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Simulation pipeline instructions  

Here we provide a customizable tool for simulation of evolve and resequence experiments on a 
quantitative trait to evaluate their power for QTL detection. The simulation is carried out in the 
program SLiM and the data analysis is conducted in R. 
Below is our suggested workflow. Each step in the workflow has to be completed before the next 
can start. 
For the simulation of E&R experiment: 

1. Create neutral populations representing the population prior to the selection experiment. 
To do this, read and edit ShellScripts/Burnin.sh. Then, run Burnin.sh. 

2. Establish the trait architecture and simulate the selection experiment. For this, read and edit 
ShellScripts/Selection.sh, then run the script. This step can be repeated to simulate different 
combinations of trait architecture and experimental design. These can be created using the 
same burn-in. 

For the power analysis in QTL detection: 
3. Compile the SLiM outputs from each simulation in step 2, and (optionally) create input 

files for WFABC and ApproxWF. To do this, read, edit, and run RScripts/Compile.R 
4. Calculate the power and false positive rate for each simulation. For this, read, edit, and run 

RScripts/Analysis.R 
5. Plot ROC curve comparisons by combining the ROC tables from simulations of different 

trait architecture or experimental design given by step 4. You can use RScripts/PlotROC.R 
to do this. Alternatively, you can also create your own R scripts, since this step highly 
depends on what your specific comparison is. 

Note:  
To adjust most of the variables, you will not need to edit the SLiM script and can directly input 
them through Burnin.sh and Selection.sh. Below is a list of these variables. 
 

Trait architecture Population parameters Experimental design setting 

Number of QTLs Population size* Sample size 

Position of QTLs Number of chromosomes Length of experiment* 

Effect sizes of QTLs Length of chromosomes Mode of selection 

Starting frequency of QTLs Recombination rate Strength and direction of selection 

Dominance Nucleotide diversity  

Pairwise epistasis   

* To modify these two variables, one single value will need to be changed in the .slim files. See the scripts for details.  
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There are some variables and scenarios that are not explicitly incorporated in the SLiM script but 
that can be conveniently implemented by editing SlimScripts/Burnin.slim and SlimScripts 
/Selection.slim. These variables and scenarios include:  

• heritability values other than 1 (see the SLiM manual Chapter 13.4) 
• selection modes other than truncating selection (see the SliM manual Chapter 13.1), 

pleiotropy (see the SLiM manual Chapter 13.5) 
• population structure (see the SLiM manual Chapter 5.2) 
• demographic history prior to the selection experiment (see the SLiM manual Chapter 5) 
• known genotypic data of the experimental population (see the SLiM manual Chapter 18.12) 

For data analyses and visualizations (step 3-5), it might be more efficient if you write your own 
scripts from scratch.  
If WFABC and/or ApproxWF are used, they should to be run between step 3 and 4.  
Please post an issue on GitHub or contact us at rl683@cornell.edu with any problems or questions. 
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Simulation pipeline scripts 

Burn-in 

 
Burnin.sh: 
 
## This script is used to generate neutral populations used for the selection experiment. 
## IMPORTANT: Change the output directory in the first step and the variables in the second step 
before running. 
## Run the script on server using: nohup bash Burnin.sh > Burnin.nohup & 
## Note: the number of generations to be included in the burn-in process depends on the 
population size (typically ten times the population size) and needs to be changed in the 
Burnin.slim file. Please refer to the notes in that file.  
 
## Step 1: Create directories to store the outputs. Make sure to change the directory name in the 
first line. 
cd /fs/cbsubscb10/storage/rl683/TemporalScan/Simulations # Change this to a directory where you 
want to store all you simulation outputs. 
mkdir Burnin 
cd Burnin 
for k in {1..100} # Number of simulation replicates that you want to create. 
do  
    mkdir 'SimRep'$k 
done 
cd .. 
 
## Step 2: Run burnin using SLiM 2. Variables inside the loop are all customizable and can be 
changed as desired.  
for k in {1..100} # Set the number of simulation replicates that you want to create. 
do  
    ~/Program/SLiM/bin/slim \ # slim directory 
    -d SimRepID=$k  \  # SimuRepID = Simulation Replicate ID 
    -d Mu=2e-8 \ # Mu = mutation rate 
    -d RecRate=1e-8 \ # RecRate = recombination rate (change the slim script if simulating 
multiple chromosomes) 
    -d LCh=30000000 \ # LCh = length of chromosome  
    -d BurninSize=1000 \ # BurninSize = size of the burnin populations (IF THIS NEEDS TO BE 
CHANGED, MAKE SURE TO CHANGE MUTATION RATE, RECOMBINATION RATE, AND NUMBER OF GENERATIONS 
ACCORDINGLY)  
    -d "BurninPath='/fs/cbsubscb10/storage/rl683/TemporalScan/Simulations/Burnin/'" \ # 
BurninPath = path to the burnin files 
    -d "BurninFilename='Burnin.txt'" \ # BurninFilename = name of the burnin file 
    /fs/cbsubscb10/storage/rl683/TemporalScan/SlimScripts/Burnin.slim # Directory to the 
Burnin.slim file included in the simulation tool. 
done 

 
Burnin.slim: 
 
// The number of generations in the burn-in process depends on the population size (typically ten 
times the population size). If it needs to be changed, change the "10000" value in beginning of 
the third and fourth section to the number of generations desired.  
 
initialize() { 
 // set mutation rate 
 initializeMutationRate(Mu); 
  
 // neutral mutations 
 initializeMutationType("m1", 0.5, "f", 0.0); 
 initializeGenomicElementType("g1", m1, 1.0); 
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 // set up the chromosome 
 initializeGenomicElement(g1, 0, LCh-1); 
  
 // set recombination rate 
 initializeRecombinationRate(RecRate, LCh-1);  
} 
 
1 early() { 
 // define a population 
 sim.addSubpop("p1", BurninSize); 
} 
 
10000 late(){ 
 // save the output of the burn-in 
 sim.outputFull(BurninPath + "SimRep" + SimRepID + "/" + BurninFilename); 
} 
 
s1 10000 late() { 
} 

 
Selection experiment 

 
Selection.sh: 
 
## This script is used to establish quantitative trait architectures and perform artificial 
selection experiments on the populations generated using the Burnin.sh script. 
## IMPORTANT: Change the output directory in the first step and the variables in the second step 
before running. 
## Run the script on a server using: nohup bash Selection.sh > Selection.nohup & 
 
## Step 1: Create directories to store the outputs. Make sure to change the directory names in 
the first three lines. 
cd /fs/cbsubscb10/storage/rl683/TemporalScan/Simulations/ # Change this to a directory where you 
want to store all your simulation outputs. 
mkdir NQTL10 # Change this to what you want to name this particular quantitative trait 
architectures and/or the experimental design that you are simulating. 
cd NQTL10 # Same as above 
for k in {1..100} # Number of simulation replicates that you want to create. 
do 
    mkdir 'SimRep'$k 
    cd 'SimRep'$k 
    for j in {1..10} 
    do 
        mkdir 'ExpRepPlus'$j 
        mkdir 'ExpRepMinus'$j 
    done 
    cd .. 
done 
cd .. 
 
## Step 2: Run the selection experiment using SLiM 2. Variables inside the loop are all 
customizable and can be changed as desired.  
## It is recommended if you copy this shell script for each of the trait architecture x 
experimental combinations that you want to test and make changes in the new script.  
## For example, when simulating the scenario with 100 QTLs, copy this file and rename it as 
NQTL100.sh. Set the NQTL variable to be 100 and run it with "nohup bash NQTL100.sh > 
NQTL100.nohup &"  
## Note: The number of generations in the selection experiment can only be changed in the 
Selection.slim script. 
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## Note: Depending on the population size, more or fewer burn-in generations might have been 
needed. If that is the case, edit the Selection.slim file as instructed in the file.  
 
for k in {1..100} # Set the number of simulation replicates that you want to create. 
do 
    echo $k 
    for j in {1..1} # Set the number of experimental replications.  
    do 
        echo $j 
        for i in {T,F} # Set the direction of selection (F if selecting the larger phenotype, T 
otherwise, T,F is both directions are selected) 
        do 
            echo $i 
            ~/Program/SLiM/bin/slim \ # slim directory 
            -d SimRepID=$k  \ # SimuRepID = Simulation Replicate ID 
            -d ExpRepID=$j \ # ExpRepID = Experiment replicate ID 
            -d Direction=$i \ # Direction = direction of selection; set this at the line "for i 
in {T,F}" above 
            -d "BurninPath='/fs/cbsubscb10/storage/rl683/TemporalScan/Simulations/Burnin/'" \ # 
BurninPath = path to the burnin files 
            -d "BurninFilename='Burnin.txt'" \ # BurninFilename = name of the burnin file 
            -d LCh=30000000 \ # LCh = length of chromosome (CHANGE THIS ONLY WHEN THE BURNIN USES 
A DIFFERENT CHROMOSOME SIZE) 
            -d RecRate=1e-8 \ # RecRate = recombination rate (change the slim script if 
simulating multiple chromosomes) 
            -d SampleSize=50 \ # SampleSize = number of individuals to sample each generation 
            -d NQTL=10 \ # NQTL = number of QTLs, (even number is recommended when the number is 
small) 
            -d ESMean=1.0 \ # ESMean = absolute value of mean effect size 
            -d "ESDist='f'" \ # ESDist = effect size distribution("f" for fixed or "e" for 
exponential),  
            -d LowFreq=F \ # LowFreq = starting frequency preference (T if selecting for lower 
frequency, F if selecting for higher frequency or random)  
            -d FreqBound=0.0 \ # FreqBound = frequency bound (0.0~0.5, 0.0 if starting frequency 
is random) 
            -d LowerPosBound=0 \ # LowerPosBound = lower position bound (0 if random) 
            -d UpperPosBound=29999999 \ # UpperPosBound = upper position bound (LCh-1 if random) 
            -d D=0.5 \ # D = dominance coefficient (0.0~1.0, 1.0 for mutant being completely 
dominant and 0.0 for wildtype to being completely dominant.) 
            -d Epistasis=F \ # Epistasis = F if there is no epistasis, T otherwise 
            -d "EpiSce=c(0,1,2,1,2,3,2,3,4)" \ # EpiSce = epistasis scenario; vector of size 9; 
first element must be 0; needs to be defined if Epistasis ==T; the nine value corresponds to 
phenotypes of genotypes in the following order: c(aabb, Aabb, AAbb, aaBb, AaBb, AABb, aaBB, AaBB, 
AABB); e.g. c(0,1,2,1,2,3,2,3,4) when there is no epistasis. 
            -d PopSize=1000 \ # PopSize = population size (can only downsample) 
            -d SelectedSize=100 \ # SelectedSize = number of selected individuals in each 
generation 
            -d "OutPath='/fs/cbsubscb10/storage/rl683/TemporalScan/Simulations/NQTL10/'" \ # 
OutPath = output path 
            /fs/cbsubscb10/storage/rl683/TemporalScan/SlimScripts/Selection.slim # Directory to 
the Selection.slim file included in the simulation tool. 
        done 
    done 
done 
 

Selection.slim: 
 
// The first variable that might need to be edited in this slim file is number of generations in 
the selection experiment. It is defined in the last section of this file, in the line 
"10000:10010 late() {". In this example, the selection experiment lasts 11 generations. If you 
want to set it to 100 generation, for example, this line should become "10000:10099 late() {" 
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// Depending on the population size, more or fewer burn-in generations might have been needed. 
Therefore, the second variable that might need to be modified is the number 10000 in the 
beginning of each section; this number should be changed to reflect the number of generations in 
the burn-in.  
 
initialize() { 
 initializeMutationRate(0); 
  
 // neutral mutations 
 initializeMutationType("m1", 0.5, "f", 0.0); 
 initializeGenomicElementType("g1", m1, 1.0); 
 m1.convertToSubstitution = F; 
 
 // mutations representing alleles in QTLs 
 initializeMutationType("m2", D, "f", 0.0); 
 m2.convertToSubstitution = F; 
  
 // a mutation type used to evaluate phenotypic fitness 
 initializeMutationType("m3", 0.5, "f", 0.0); 
 m3.convertToSubstitution = F; 
   
 // set up the chromosome 
 initializeGenomicElement(g1, 0, LCh-1); 
  
 // set recombination rate; change this if several chromosomes are simulated 
 initializeRecombinationRate(RecRate, LCh-1);  
  
} 
 
10000 late() { 
 // read the burn-in 
 sim.readFromPopulationFile(BurninPath + "SimRep" + SimRepID + "/" + BurninFilename); 
   
 // give an m3 mutation to every individual, for phenotypic fitness 
 sim.subpopulations.genomes.addNewMutation(m3, 0.0, 0); 
  
 // sanity check 
 // print(size(unique(sim.subpopulations.genomes.mutationsOfType(m1)))); 
 // print(size(unique(sim.subpopulations.genomes.mutationsOfType(m1).position))); 
  
 // get all SNPs within an starting frequency interval 
 if (LowFreq == T) 
 
 FreqencyConstrainedMutations=unique(sim.subpopulations.genomes.mutationsOfType(m1))[ 
  which(sim.mutationFrequencies(p1, 
unique(sim.subpopulations.genomes.mutationsOfType(m1))) <= FreqBound |  
  sim.mutationFrequencies(p1, 
unique(sim.subpopulations.genomes.mutationsOfType(m1))) >= (1-FreqBound))]; 
 else  
 
 FreqencyConstrainedMutations=unique(sim.subpopulations.genomes.mutationsOfType(m1))[ 
  which(sim.mutationFrequencies(p1, 
unique(sim.subpopulations.genomes.mutationsOfType(m1))) >= FreqBound &  
  sim.mutationFrequencies(p1, 
unique(sim.subpopulations.genomes.mutationsOfType(m1))) <= (1-FreqBound))]; 
 
 
 // get all SNPs within one region of a chromosome 
 ClusteredMutations=unique(FreqencyConstrainedMutations) 
 [which(FreqencyConstrainedMutations.position >= LowerPosBound &  
 FreqencyConstrainedMutations.position <= UpperPosBound)]; 
 
 // set seed so that QTLs remain the same within one simulation replication 
 setSeed(SimRepID);  
  
 // sample QTLs at random after the frequency and position constraints are imposed 
 QTL=sample(ClusteredMutations,NQTL); 
 QTL.setMutationType(m2); 
  
 // assign positive effect sizes to all QTLs first 
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 if (ESDist == "f") 
  for (IndividualQTL in QTL) 
  { 
  IndividualQTL.setSelectionCoeff(ESMean); 
  } 
 else if (ESDist == "e") 
  for (IndividualQTL in QTL) 
  { 
  IndividualQTL.setSelectionCoeff(rexp(1,ESMean)); 
  } 
  
 // assign negative effect sizes to half of the QTLs 
 Negative = sample(0:(NQTL-1), asInteger(NQTL/2));  
 print(Negative); 
 NegativeQTL = QTL[Negative]; 
 for (IndividualQTL in NegativeQTL) 
  { 
  IndividualQTL.setSelectionCoeff(-(IndividualQTL.selectionCoeff)); 
  } 
 // if there is epistasis, randomly set up epistatic pairs 
 if (Epistasis == T) 
  QTL.tag = 1:NQTL; 
   
 // set experimental population size (only takes effect in the next generation) 
   p1.setSubpopulationSize(PopSize); 
    
   // more sanity checks 
 // print(sim.subpopulations); 
 // print(size(sim.subpopulations.individuals)); 
  
 // set different seeds for different experimental replications for later steps 
   setSeed(SimRepID*ExpRepID);     
  
 // even more checks 
 // print(QTL); 
 // print(QTL.position); 
 // print(sim.mutationFrequencies(p1, QTL)); 
} 
 
 
 
10000: late() { 
 // define generation number 
 GenID = sim.generation-9999; 
 
 // define individual tags as phenotypes for the additive effects of QTLs while accounting 
for dominance 
 for (individual in sim.subpopulations.individuals) 
 { 
   if (Epistasis == F) 
   { 
    // extract sites when the mutant alleles are hehomozygous or 
heterozygous as needed for dominance scenarios  
    Homo = 
individual.genomes[0].mutationsOfType(m2)[match(individual.genomes[0].mutationsOfType(m2),individ
ual.genomes[1].mutationsOfType(m2))>=0]; 
    Hetero = c( 
   
 individual.genomes[0].mutationsOfType(m2)[match(individual.genomes[0].mutationsOfType(m2)
,individual.genomes[1].mutationsOfType(m2))<0], 
   
 individual.genomes[1].mutationsOfType(m2)[match(individual.genomes[1].mutationsOfType(m2)
,individual.genomes[0].mutationsOfType(m2))<0]); 
     
    // checks continued  
    // print(Homo); 
    // print(Hetero); 
     
    // use phenotypic value to define individual tag 
    individual.tag = 
asInteger(sum(Homo.selectionCoeff)*10000)*2+asInteger(sum(Hetero.selectionCoeff*Hetero.mutationTy
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pe.dominanceCoeff)*10000)*2; // multiply by 10000 since individual tag can only be integers 
   } 
    
   // if there is epistasis, define individual tags differently according to 
the epistasis scenario chosen 
   else if (Epistasis == T) 
   { 
    individual.tag = 0; // first set individual tag to be 0 
    for (EpistasisPair in 1:asInteger(NQTL/2)) // extract information 
on each epistatic pair for each individual 
    {  
     EpistasisMutation1 = 
individual.genomes.mutationsOfType(m2)[which(individual.genomes.mutationsOfType(m2).tag == 
2*EpistasisPair-1)]; 
     EpistasisMutation2 = 
individual.genomes.mutationsOfType(m2)[which(individual.genomes.mutationsOfType(m2).tag == 
2*EpistasisPair)]; 
     UniqueEpistasisMutation1 = unique(EpistasisMutation1); 
     UniqueEpistasisMutation2 = unique(EpistasisMutation2); 
     S1 = abs(UniqueEpistasisMutation1.selectionCoeff); 
     S2 = abs(UniqueEpistasisMutation2.selectionCoeff); 
     D1 = UniqueEpistasisMutation1.mutationType.dominanceCoeff; 
     D2 = UniqueEpistasisMutation2.mutationType.dominanceCoeff; 
     sign = (-1)^EpistasisPair; // give half of the pairs effect 
sizes the reverse of the epistatic scenario defined to make sure the mean trait value is ~0 in 
the first generation 
      
     // for each pair, calculate its contribution to the 
phenotype and add it to the individual tag 
     if (size(EpistasisMutation1) == 2) 
     {  
      //print(c("EpistasisMutation1Homo")); 
      if (size(EpistasisMutation2) == 2) 
      
 individual.tag=individual.tag+asInteger(EpiSce[8]/4*(2*S1 + 2*S2)*10000*sign); 
      else if (size(EpistasisMutation2) == 1) 
      
 individual.tag=individual.tag+asInteger(EpiSce[7]/3*(2*S1 + 2*D2*S2)*10000*sign); 
      else 
      
 individual.tag=individual.tag+asInteger(EpiSce[6]/2*(2*S1 + 0)*10000*sign); 
     } 
     else if (size(EpistasisMutation1) == 1) 
     { 
      //print(c("EpistasisMutation1Hetero")); 
      if (size(EpistasisMutation2) == 2) 
      
 individual.tag=individual.tag+asInteger(EpiSce[5]/3*(2*D1*S1 + 2*S2)*10000*sign); 
      else if (size(EpistasisMutation2) == 1) 
      
 individual.tag=individual.tag+asInteger(EpiSce[4]/2*(2*D1*S1 + 2*D2*S2)*10000*sign); 
      else 
      
 individual.tag=individual.tag+asInteger(EpiSce[3]/1*(2*D1*S1 + 0)*10000*sign); 
     } 
     else if (size(EpistasisMutation1) == 0) 
     { 
      if (size(EpistasisMutation2) == 2) 
      
 individual.tag=individual.tag+asInteger(EpiSce[2]/2*(0 + 2*S2)*10000*sign); 
      else if (size(EpistasisMutation2) == 1) 
      
 individual.tag=individual.tag+asInteger(EpiSce[1]/1*(0 + 2*D2*S2)*10000*sign); 
      else 
       individual.tag=individual.tag; 
     } 
     else  
     { 
     print("ERROR"); 
     } 
    } 



 10 

   }      
 } 
  
 // output the traits 
 Traits = paste(sim.subpopulations.individuals.tag/10000, "\n"); //divide by 1000 to 
return the original trait value 
 if (Direction == F) 
  writeFile(OutPath + "SimRep" + SimRepID + "/ExpRepPlus" + ExpRepID + "/Gen" + 
GenID + "_Trait.txt", Traits, F); 
 else 
  writeFile(OutPath + "SimRep" + SimRepID + "/ExpRepMinus" + ExpRepID + "/Gen" + 
GenID + "_Trait.txt", Traits, F); 
  
 // output number of persisting QTLs each generation 
 NSegregatingQTL = 
paste(size(unique(sim.subpopulations.individuals.genomes.mutationsOfType(m2)))); 
 if (Direction == F) 
  writeFile(OutPath + "SimRep" + SimRepID + "/ExpRepPlus" + ExpRepID + "/Gen" + 
GenID + "_NSegregatingQTL.txt", NSegregatingQTL, F); 
 else 
  writeFile(OutPath + "SimRep" + SimRepID + "/ExpRepMinus" + ExpRepID + "/Gen" + 
GenID + "_NSegregatingQTL.txt", NSegregatingQTL, F); 
 
 // get the phenotypic order for all individuals in order to perform truncating selection; 
change this if a different seelction regime is used 
 Order = order(sim.subpopulations.individuals.tag, Direction); 
  
 // redefine individual tags as their phenotypic ranks  
 sim.subpopulations.individuals.tag[Order] = 0:(size(sim.subpopulations.individuals)-1); 
} 
 
10000: fitness(m2) { 
 // the QTLs themselves are neutral; the m3 mutation type handles them 
 return 1.0; 
 } 
  
10000: fitness(m3) { 
 // keep only the 100 highest ranking individuals and remove all others 
 if(individual.tag < SelectedSize)  
  return 1.0; 
 else  
  return 0.0; 
}  
 
10000:10010 late() { 
 GenID = sim.generation-9999; 
 // last sanity check 
 //print(GenID); 
 //print(size(unique(sim.subpopulations.genomes.mutationsOfType(m1)))); 
 //print(size(unique(sim.subpopulations.genomes.mutationsOfType(m2)))); 
 //print(size(unique(sim.subpopulations.genomes.mutations))); 
 AllIndividuals = sim.subpopulations.individuals; 
 SampledIndividuals = sample(AllIndividuals, SampleSize); 
 // output sampled population 
 if (Direction == F) 
  SampledIndividuals.genomes.output(OutPath + "SimRep" + SimRepID + "/ExpRepPlus" + 
ExpRepID + "/Gen" + GenID + "_Sample.txt"); 
 else 
  SampledIndividuals.genomes.output(OutPath + "SimRep" + SimRepID + "/ExpRepMinus" + 
ExpRepID + "/Gen" + GenID + "_Sample.txt"); 
  
 // output full population 
 if (Direction == F) 
  AllIndividuals.genomes.output(OutPath + "SimRep" + SimRepID + "/ExpRepPlus" + 
ExpRepID + "/Gen" + GenID + "_Full.txt"); 
 else 
  AllIndividuals.genomes.output(OutPath + "SimRep" + SimRepID + "/ExpRepMinus" + 
ExpRepID + "/Gen" + GenID + "_Full.txt");  
} 
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Figures 

 

 
Figure S1. Number of SNPs in the simulated population has little effect on the power and false 

positive rate in QTL detection. (A) Power measured by the proportion of QTL detected. (B) Power 

measured by the proportion of genetic variance in the first generation explained by the detected 

QTL. Our standard model has ~14,000 SNPs, and the model used to test computational methods 

has ~1,400 SNPs. D-value is used here to detect QTLs. Solid vs. dotted lines: see Figure 2 caption. 
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Figure S2.  Simulation result under our standard model with 10 QTLs. (A) Change in the average 

phenotype values in all 100 simulation replicates. Each line represents a selection line in one 

simulation replicate. (B) Change in the distribution of trait values in the population over one single 

simulation run. (C) Change in sampled minor allele frequencies at neutral loci and QTLs in one 

single simulation run. The left half of the figure shows the low line and the right half shows the 

high line. (D) Distribution of D-values per locus across all 100 simulation replicates grouped by 

neutral loci (grey bars) vs QTLs (black bars). (E) D-values of neutral loci and QTLs along the 

simulated chromosome in one single simulation run.  
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Figure S3 Performance of different detection methods when only one selection line is created. In 

this scenario, WFABC gains an advantage over D at higher false positive rates. A slightly modified 

version of the standard model with reduced level of nucleotide diversity and 10 QTLs is used in 

this comparison (same model as shown in the blue line in Figure S1. Power is measured by the 

proportion of QTLs detected.  
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Figure S4. Detection power is lower when more QTL underlie the trait under selection. The 

standard QTL model is used in this comparison. Power measured by the proportion of genetic 

variance in the first generation explained by the detected QTL. Solid vs. dotted lines: see Figure 2 

caption. 
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Figure S5. The clustering of QTL has different effects on detection power depending on the 

number of QTL underlying the trait under selection. (A) With 10 QTL, clustering reduces detection 

power. (B) With 100 QTL, clustering increases detection power at lower false positive rate. Power 

measured by the proportion of genetic variance in the first generation explained by the detected 

QTL. Solid vs. dotted lines: see Figure 2 caption. 
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Figure S6. Relationship between D and starting frequencies of minor alleles at QTL across all 100 

simulation replicates. A logistic regression model is fit to the data, shown with the red line. (A) 10 

QTLs, equal effect sizes (B) 10 QTLs, exponential effect sizes (C) 100 QTLs, equal effect sizes 

(D) 100 QTLs, exponential effect sizes. 
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Figure S7 Relationship between D and starting frequencies of minor alleles at QTL across all 100 

simulation replicates. A logistic regression model is fit to the data, shown with the red line. (A) 

Random starting frequency. (B) High starting frequency (>5%). When QTL start at a random 

frequency, the QTL that can be easily detected (i.e. those with high D-values) are more likely to 

start at higher frequencies. Therefore, they contribute more to the variance in the first generation. 

A model with 10 QTL is shown in this figure. 
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Figure S8 Relationship between D and starting frequencies of minor alleles at QTL across all 100 

simulation replicates. A logistic regression model is fit to the data, shown with the red line.  (A) 

Mutant is codominant. (B) Mutant is recessive. When mutant is recessive, the QTL that can be 

easily detected (i.e. those with high D-values) are more likely to start at higher frequencies. 

Therefore, they contribute more to the variance in the first generation. 

 

  



 19 

 
Figure S9. Replication and extension of the selection experiment can improve detection power 

when combined. Top: 10 QTLs. Bottom: 100 QTLs. Left: four generations of truncating selection. 

Right: nine generations of truncating selection. (A) (C) Replication alone has minimal effect on 

detection power when only four generations of selection are conducted. (B) (D) Extending the 

experiment to nine generations increases power at higher false positive rate but decreases power 

at low false positive rate (red lines in (B) and (D) vs. red lines in (A) and (C)). A combination of 

replication and extension, however, significantly improves power at low false positive rate (blue 

lines in (B) and (D) vs. red lines in (A) and (C)). Solid vs. dotted lines: see Figure 2 caption. 
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Figure S10. Sampled minor allele frequency trajectories of five different experimental replicates 

over nine generation. (A) Standard model of 10 QTLs. (B) Standard model with 100 QTLs. Each 

row is a different experimental replicate that started with the same burn-in population and had 

the same QTLs. Many QTLs quickly go to fixation after the first few generations of the 

experiment, which explains why extending the experiment alone can decrease power at lower 
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false positive rates. In addition, in these first few generations, the allele frequency trajectories at 

both QTLs and neutral loci are highly deterministic because they are mainly driven by strong 

selection and linked selection. After some QTLs start to fix in the population, however, the allele 

frequency dynamics at neutral loci become much more stochastic. This pattern is particularly 

strong in the model with 10 QTLs, and it explains why replication can significantly increase 

detection power with 9-generation experiments but not with 4-generation ones. 
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Tables 
Table S1. Examples of published studies on artificial selection with large and long-living organisms 
 

 Study Study organism Trait of 
interest 

Number of 
generations 

Population 
size Selection intensity Number of 

replicates 

Ex
pe

rim
en

ta
l p

op
ul

at
io

ns
 

Conover and Munch 2002; 
Therkildsen et al. 2019 

Atlantic silverside 
(Menidia menida) body size 4-5 ~1000 90% mortality rate 2 

Sadowska et al. 2008 bank vole  
(Myodes glareolus) 

aerobic 
metabolism 3 ~5-20 

2-4 individuals 
selected as breeders 
in each generation 

4 

Barrett et al. 2011 threespine stickleback 
(Gasterosteus aculeatus) cold tolerance 3 ~45 not reported 3 

van Wijk et al. 2013 Trinidadian guppy 
(Poecilia reticulata) body size 3 250 males, 

75 females 80% mortality rate1 2 

Uusi-Heikkilä et al. 2017 zebrafish (Danio rerio) body size 5 450 75% mortality rate 2 

Barrett et al. 2019 deer mice (Peromyscus 
maniculatus) 

color 
pigmentation 1 75-100 55% mortality rate 3 

N
at

ur
al

 p
op

ul
at

io
ns

 

Coltman et al. 2003 bighorn sheep  
(Ovis canadensis) horn size 4-5 20-140 40% fishing 

mortality rate2 1 

Swain et al. 2007; 
Therkildsen et al. 2013 

Atlantic cod  
(Gadus morhua) 

body size, age 
at maturity 7 >5×107 ~10-80%  fishing 

mortality rate3 1 

Gíslason et al. 2019 yellow perch  
(Perca flavescens) 

age at 
maturity, size 

at maturity 
~5 not reported ~0-80% 

exploitation rate4 4 

 

Note:  
1. Males only. Females are randomly selected each generation in this study. 
2. For fish that are age 5 and older. 
3. For legal sized males. 
4. Exploitation rate is defined as proportion of biomass harvested.  



 23 

Table S2. List of genomic architecture parameters that were tested in this paper. The parameter values in our standard model are shown 
in the second column, and the values that we used to compare with the standard model are shown in the third column. We tested one 
parameter each time, while keeping other parameters constant.  
 

Parameters Parameter values in 
the standard model 

Parameter values tested 
in model comparisons ROC curves(s) 

number of QTLs 10, 100 2, 20, 200 Figure 3, S4 

clustering of QTLs random distribution on the 
30 Mbp chromosome 

clustering within a 3Mbp region at the 
center of the chromosome Figure 4, S5 

effect size distribution equal effect size exponentially distributed effect size Figure 5 

allele frequency same frequency distribution 
as neutral alleles 

minor allele frequency always below 5%, 
minor allele frequency always above 5% Figure 6 

dominance additive effect between alleles derived alleles are completely dominant, 
derived alleles are completely recessive Figure 7, 9 

epistasis additive effect among QTLs synergistic epistasis, antagonistic epistasis, 
sign epistasis, reciprocal sign epistasis Figure 8 
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Table S3 Pairwise epistasis scenarios. Lowercase letters (a and b) represent the wild type alleles, 
and uppercase letters (A and B) represent the mutant alleles. Numerical entries are the 
contributions to the phenotype under selection by given genotype combinations. The signs of these 
contributions are randomly assigned. These contributions are additive among all epistatic pairs.  
 
Synergistic, weak  

 bb Bb BB 

aa 0 1 2 

aA 1 2.5 4 

AA 2 4 6 
 
Antagonistic, weak  

 bb Bb BB 

aa 0 1 2 

aA 1 1.5 2 

AA 2 2 2 

 
Sign, weak  

 bb Bb BB 

aa 0 1 2 

aA -1 1 3 

AA -2 1 4 
 
Reciprocal sign, weak 

 bb Bb BB 

aa 0 -1 -2 

aA -1 0 1 

AA -2 1 4 
 

Synergistic, strong 

 bb Bb BB 

aa 0 1 2 

aA 1 3 5 

AA 2 5 8 
 
Antagonistic, strong 

 bb Bb BB 

aa 0 1 2 

aA 1 1 1 

AA 2 1 0 

 
Sign, strong 

 bb Bb BB 

aa 0 1 2 

aA -1 1.5 4 

AA -2 2 6 
 
Reciprocal sign, strong 

 bb Bb BB 

aa 0 -1 -2 

aA -1 0.5 2 

AA -2 2 6 
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