx)(1− ηx)ρ(k)x ρ(j)x 〉 =

{
(ρ−W−I)2

1−ρ−η , x(j) 6= x(k),

ρ−W − I, x(j) = x(k),

〈(1− ρx)(1− ηx)ρ(k)x η(j)x 〉 =

{
(ρ−W−I)(η−I−M)

1−ρ−η , x(j) 6= x(k),

0, x(j) = x(k),

〈(1− ρx)(1− ηx)η(k)x η(j)x 〉 =

{
(η−I−M)2

1−ρ−η , x(j) 6= x(k),

η − I −M, x(j) = x(k).
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The equation for W is then given by

Ẇ =
lw
2

(1− u)

(
ρ−W − I +

3(ρ−W − I)2

1− ρ− η

)
− 2dwW. (32)

Similarly, the other two equation can be derived:

İ =
3

4
[lw(1− u) + lm]

(ρ−W − I)(η − I −M)

1− ρ− η
+
lwu

4
lm

(
ρ−W − I +

3(ρ−W − I)2

1− ρ− η

)
− (dw + dm)I, (33)

Ṁ =
3lwu

2

(ρ−W − I)(η − I −M)

1− ρ− η
+
lm
2

(
η − I −M +

3(η − I −M)2

1− ρ− η

)
− 2dmM. (34)

The closed system of equations for ρ, η,W, I, and M is given by equations (27),
(28), (32), (33), and (34).

3.2 Selection mutation balance solution

Solving these equations in steady state exactly is difficult, but if the mutation
rate u � 1, we can find the approximate solution. We start by setting u = 0
and obtaining the steady state solution. Apart from the trivial solution and a
negative solution, there are two symmetric solutions where only one type sur-
vives (competitive exclusion). We will use the one where the wild type excludes
mutants:

ρ(0) = 1 +
3dw

dw − 3lw
, W (0) = 1− 6dw

dw − 3lw
− 4dw

lw
, η(0) = I(0) = M (0) = 0,

(35)
where the superscript corresponds to the zeroth order in the expansion in terms
of small u. Note that the expression for ρ(0) is identical to the steady state
density of the one-component system given by equation (??) with ξ = dw/lw.
We then look for the first correction by substituting

ρ = ρ(0) + uρ(1), η = uη(1), W = W (0) + uW (1), I = uI(1), M = uM (1),

inserting in the system of 5 equations, keeping only the first order of expansion
in u, and solving for ρ(1), . . . ,M (1). We obtain

η = η(1)u =
dwlw(4dw − 3lw)(4d2m + 3dmlw + dwlm)u

dm(dw − 3lw)(4dm + 3lw)(dmlw − dwlm)
.

This is the equilibrium solution corresponding to mutation-selection balance in
the presence of spatial interactions. This approach is valid as long as the wild
type is advantageous (inequality (3)). In the opposite scenario, this solution is
unstable, and the system converges to the mutants excluding the wild type.

Under selection-mutation balance, of interest is the equilibrium proportion
of mutants in the system given by

νvN =
η(1)u

ρ(0)
=

dwlw(4d2m + 3dmlw + dwlm)u

dm(4dm + 3lw)(dmlw − dwlm)
. (36)
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In the absence of death (dw = dm = 0), we obtain the limiting value

νvN,D=0 =
(3lw + lm)u

3(lw − lm)
.

3.3 Comparison with mass-action

We would like to compare the proportion of mutants under selection mutation
balance in space and in mass-action. In mass action we have

ẋ = lw(1− u)− dwx, (37)

ẏ = = lwux+ (lm − dm)y, (38)

where x and y is the expected number of wild type and mutant cells respectively.
The proportion of mutant cells at a given size N is calculated by using x(0) =
e(lw−dw)t and evaluating the solution y(t) of equation (38) at time t = lnN/(lw−
dw). Forming the fraction, we obtain the proportion at mutants at size N :

νma =
lwu

(
1−N−

lw−dw−(lm−dm)
lw−dw

)
lw − dw − (lm − dm)

.

One can see that this quantity grows with the size N , while νvN is independent
of the population size.

In figure S12 we study the quantity

ln

(
νvN
νma

)
,

which is greater than 0 of the numerator is larger than the denominator. This
quantity is presented as a contour plot in panel (a), as we vary lm and dm (for
fixed values of lw and dw). The red line in the figure indicates the region where
the mutants are disadvantageous and we expect to observe selection-mutation
balance (this is given by inequality (3)). Positive regions (below the purple
dashed line) correspond to having more mutants in the spatial system compared
to the mass action system. Negative regions (above the purple dashed line) are
regions where there are fewer mutants in the spatial system than in the mass
action system.

Figure S12(b) focuses on two particular scenarios. The top panel presents
the case where the division rates of mutants and wild type cells are the same,
and the disadvantage is manifested through lm < lw. We can see that in such
cases, νvN > νma, that is, we have more mutants in space. The bottom panel
shows the case where lm = lw, and the mutants have a larger death rate than
the wild types. In this case, if the disadvantage is sufficiently large, we have
fewer mutants in space than in the mass action system.
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Figure S12: Comparison of the spatial and mass action system. (a) The quan-

tity ln
(
νvN
νma

)
is presented as a contour plot as a function of lm and dm, for

fixed values of lw and dw. The red line indicates the region where mutants are
disadvantageous (inequality (3)). The contours’s values are indicated, and the
zero contour is marked with a dashed purple line. (b) Top panel: the same
quantity plotted as a function of lm, with dm = dw. Bottom panel: the same,
as a function of dm, with lm = lw. The rest of the parameters are given by
u = 2× 10−5, N = 105, lw = 1, and dw = 0.3.

3.4 Comparison with computations

The expected number of mutants predicted theoretically was compared with
results of numerical simulations. This was done in the following way. At size N ,
the number of mutants (in the von Neumann case) is predicted to be NuνvN ,
see equation (36). Solving the equation NuνvN = const, we can obtain the pairs
(lm, dm) of mutant kinetic rates corresponding to a predicted given number of
mutants in a system of size N . Figure S13(a) shows the predicted number of mu-
tant as a contour plot. The closer to the “neutrality” line (see inequality (3)) the
larger the predicted number of mutants. Solution of equation NuνvN = const is
shown in panel (b), and for 5 points from the solution set, the predicted number
of mutants (given by 10) is compared with the numerically obtained mean (plot-
ted together with the standard deviation, panel (c)). We can see that for larger
mutant division rates, the deviation from the theory becomes significant. Panel
(d) shows a histogram of numbers of mutants for the parameters corresponding
the 5th point. One can see that the distribution has a long tail and a very large
standard deviation. This is the consequence of “slices” that cannot be handled
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Figure S13: The level of mutants in the spatial (von Neumann) system: analyt-
ical approximation and numerical results. (a) The quantity NuνvN is presented
as a contour plot as a function of lm and dm, for fixed values of lw and dw.
Mutants are disadvantageous above the red line (inequality (3)). The contours’
values are specified. (b) Solution lm of equation NuνvN = 10 as a function
of dm; the 5 points used in panel (c) are marked in red and numbered. (c)
The comparison of predicted (10, horizontal red line) and simulated number of
mutants in the 5 parameter pairs from panel (b). Simulated means and stan-
dard deviations are shown (out of 2.5 × 106 runs). (d) For the 5th parameter
combination, the numerically obtained histogram of the number of mutants is
shown. The rest of the parameters are u = 2 × 10−5, N = 105, lw = 0.08, and
dw = 0.015.

by the present method.

3.5 Jack-pot events

In Fig. 2 of the main text we studied the mean and the distribution of the num-
ber of disadvantageous mutants in mass-action systems and in a metapopulation
model, were the demes were arranged in a 1D array, and migration happened be-
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tween neighboring demes. Here we present results for a metapopulation model
where migration was equally likely among all demes, see figure S14. We can see
that regardless of the structure of the deme-to-deme network, the results are
very similar.

Figure S14: Disadvantageous mutants: probability distributions of mutant num-
bers in mass-action and metapopulation simulations. Both decreased divisions
and increased death mutants are investigated, with division and death rates
given in the left upper panel (compared to the rates of the wild type, denoted
by the green circle). The bar graphs represent numerical histograms for mass
action simulations (blue) and metapopulation simulations (yellow), where the
demes were all connected to each other; between 1.8 × 105 and 2.0 × 105 sim-
ulations were run for each parameter combination, and the number of mutants
recorded when the total population reached 1000. The mean numbers of mu-
tants are shown for all the simulations in the central panel, with yellow markers
corresponding to the metapopulation model (migration among all demes), and
the blue markers to the mass-action model.

In order to compare the number of rare (“jackpot”) events in different models
and for different parameters, we designed a function that quantifies the spread
of the distribution or the “fatness” of its tail (heavy-tailedness). For each set
of data, Y , representing the numbers of mutants in each of the runs performed
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for a given parameter set for a given model, we used the quantile function

F (Y, q) = Q(Y, 1− q),

defined as follows. Let YqL and YqR are two subsets of Y such that Y = YqL∪YqR
and all the elements of YqL are smaller or equal to all the elements of YqR; we
will refer to parameter q as “threshold”. We further assume that

|YqR| = d|Y |qe,

where |.| denotes the number of elements and d.e denotes ceiling. Then we set

Q(Y, 1− q) = min(YqR).

It follows from this definition that the function F (Y1, q) > F (Y2, q) for all q in
a vicinity of 0, as long as set Y1 has a higher number of large outliers compared
to Y2, or if Y1 is drawn from a distribution with a heavier tail compared to Y2.

Figure S15 presents the plots of the heavy-tailedness function F (Y, q) for the
8 cases studied in figure S14, with Y representing the mass-action model (blue),
the metapopulation model where all demes are connected (yellow), and the 1D
metapopulation model with only neighboring demes connected (green). The
bottom row of graphs represents the cases where the disadvantageous mutants
are characterized by a decreased division rate (except case 4, which describes
neutral mutants). In the top row the disadvantageous mutants are character-
ized by increased death rates. We can see that the heavy-tailedness generally
increases toward the neutral case. We also observe the following patterns:

• In the bottom row, for small thresholds, q, the yellow and green lines
are above the blue line, which means that if the mutants have decreased
division rates, the fragmented (metapopulation) models are characterized
by a higher heavy-tailedness (more jack-pot events) compared to the well-
mixed system.

• This trend weakens and reverses in the graphs of the top row, from right
to left (away from neutral mutants). In other words, if the mutants
have increased death rates, and the disadvantage is sufficiently large, the
fragmented (metapopulation) models are characterized by a lower heavy-
tailedness (fewer jack-pot events) compared to the well-mixed system.

These trends go hand in hand with the results on the expected number of
mutants (figure S14, middle graph). For mutants with decreased division rates
or slightly increased death rates, there are more jack-pot events in the metapop-
ulation models, and the expected number of mutants is also higher, compared to
the well-mixed model. On the other hand, if the mutants are characterized by
significantly higher death rates, the trend reverses, and there are more jack-pot
events and more mutants on average in the mass-action system.
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Figure S15: The prevalence of jack-pot events in different models. The heavy-
tailedness (quantile) function F (Y, q) is plotted vs q for the mass-action model
(blue), the metapopulation model where all demes are connected (yellow), and
the 1D metapopulation model with only neighboring demes connected (green).
The calculations are based on the simulations of figure S14 and figure 2 of the
main text. Case numbering and parameters are as in figure S14.

4 Neutral and advantageous mutants in a range
expansion

4.1 Derivation of the growth laws

To derive the laws of mutant growth reported in the main text, we can use the
following simple calculations. Let us assume that the death rate of cells is equal
to zero, and consider cells growing in different geometries.

2D flat front. Assume that cells grow along the surface of a cylinder of
width W . This represents a one-directional growth process, where during each
generation, we assume that W new cells appear, and the the total population
is given by N = LW , where L represents the number of layers. The value of L
is proportional to the number of generations, and thus to the physical time, t:

L ∝ t.

The following calculation estimates the growth law of mutants. Every time a
new layer (of width W ) is added, the mean number of new mutations is given
by Wu. Suppose that mutants are neutral. Then, each such mutation will give
rise to an array of daughter mutant cells of width 1, see figure S16. The length
of this array is given by L− i, if i is the layer at which the mutation occurred.
Therefore, the total expected number of neutral mutants is a cylinder of length
L is given by

Mneut
2D flat =

L∑
i=1

Wu

L∑
j=i+1

1 =
uWL(L− 1)

2
≈ uWL2

2
=

u

2W
N2, (39)
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where we assumed L � 1. Note that in this derivation we assumed that the
number of mutants is small compared to the total population, and individual
mutant clones do not interact. In a more precise calculation, the number of wild
type cells in each layer is smaller than W because of the existence of mutants,
and thus the ate of new mutant production is smaller than Wu. We however
assume that uLW � 1, such that the number of mutants is relatively small.

Note that the number of neutral mutants decreases with W , see figure
S17; the largest number of mutants is achieved in the case of W = 1, a one-
dimensional expanding array of cells.

Figure S16: The conceptual model for mutant number calculations, the case
of neutral mutants in a colony growing along the surface of a cylinder (2D flat
front).

Figure S17: The number of mutants during a 2D flat front expansion decays with
the front width. Formula (39) is presented with N = 10000 and u = 5× 10−5.

Next, let us consider advantageous mutants. In this case, each new mutant
gives rise to a triangular clone. In the first layer, the width of the clone is 1, in
the next layer it is 1 + s, and in the kth layer it is 1 + (k−1)s, where parameter
s ≥ 0 measures the advantage of the mutants (with s = 0 corresponding to
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neutral mutants). Therefore, we have

Madv
2D flat =

L∑
i=1

Wu

L∑
j=i+1

(1 + (j − (i+ 1))s) = uWL(L− 1)

(
1

2
+
s(L− 2)

6

)
(40)

≈ uWsL3

6
=

us

6W 2
N3,

where for the approximation, we assumed that Ls � 1. Also, for this simple
calculation to be valid, we need to assume that the wedges created by mutants
do not come close to the cylinder’s width, W , that is, Ls � W . In particular,
formula (40) can be valid for small values of W > 1, but only for mutants that
are neutral for practical purposes (s� 1).

Note that when N is fixed, the total number of cell divisions that the system
has undergone is also fixed. The number of mutants however is vastly different
depending on the spatial configuration. It is the highest for W = 1 (one row of
cells) and decreases drastically with the width of the cylinder. This is consistent
with the notion that spatial restrictions result in a heightened number of mu-
tants, the 1D space (W = 1) being the most spatially restrictive system. The
reason for this is that in 1D, a mutant, once created, blocks the whole range of
expansion and prevents wild type cells from reproducing. The wider the front,
the weaker this effect. Further, we note that in the special case where W = 1,
mutant advantage does not play a role, and the number of advantageous, neu-
tral, and even disadvantageous mutants is given by the same formula, equation
(39).

2D: circular range expansion. Next we turn to the dynamics of neutral
mutants on a circle. Let us suppose that the radius of the circle is R and
N = πR2. The size of the colony increases via surface growth with N ∝ t2 and

R ∝ t.

As the range expansion proceeds, the circular layer of radius r will on average
give rise to 2πru new mutations. Each mutation will result in a wedge expanding
outwards. If the new mutation occurred in layer with radius r, the number of
mutating cells in layer r is 1. The number of mutants in the next layer is
given by r+1

r , because under the assumption of mutant neutrality, the fraction
of mutants in each new layer of radius j > r (with surface 2πj) should stay
constant and equal to 1

2πr . For layer j, the number of mutants is then given by
j/r. This gives rise to the following calculation:

Mneut
2D range =

R∑
r=1

2πru

R∑
j=r+1

j

r
=

2

3
πR(R2 − 1)u ≈ 2πR3u

3
=

2u

3π1/2
N3/2

(the approximation is valid for R� 1).
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For advantageous mutants in a growing 2D circle, the fraction of mutants
will grow with each layer:

Madv
2D range =

R∑
r=1

2πru

R∑
j=r+1

(1 + (j − (r + 1))s)
j

r
= πR(R2 − 1)u

(
2

3
+

1

4
s(R− 2)

)

≈ πR4su

4
=
su

4π
N2, (41)

where we assumed Rs � 1. For this approximation to be valid, the mutant
wedges should not exceed the circumference of the colony. Strictly speaking,
this results in the condition Rs << 2πR, that is, s � 1. For larger values of
s, the events where the mutant covers the whole surface of the colony are no
longer negligible.

3D flat front. In a 3D space, let us first consider a solid cylinder of constant
radius R0, where initially the cells are situated as a layer at the bottom of the
cylinder, and proceed to grow by adding layers of size πR2

0. Each generation
contributes πR2

0u new mutants, and as the colony grows to length L (and volume
2πR2

0L), we have in the neutral case:

Mneut
3D flat =

L∑
i=1

2πR2
0u

L∑
j=i+1

1 = πR2
0uL(L− 1) ≈ πR2

0uL
2 =

u

πR2
0

N2,

which is similar to the 2D flat front expansion. If the mutants are advantageous,
then their number will increase from layer to layer, giving rise to conical wedges.
This gives rise to the following calculation:

Madv
3D flat =

L∑
i=1

2πR2
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(1 + (j − (i+ 1))s)2

=
L(L− 1)πR2
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[
(L2 − 3L+ 2)s2 + 4(L− 2)s+ 6

]
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2uL4

6
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s2u

6π3R6
0

N4,

where Ls � 1 for the approximation, and the approach is valid as long as the
wedge radius is smaller than that of the cylinder, sL� R0.

3D range expansion. Next we consider a 3D expanding sphere. For a sphere
of radius R, we have N = 4/3πR3 and the surface is given by 4πR2. The size of
the colony increases via 3D surface growth with N ∝ t3. Each spherical layer of
radius r will on average give rise to 4πr2u new mutations. Each mutation will
result in a conical wedge expanding outwards. If the new mutation occurred in
layer with radius r, the number of mutating cells in layer r is 1. The number
of mutants in a layer of radius j > r is given by (j/r)2, because under the
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assumption of mutant neutrality, the fraction of mutants in each new layer
should stay constant (and equal to 1

4πr2 ). Therefore, we write:

Mneut
3D range =

R∑
r=1

4πr2u

R∑
j=r+1

(
j

r

)2

= πR(R2−1)(R+2/3)u ≈ πR4u =
34/3u

π1/344/3
N4/3

(the approximation is again valid for R� 1).
If the mutant in a growing 3D sphere is advantageous, the fraction in each

layer will increase according to the fitness advantage s and stretch from layer
to layer in the same way as for the neutral mutants. We therefore have,

Madv
3D range =

R∑
r=1

4πr2u

R∑
j=r+1

(1 + (j − (r + 1))s)2
(
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)2
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πuR(R2 − 1)
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[
(20R3 − 48R2 − 5R+ 42)s2 + (72R2 − 90R− 108)s+ 90R+ 60

]
≈ 2

9
πs2uR6 =

s2u

8π
N2.

As before, the approximation holds if Rs � 1. The method assumes that the
mutant colony’s size in each layer does not come close to the surface area, which
amounts to the inequality s� 1.

Exponential (non-spatial, mass-action) growth. Finally, for exponen-
tially growing population, similar formulas could be derived. In particular, for
neutral mutants, we have

Mneut
exp = Nu lnN,

and for advantageous mutants with advantage α (which is the ratio of the net
growth rate of mutants and the net growth rate of wild type cells), we have

Madv
exp =

α

(α− 1)2
α−1
α

N
2α−1
α ,

see [? ], equation (14c), see also equation (13) for a more general formula.
A summary of some of the results is presented in table 1 of the main text.

4.2 Comparison with numerical simulations

We have run numerical simulations to check the results derived in the previous
section. Below we comment on the applicability and limitations of the formulas
derived.

4.2.1 Roughness considerations

If we use formula (39) to approximate simulation results for neutral mutants,
in the absence of death, in a colony growing on the surface of a cylinder, we
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notice that it gives a slight systematic underestimation of the number of mutants
corresponding to N cells. Here we investigate the source of this error.

To understand the source of this inconsistency, we note that the idealized
model of figure S16 is not realistic. The real front propagates to the right as a
jagged line. For example, under the Moore neighborhood, cells can divide into 8
nearby spots, including the diagonal spots and positions up or down. There are
two important differences between the idealized model of figure S16 and the real
picture. (i) The real, jagged, front is longer (the idealized vertical front is the
shortest), and (ii) cells do not always divide to the right, and as a consequence,
cell divisions are less efficient: sometimes two neighboring cells “decide” to
divide into the same spot, thus preventing some divisions from happening. Let
us compare the number of successful divisions in the idealized and in the natural
model. In the idealized model, the number of successful divisions per update is
exactly W . For the natural model, the first factor above increases the expected
number of successful divisions, while the second factor reduces the number of
successful divisions. The overall effect turns out to be negative, that is, fewer
than W successful divisions are performed. This suggests that the effective
width of the cylinder is less than W , and therefore the expected number of
mutants corresponding to the same population size is larger than that predicted
for the idealized model.

Roughness considerations have been investigated thoroughly in [? ? ].
In particular, the authors studied the statistics of the mutant “bubbles” and
“wedges”. It turns out that their shape is affected, in a predictable way, by
the front roughness, which was shown by using the previous theoretical and
numerical results of [? ] and [? ]. Further, these considerations allow for cal-
culating the scaling laws of the probability distribution of mutant clone sizes [?
], and influence the probability distribution of the number of mutants, but not
its mean. This can be seen, for example, if we use formula (5) of the Methods
in [? ] with the scaling exponents α and β estimated for flat and rough fronts,
see Table 1: the resulting dependence of mutant clone size on the total popula-
tion N remains the same. The proportionality constant, however, is roughness
dependent, as follows from formula (4) in the Methods in [? ].

This is consistent with our findings. Even though our idealized model used to
derive mutant growth laws underestimates the “constant”, it correctly predicts
the power laws in different growth geometries and for different mutant types
(disadvantageous, neutral, and advantageous).

4.2.2 2D flat front expansion

For the 2D flat front geometry (the surface of a cylinder), we set up the initial
condition for the agent-based simulation to be a one layer (a circle) of wild type
cells that coincides with the circumference of one of the cylinder’s bases (and
has length W ). Simulations are run repeatedly for a fixed number of time steps,
and the mean trajectory (that is, the mean number of wild type cells and the
mean number of mutants, as functions of time-step) is then calculated. Finally,
the number of mutants is plotted as a function of the total population size.

33



Examples for neutral mutants (that is, mutants that have the same division
and death rates as the wild type cells) are presented in figure 4 of the main
text, curves (a) and (b). We can see that both in the absence (a) and in
the presence (b) of death, the mutant population as a function of the total
population approaches a power law with the exponent 2 (the black dashed lines
corresponding to cases (a) and (b) of figure 4 of the main text have slope 2 in
the log-log plot, see table 1). There are more mutants in the presence (b) than
in the absence (a) of death.

Figure S18: Advantageous mutants under a 2D flat front expansion: deviation
from the cubic law for large sizes. (a) In the absence of death (Lx = 0.7, Ly =
1.0, Dx = Dy = 0, see curve (d) of figure 4 of the main text) and (b) in the
presence of death (Lx = Ly = 0.7, Dx = 0.2, Dy = 0.1, see curve (f) of figure
4). Top panels: the number of mutants as a function of the total number of
cells; the dashed straight lines have slope 3. Bottom panels: (a) a numerically
obtained CDF of the probability for a given colony to have its front completely
dominated by mutants by a given size; (b) a numerically obtained CDF of the
probability for a given colony to have its wild type population extinct by a given
size.

Advantageous mutants are presented by curves (c-g) of figure 4 of the main
text; note that the dashed lines drawn through these curves all have slope 3
in the log-log coordinates (table 1). Curves (c) and (d) correspond to systems
without death, and mutants having a larger division rates compared to wild
type cells. The advantage is larger in case (d) compared to case (c) (and thus
there are more mutants observed at the same population size). In both cases,
we can see that the curves have slope 3 up to a certain population size, after
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which they deviate from the cubic law. For those larger sizes, mutants grow
slower as a function of size (quadratically). The reason for this deviation from
the cubic law is as follows. As the colony grows and reaches larger sizes, ad-
vantageous mutant clones that grow out and increase in size start reaching the
width W , that is, take up the whole width of the cylinder. After that, the mu-
tant colony can no longer expand in width, but instead it grows linearly. This
is illustrated in figure S18(a), where the top panel replots the purple line (case
(d)) of figure 4 of the main text, and the bottom panel studies the statistics of
mutant invasion. For each run, we recorded the total colony size at which the
population of wild type cells stopped increasing (given that this happened in
the time-span of the simulation). This indicates that, in the absence of death,
all the front positions are taken up by mutants and wild type cells can no longer
divide. The numerically obtained CDF is presented in the panel. We can see
that the probability for the mutants to dominate the front becomes significant
around size 104, which coincides with the size where the number of mutants
starts deviating from the cubic law (the upper panel).

Next, we turn out attention to curves (e) and (f) of figure 4. They represent
systems in the presence of death, where mutant advantage is manifested through
increased division rate (e) and decreased death rate (f). We can see again that
the curves follow a cubic law. A deviation from this law (and a slow-down
of the growth as a function of total size) is also observed for larger sizes. The
mechanism of this deviation is however somewhat different from the case of zero
death. Figure S18(b, top panel) replots curve (f) of figure 4. Since cells die, the
eventual outcome of all the simulations is the extinction of the (disadvantageous)
wild type. The CDF of the colony size by which the wild type goes extinct is
presented in the bottom panel of figure S18(b). The probability of wild type
extinction becomes significant around size 2×104, where the number of mutants
starts deviating from the cubic growth (see the top panel).

Finally, we compare curves (f) and (g) of figure 4. They represent systems
with the same parameters (where the mutant advantage is manifested through
a lowered death rate), except the cylinder width is W = 100 for curve (f) and
it is W = 1000 for curve (g). Notice that the dashed black lines for the two
curves differ by a factor of 100, representing the inverse square dependence of
the number of mutants on the cylinder width, see formula (40) (there are 100
times fewer cells in the cylinder that is 10 times wider).

4.2.3 Growth on a circle (2D range expansion)

For simulations studying 2D range expansion, we started with 1 wild cell, and
let the colony expand on a 2D grid for 800 time-steps, for. 2000 runs for each
parameter combination. In each case, the numbers of wild type and mutant cells
were averaged over all the runs that did not result in population extinction1.
The results for several representative cases are presented in figure 6 of the main

1Extinction was not a problem in the cylindrical geometry, because the initial condition
contained 100 or more cells, and very few runs resulted in extinction
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text, where for each parameter combination the number of non-extinct runs is
given in the figure caption.

There are 6 curves plotted in figure 5 of the main text. As in figure 4, cases
(a,b) correspond to neutral mutants, and cases (c-f) to advantageous mutants;
please note that all the division and death rates in curves (a-f) of figure 5 are
identical to curves (a-f) of figure 4.

The black dashed lines for curves (a,b) in figure 5 have slope 3/2, as predicted
for neutral mutant growth in a circle. As in the case of the cylinder, there are
more mutants in the presence (b) than in the absence (a) of death.

The slope for curves (c-f) in figure 5 is 2, as predicted for the growth of
advantageous mutants in a circle, see table 1. Again, we observe deviation fro
the predicted power law for large system sizes. In the absence of cell death
(cases (c,d)) this happens as the mutants become more likely to spread and
occupy all the surface locations, blocking the wild type cells from divisions. In
the presence of death, this deviation is associated with the increased likelihood
of wild type extinction.
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