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Supplementary Materials and Methods 
Plant materials and trait measurements 

To measure traits on field-grown plants, the 226 DH lines and the two parents were 

evaluated for awns, grain yield, grain protein content, heading, plant height, thousand grain weight, 

spike length, and lodging susceptibility. Plants were grown between May and September 2017 at 

two locations: Elora, Ontario and Belwood, Ontario. Each field trial was conducted as a 

randomized complete block design with two blocks at each location. Each entry was planted in 

1 m x 1.43 m plots with six rows and 20 cm row spacing. All field trials were conducted in rainfed 

conditions using standard agronomic and cultural practices. Heading date was recorded when 50% 

of spikes in a plot had completely emerged out of the flag leaf. For plant height, we measured three 

randomly selected plants from each plot and measured the distance from the ground to the end of 

the spike after heading. Spike length was measured as the length of the inflorescence on the same 

three plants. Awns were scored visually. Grain was harvested by a Wintersteiger 11 combine and 

measured by hand, and lodging susceptibility (percent of lodged plants in plot) was measured at 

harvest. Grain was cleaned and weighed, and protein concentration (%) was determined on whole 

grain from individual plots using a FOSS-DS 2500 Near-Infrared Reflectance 

Spectrophotometer (Foss, Hillord, Denmark). 

To obtain tissue for RNA from the lines, we grew 154 DHs that were randomly selected 

from the 226 lines, and we sampled the 2nd leaves from the base of 12 day-old growth room plants 

for RNA extraction. Leaves from plants grown across three replicates in time were pooled into a 

single sample. Red Fife and Stettler were represented by four samples, and each other DH line was 

represented by one sample. All lines were planted in six replicates over time between May and 

August 2016. For each replication, two seed of a single genotype were randomly assigned to a 

single pot. The plants were grown in 50/50 sungro horticulture professional growing mix and 

Turface. The growth room’s temperature was 21ºC/18ºC day/night, with a 16 h photoperiod. The 

room had a relative humidity of 60%, and a light intensity of 150 – 170 umol.m-2.s-1. Plants were 

watered every three days and watered two days before any measurement.  

Statistical analyses of trait data 

We evaluated genotypic values of field grown plants using the model: 
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𝑦"#$ = 𝑢 + 𝐿# + 𝑅$(#) + 𝐺" + 𝑒"#$ 

Where: yijk denotes the value of the trait for genotype i in the kth replication within the jth location. 

The term µ is the grand mean, Lj is the random location effect, Rk(j) is the random replication (block) 

effect nested in location, Gi is the fixed genotype effect, and eijk is the residual.  

For the field data broad sense heritability, we used 
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Where l is the number of locations (n=2) and r is the number of replicates per location (n=2). We 

used the SAS Varcomp function to estimate variances. Genotype least square means, F statistics 

and heritability were obtained using PROC MIXED SAS version 9.3 (SAS Institute Inc. Cary, 

USA). Genotypic estimates were correlated with PROC CORR. 

RNA Sequencing, Read Processing, and SNP Calling 

Total RNA from pooled replicates for each genotype’s sample was extracted from each sample 

using an in-house Trizol-based method. Poly-A containing mRNA molecules were purified and 

libraries constructed according to the Illumina TruSeq RNA sample preparation guide v2. RNA-

seq was performed on each sample using the HiSeq 2500 platform at the University Health 

Network Clinical Genomics lab in Toronto, Ontario, generating 20-60 million 100- 125 nt long 

paired end reads per sample. 

Read quality was assessed with FastQC. Low-quality nucleotides were trimmed and short (<75bp) 

sequences were removed using Trim Galore (Krueger, 2015). Reads were mapped to the Chinese 

Spring wheat reference genome (iwgsc_refseqv1.0; IWGSC 2018) using STAR version 2.5.2b 

(Dobin et al., 2013). A two-pass STAR alignment that identifies unannotated splice junctions in 

the first iteration was performed. STAR mapping allowed two nucleotide mismatches between a 

read and the reference. Mapped reads were removed if both reads of a pair did not map. Picard 

was used to mark duplicate reads, and only a single mapped read was kept. 
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SAMtools v1.3.1 mpileup (Li et al., 2009) was used to call bases from reads mapped to the 

reference genome for each of the four parental replicates. SAMtools bcftools was used to remove 

genome positions with a read coverage less than 3, and VCFtools (v0.1.13) (Danecek et al., 2011) 

removed indels. To call a putative SNP from a single replicate’s alignment to Chinese Spring, we 

required a low probability of detecting a false positive allele (QUAL=20) and a genotype (GT) 

designation of 1:1. To identify SNP markers, we analyzed putative SNPs across the four replicate 

alignments of each parent to Chinese Spring. We called SNPs between Red Fife and Chinese 

Spring and Stettler and Chinese Spring when putative SNPs were called in three of the four parental 

replicates. These SNPs were used to identify 22,378 SNPs between Red Fife and Stettler. The SRA 

accession number for RNASeq reads is SUB7283627. These SNP markers were used to query the 

154 RNA-seq alignments from the DH population. Detailed protocols and code are provided at the 

end of this text. 

 

Marker filtering and genetic map construction 

Prior to constructing a genetic map with the 22,378 SNPs, we filtered out SNP markers that fell in 

the following three categories. First, 3,915 markers (17.5%) were significantly distorted from the 

expected 1:1 Mendelian segregation pattern (p < 0.05, chi-square test). Second, 2,679 (12.0%) did 

not have a genotype call in over 30% of the DH population. Third, 286 (1.3%) had two or more 

nucleotides detected across 15% or more of the DH population. The R/ASMap package (Taylor & 

Butler, 2017) was used to identify the genetic map positions of the remaining 15,497 SNP markers.  

Multiple QTL mapping (MQM) was performed on the genotypic least square means of each trait 

using MapQTL version 5 (Van Ooijen, 2006) using default parameters. A permutation test with 

1000 permutations estimated the significance of locus-trait associations (alpha<0.05). Confidence 

intervals were estimated using QTL genetic map positions for which LOD scores are greater than 

the significance threshhold. R2 is the proportion of genotypic variance explained by QTL. QTL 

were designated following the International Rules of Genetic Nomenclature 

(http://wheat.pw.usda.gov/ggpages/wgc/98/Intro.htm), which consisted of trait acronym, lab 

designation (ug= University of Guelph), and chromosome. Genetic maps and QTL graphs were 

drawn using MapChart v2.32 (Voorips et al. 2002). 
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Code and Protocols 
 
SNP detection and SNP calling protocol 
##Quality control and trimming 
Fastqc and trim_galore were used for quality control and trimming. 
 

fastqc RF1_rawRead_*.fq.gz 
 
trim_galore --phred33 --fastqc --gzip --illumina --trim-n --paired -

o path/to/the/output --
length 75 RF1_rawRead_1.fq.gz RF1_rawRead_2.fq.gz 

 
##Aligning reads and filtering aligned reads 
STAR was used to generate genome index files and to map reads using IWGSC RefSeq v1.0 of 
Chinese Spring. We used the multi-sample 2-pass mapping approach described in Dobin (2016). 
The default value was used for all parameters except for one to which the number of allowed 
mismatches was 2 (-- outFilterMismatchNmax 2). The full STAR protocol is available at: 
https://chagall.med.cornell.edu/RNASEQcourse/STARmanual.pdf 
 
Samtools view was used to extract uniquely mapped paired end reads and then picard to remove 
duplicate. 
 

samtools view -h -q 255 -f 0x2 RF1_aligneRead.bam -o RF1_uniqMap.bam 
 
java -Xmx32g jar picard.jar MarkDuplicates MAX_RECORDS_IN_RAM=20000000 
INPUT= RF1_uniqMap.bam OUTPUT= RF1_markDup.bam METRICS_FILE= 

RF1_metrics.txt  

  
## Calling nucleotides at genomic sites 
Samtools, mpileup and bcftools were used to identify nucleotides at genomic sites. Bcftools filter 
was used to extract any nucleotide having a read coverage of 4 or higher. Bcftool call was used 
to call nucleotides with sufficient read coverage. Vcftools was used to remove InDels. 
 

samtools mpileup -u -t DP,DV,DPR -v -
f genome.fasta RF1_sorted_MarkDupl.bam | bcftools filter -
i 'DP>4' | bcftools call -m -o RF1_bases_DP4.vcf 

 
vcftools --vcf RF1_bases_DP4.vcf --remove-indels --recode --recode-

INFO-all --out RF1_bases_DP4_noIndels 

 
## Identifying and filtering SNPs 
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The InDel-free vcf files were processed in a custom R script to remove heterozygous sites and 
nucleotide calls with QUAL<20. The homozygous sites had genotype values corresponding to 
0/0 and 1/1. The files that resulted from this analysis were called 
‘sample_homozygote_qual20.txt’. Then, the ‘sample_homozygote_qual20.txt’ files were 
imported in another R script to identify SNPs between Chinese Spring vs Red Fife, Chinese 
Spring vs Stettler, and Red Fife vs Stettler. Nucleotide bases needed to be called in at least 3 of 
the 4 parental replicates. A table with a list of SNP markers was created from this step. 
 
SNP effect protocol 
The InDel free vcf files were annotated using snpEff as described in: 
http://snpeff.sourceforge.net/SnpEff_manual.html 
  
Protocol to estimate gene expression levels  
## Assembling transcripts and estimating gene expression levels with Stringtie 

We estimated transcript abundances for each gene using the four replicate samples from Red Fife 
and Stettler. The processed .bam files from the “# Filtering read alignments” step above was 
used as input into Stringtie (?version) which assigns reads to transcripts and genes. The program 
prepDE.py, provided by Stringtie authors, was used to extract genes’ raw aligned read counts 
from Stringtie output files.  
 
We constructed a list of genes expressed in both parents. A gene was considered expressed in a 
parent if it had at least 10 counts in at least one of the four parent replicates. This filter resulted 
in 52,682 expressed genes from the 110,791 genes with at least one mapped read across the eight 
samples. 
 
Normalization of reads across parental lines was done using the median of ratios method using 
the estimatesizefactors() function from deseq2 Anders and Huber (2010). Each individual 
sample’s raw count value was divided by that sample’s normalization factor to generate 
normalized count values. These count values were used to compare genes’ expression levels, as 
described in the manuscript text. 
 
Protocol to classify genes according to their presence/absence on subgenomes  
SynMap (Haug-Baltzell et al., 2017), downloaded from the CoGe web platform 
(https://genomevolution.org), classified genes based on their presence/absence in the three wheat 
subgenomes. We used default values for parameters. 
 
Protocol to randomly assign nucleotides to transcripts 
We wrote an R Script in Bioconductor to obtain the expected distribution of effects from SNPs 
of the same transition/ transversion class as observed SNPs randomly placed on the genome. 
This script is below. 
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Code 
Protocol to randomly sample nucleotides: 
 
#Code processes 2 chromosomes at a time. Processing more than 2 chromosomes at a time was 
slow. First, subset the genome. 
#obtain the .gff for desired chromosomes 
#scp 
eraherso@iqaluk.sharcnet.ca:/home/eraherso/installers/snpEff/data/iwgsc_refseq_v1/genes.gff . 
#genes.gff is derived from iwgsc_refseqv1.0_HighConf_2017Mar13.gff3  
 
##extract from main gff file only the lines you will use from target chromosomes. 
awk '{if ($1 ~ /chr[67][ABD]_part[12]/) print $0}' genes.gff > chr67ABD.gff 
 
#library('BSgenome') 
##forge a BSgenome object as described in package instructions 
forgeBSgenomeDataPkg("/Users/lewislukens/Research/Wheat_genome/BSgenome.Taestivum.6
7ABD-seed.txt") 
 
#in shell: 
R CMD build BSgenome.Taestivumfour.IWGSC.v1 
R CMD check BSgenome.Taestivumtfour.IWGSC.v1 
R CMD INSTALL BSgenome.Taestivumfour.IWGSC.v1 
 
#now capture the cds sequences from all genes 
library(BSgenome) 
wseq<-getBSgenome("BSgenome.Taestivumfour.IWGSC.v1") 
 
library("GenomicFeatures") 
#A set of tools and methods for making and manipulating transcript centric annotations.  
 
txdb <- 
makeTxDbFromGFF("/Users/lewislukens/Research/Wheat_genome/Elies_genome/Gff/chr67AB
D.gff", format="gff3", organism="Triticum aestivum") 
cds <- cdsBy(txdb, by="tx", use.names=TRUE) 
#Generates a  GRangesList 
cds_seqs <- extractTranscriptSeqs(wseq, cds) 
# Generates a DNAStringSet 
 
#now, select genes that were expressed. 
/Users/lewislukens/Research/Wheat_genome/Elies_genes 
grep TraesCS[67][ABD]0 both_expressed.csv | cut -f1 -d ','| sed s/\"//g > 67ABD_genes 
 
#in R 
expressed<-
read.table("/Users/lewislukens/Research/Wheat_genome/Elies_genes/67ABD_genes") 
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#install.packages("stringr") 
library("stringr") 
t_expressed<-str_subset(names(cds_seqs),paste(expressed[,1],collapse="|"))  
e_cds_seqs<-cds_seqs[t_expressed] 
ts_len<-data.frame(names(e_cds_seqs),width(e_cds_seqs)) 
write.table(ts_len,file="ts_len",sep=",",quote=F,col.names=FALSE) 
 
###used python to choose longest cds 
#/Users/lewislukens/Research/Wheat_genome 
python3 t_choose.py > longest_cds #file ts_len is input 
 
###With R 
longest<-read.table("longest_cds")  
e_cds_long<- cds[longest [,1]] 
#GRangesList object that is a subset of cds GRangesList object 
e_range <-ranges(e_cds_long) 
e_range_str<- sapply(e_range,toString) 
cds_chrs<-sapply(runValue(seqnames(e_cds_long)),toString) #extract chromosomes to which 
genes belong 
 
e_cds_seqs_data<-getSeq(wseq,e_cds_long) 
cds_string2<-sapply(as.list(e_cds_seqs_data),toString) 
aa<-
data.frame(names(cds_string2),as.character(cds_string2),as.character(e_range_str),as.character(c
ds_chrs)) 
 
write.table(aa,file="67ABD_seqs_and_ranges",col.names=F) 
 
##Now extract strand 
tx <- transcriptsBy(txdb, by="gene") 
gene_strand<-sapply(runValue(strand(tx)),toString) 
write.table(data.frame(names(gene_strand),as.character(gene_strand)),file="67ABD_strand",quo
te=F,col.names=F) 
 
###In Python: 
python3 get_rev_comp.py > 67ABD_seqs_and_ranges_revcomp 
#outputs seqs_and_ranges but for - strand takes reverse complement of nucleotides 
python3 extract_seqs2.py > 67ABD_snp.vcf 
#this code randomly selects SNPs at defined frequencies 
#Output can be analyzed with SNPeff 
 
 
##Code for extract_seqs2.py 
#seqs_and_ranges 
#The input data has on one line: 
# a number 
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# longest CDs in quotes 
# The sequence in quotes "ATGCCGGCCGCGCAGCAC..." ; separated by commas if more than 

one 
# The range(s) for each of the sequences, comma separated e.g. "689807957-689808739, 

689807555-689807857" 
# Deleted column header from original output from xxx 
 
# The objective is to randomly generate set of mutations within these genes that match observed 

nucleotide changes. 
 
#extracts the information and puts it into a data structure 
#file=open("1A1B1D_seqs_and_ranges_revcomp") 
#file=open("45ABD_seqs_and_ranges_revcomp") 
file=open("67ABD_seqs_and_ranges_revcomp") 
#file=open("temp")  #head -100 1A1B1D_seqs_and_ranges_revcomp >temp 
 
seq_pos=[]  #the list of all the sequences' positions 
seq_nuc=[]  #the list of all the nucleotides from all the cds transcripts 
seq_chr=[]  #the chromosome 
 
#import re 
import itertools 
import random 
 
for line in file: 
 
  data= line.rstrip().split("\" \"") #splits on " " which separates the columns 
  data[4]=data[4].rstrip("\"") 
   
  #concatenate cds exons into a sequence list 
  seqs= data[2].split(", ")  #removes the commas separating exon sequences; returns a list of exon 

sequences 
  seqs[len(seqs)-1]= seqs[len(seqs)-1].rstrip("\"") #removes the trailing " from the last exon 

sequence#print (data[1]) #the transcript name 
  #print(seqs[len(seqs)-1])  #the last exon of each transcript 
 
  for i in seqs:  #i loops through exons; starts at first exon and ends at final exon. Appends nucs to 

the master list 
    #seq_list=list(seqs[len(seqs)-1]) 
    seq_list=list(i)  #makes a list from exon in question 
    seq_nuc.extend(seq_list)  
 
  #now append each nucleotide position to the list for the nucleotides positions. data[3] has range 
  ranges= data[3].rstrip("\"").split(", ")  #a list of one or more ranges for the transcript ; "x-y" 
  length = 0  # initialize the variable for the ranges 
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  for i in ranges:  #loop through two-number ranges associated with each transcript exon 
    rng=i.split("-") #for each range, make a list with range start and stop 
    #TraesCS1A01G053600.1 has an exon with a single CDS, so no end point. "35528837-

35528996, 35529295-35530453, 35532835" 
    if (len(rng) < 2 ):     
      rng.append(rng[0]) 
     
    seq_pos.extend(list(range(int(rng[0]), int(rng[1])+1))) #add to master list 
 
    #here also add list of chromosome name and append to master list 
    length=len(range(int(rng[0]), int(rng[1])+1))  #length of sequence 
    seq_chr.extend(list(itertools.repeat(data[4],length))) 
     
#now we summarize the three lists, having looped through lines and exons. These match as 

expected. 
#print ("positions " + str(len(seq_pos))) 
#print ("nucleotides " + str(len(seq_nuc))) 
#print ("chromosome " + str(len(seq_chr))) 
#print (seq_pos) 
#print (seq_nuc) 
 
#print a vcf 
#print #CHROM POS ID REF ALT QUAL FILTER INFO 
#22 17071756 . T C . . . 
#22 17072035 . C T . . . 
#22 17072258 . C A . . . 
 
#Now randomly selet nucleotides 
#sample n 
n=26609 
 
#define the numbers of observed nucleotide changes 
#A_C 8; A_G 24; A_T 2  34 As  0.2394366 
#C_A 4; C_G 7; C_T 18  29 Cs  0.2042254 
#G_A 33; G_C 9; G_T 6  48 Gs  0.3380282 
#T_A 4; T_C 18; T_G 9  31 Ts  0.2183099 
#142 total 
 
hv={} #number of nucleotides sampled per nucleotide 
wt={} #number of nucleotides wanted per nucleotide 
 
hv.update({'A': 0, 'C': 0, 'G': 0, 'T': 0}) 
#hv['A']=0 #counts in each class A,G,C,T 
#wt['A']=int(0.2394366*n)  #counts of A that you want- wt 
wt.update({'A' : int(0.2394366*n), 'C' : int(0.2042254*n), 'G' : int(0.3380282*n), 'T' : 

int(0.2183099*n)})  #counts of A that you want- wt 
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done=0 
while (done==0): 
    a= random.randint(0, len(seq_nuc)-1) #get random position 
     
    if (seq_nuc[a]=='A' and (hv['A']<wt['A'])): 
        rnd=random.random()  #randomly choose nt change 
        if(rnd<=(2/34)): 
            print(seq_chr[a] + "\t" + str(seq_pos[a]) + "\t.\t" + seq_nuc[a] + "\tT\t.\t.\t.")  
        elif ((rnd<=10/34) and rnd>=(2/34)): 
            print(seq_chr[a] + "\t" + str(seq_pos[a]) + "\t.\t" + seq_nuc[a] + "\tC\t.\t.\t.") 
        else: 
            print(seq_chr[a] + "\t" + str(seq_pos[a]) + "\t.\t" + seq_nuc[a] + "\tG\t.\t.\t.") 
        hv['A']=hv['A']+1 
        #print ("Have A is " + str(hv['A'])) 
     
    if (seq_nuc[a]=='C' and (hv['C']<wt['C'])): 
        rnd=random.random()  #randomly choose nt change 
        if(rnd<=(4/29)): 
            print(seq_chr[a] + "\t" + str(seq_pos[a]) + "\t.\t" + seq_nuc[a] + "\tA\t.\t.\t.")  
        elif ((rnd<=11/29) and rnd>=(4/29)): 
            print(seq_chr[a] + "\t" + str(seq_pos[a]) + "\t.\t" + seq_nuc[a] + "\tG\t.\t.\t.") 
        else: 
            print(seq_chr[a] + "\t" + str(seq_pos[a]) + "\t.\t" + seq_nuc[a] + "\tT\t.\t.\t.") 
        hv['C']=hv['C']+1 
         
    if (seq_nuc[a]=='G' and (hv['G']<wt['G'])): 
        rnd=random.random()  #randomly choose nt change 
        if(rnd<=(33/48)): 
            print(seq_chr[a] + "\t" + str(seq_pos[a]) + "\t.\t" + seq_nuc[a] + "\tA\t.\t.\t.")  
        elif ((rnd<=42/48) and rnd>=(33/48)): 
            print(seq_chr[a] + "\t" + str(seq_pos[a]) + "\t.\t" + seq_nuc[a] + "\tC\t.\t.\t.") 
        else: 
            print(seq_chr[a] + "\t" + str(seq_pos[a]) + "\t.\t" + seq_nuc[a] + "\tT\t.\t.\t.") 
        hv['G']=hv['G']+1 
         
    if (seq_nuc[a]=='T' and (hv['T']<wt['T'])): 
        rnd=random.random()  #randomly choose nt change 
        if(rnd<=(4/31)): 
            print(seq_chr[a] + "\t" + str(seq_pos[a]) + "\t.\t" + seq_nuc[a] + "\tA\t.\t.\t.")  
        elif ((rnd<=22/31) and rnd>=(4/31)): 
            print(seq_chr[a] + "\t" + str(seq_pos[a]) + "\t.\t" + seq_nuc[a] + "\tC\t.\t.\t.") 
        else: 
            print(seq_chr[a] + "\t" + str(seq_pos[a]) + "\t.\t" + seq_nuc[a] + "\tG\t.\t.\t.") 
        hv['T']=hv['T']+1     
         
    if ((wt['A']==hv['A']) and (wt['C']==hv['C']) and (wt['G']==hv['G']) and (wt['T']==hv['T'])): 
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        done=1 
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Sliding window code 
 
# Identical By Descent (IBD) regions 
# Identify IDB chromosome regions using different criteria (windows of i 
genes every j steps) 
# i is equal to 100, 200, 300, ..., 1000; and j or step = 5 
# Theorically, an IBD region is a portion of chr that Stettler is 
inherited from Red Fife (its ancestor).  
# Practically, an IBD region corresponds to a region (a window) of chr 
that has two snp markers or less. 
# snp marker number = 2 is defined as a threshold (see the graph section, 
yintercept = log2(2) = 1)  
# R script by Elie Raherison - May 24, 2020 
###################################################### 
 
# 1- Load libraries 
####################################################### 
#install.packages('zoo') 
library(zoo) 
library(dplyr) 
library(ggplot2) 
library(tidyr) 
 
# 2- Define the main path 
####################################################### 
mainPath='C:/Users/m_rah/Desktop/Article/G3-paper_Review/G3-Comments_05-
23-2020' 
setwd(mainPath) 
 
# 3- (TAB #1) Load files that have the number of SNPs per gene 
####################################################### 
# rs: SNP markers (Red Fife vs Stettler) 
# ------------------------------------- 
pos_rs <- 
read.table(file="15_1_count_SNPsperGene_346SNPtypes_expGenes_Markers.txt",
sep="\t",header=T); 
#> head(pos_rs,3) 
#            wheat_id   chr  start    end geneLength count nSNPper100b snp 
#1 TraesCS1A01G000400 chr1A 121263 121559        297     0           0   0 
#2 TraesCS1A01G000600 chr1A 157734 163815       6082     0           0   0 
#3 TraesCS1A01G001500 chr1A 326099 326518        420     0           0   0 
#> dim(pos_rs) 
#[1] 50236     8 
 
# mp: marker SNPs that are mapped to the genetic map  
# ------------------------------------- 
pos_mp <- 
read.table(file="15_1_count_SNPsperGene_346SNPtypes_mappedSNP.txt",sep="\t
",header=T); 
#> head(pos_mp,3) 
#            wheat_id   chr count    start      end geneLength nSNPper100b          
snp 
#1 TraesCS1A01G020500 chr1A     2 10067063 10069144       2082  0.09606148 
mappedMarker 
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#2 TraesCS1A01G020600 chr1A     5 10069852 10072312       2461  0.20316944 
mappedMarker 
#3 TraesCS1A01G020900 chr1A     6 10132632 10133075        444  1.35135135 
mappedMarker 
#> dim(pos_mp) 
#[1] 5714    8 
 
# 4- (TAB #2) Load the file with the list of genes that have SNPs 
####################################################### 
# List of genes which were sorted in ascending order of their start 
position 
all_marks <- read.table("unique_markers",sep="\t") 
names(all_marks) <- c("wheat_id","chr","start") 
#> head(all_marks,3) 
#            wheat_id   chr  start 
#1 TraesCS1A01G000100 chr1A  58508 
#2 TraesCS1A01G000300 chr1A 104607 
#3 TraesCS1A01G000400 chr1A 121263 
#> dim(all_marks) 
#[1] 54392     3 
 
all_marks_1 <- all_marks[!all_marks$wheat_id=="wheat_id",] # remove 
headers (eg #54392 wheat_id chr    NA) 
all_marks_1$start <- as.numeric(as.character(all_marks_1$start)) #convert 
factor to numeric 
all_marks_1$wheat_id <- as.character(all_marks_1$wheat_id) 
#> head(all_marks_1,3) 
#            wheat_id   chr  start 
#1 TraesCS1A01G000100 chr1A  58508 
#2 TraesCS1A01G000300 chr1A 104607 
#3 TraesCS1A01G000400 chr1A 121263 
#> dim(all_marks_1) 
#[1] 54391     3 
 
# 5- Merge TAB #1 and #2 to assign the number of SNPs per genes  
####################################################### 
# rs: SNP markers (Red Fife vs Stettler) 
# ------------------------------------- 
pos_rs$wheat_id <- as.character(pos_rs$wheat_id) 
pos_rs_all <- left_join(all_marks_1, pos_rs, by = c('wheat_id','start')) 
names(pos_rs_all)[2] = "chr"  #converts chr.x to chr 
pos_rs_all$count[is.na(pos_rs_all$count)] = 0 #assigns "NA" snps to zero 
#> dim(pos_rs_all) 
#[1] 54391     9 
 
# mp: marker SNPs that are mapped to the genetic map  
# ------------------------------------- 
pos_mp$wheat_id <- as.character(pos_mp$wheat_id) 
pos_mp$snp <- as.numeric(pos_mp$snp) 
pos_mp_all <- left_join(all_marks_1, pos_mp, by = c('wheat_id','start')) 
names(pos_mp_all)[2] = "chr"  #converts chr.x to chr 
pos_mp_all$count[is.na(pos_mp_all$count)] = 0 #assigns "NA" snps to zero 
#str(pos_mp_all) 
#> head(pos_mp_all) 
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#            wheat_id   chr  start chr.y count end geneLength nSNPper100b 
snp 
#1 TraesCS1A01G000100 chr1A  58508  <NA>    NA  NA         NA          NA   
0 
#2 TraesCS1A01G000300 chr1A 104607  <NA>    NA  NA         NA          NA   
0 
#3 TraesCS1A01G000400 chr1A 121263  <NA>    NA  NA         NA          NA   
0 
#> dim(pos_mp_all) 
#[1] 54391     9 
 
# 6- Remove all SNPs in the unknown chromosome 
####################################################### 
# rs: SNP markers (Red Fife vs Stettler) 
# ------------------------------------- 
pos_rs_all <- pos_rs_all %>%  
 filter(chr != "chrUn") 
#> head(pos_rs_all,3) 
#            wheat_id   chr  start chr.y    end geneLength count 
nSNPper100b snp 
#1 TraesCS1A01G000100 chr1A  58508  <NA>     NA         NA    NA          
NA   0 
#2 TraesCS1A01G000300 chr1A 104607  <NA>     NA         NA    NA          
NA   0 
#3 TraesCS1A01G000400 chr1A 121263 chr1A 121559        297     0           
0   0 
#> dim(pos_rs_all) 
#[1] 53772    10 
pos_rs_all$count = as.numeric(pos_rs_all$count) 
 
# mp: marker SNPs that are mapped to the genetic map  
# ------------------------------------- 
pos_mp_all <- pos_mp_all %>%  
 filter(chr != "chrUn") 
pos_mp_all$count = as.numeric(pos_mp_all$count) 
#> dim(pos_mp_all) 
#[1] 53772    10 
 
# 7- A loop to count the SNPs in a window of n genes  
####################################################### 
windows = seq (100, 1000, by=100) # number of genes in each window 
#> windows 
# [1]  100  200  300  400  500  600  700  800  900 1000 
 
for (i in windows){ 
 #i=200 
       
####################################################### 
 window <- i  # for i = 100 means 'take 100 genes at a time and count 
the total number of SNPs in these genes' 
       
#######################################################  
 step <- 5 # Decrease this number if you want get smoother curves 
 # step = 5; 
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 # 1 --> 100 genes 
 # 5 --> 105 genes 
 # 10 --> 110 genes 
 # ... 
 
 # 7-2 Calculate the number of SNPs per window and every step using 
the rollapply function 
 # ------------------------------------------------------------------
---------------------- 
 # rs: SNP markers (Red Fife vs Stettler) 
 # -------------------------------------  
 snp_win_rs <- pos_rs_all %>%  
  arrange(desc(start)) %>% 
   group_by(chr) %>% 
    do(data.frame( 
     window.start = rollapply(.$start, width = 
window, by = step, FUN = min, align = "left", fill = NA, partial = TRUE), 
     window.end = rollapply(.$start, width =  
window, by = step, FUN = max, align = "left", fill = NA, partial = TRUE), 
     snp_num = rollapply(.$count, width =  window, 
by = step, FUN = sum, align = "left", fill = NA, partial = TRUE))) 
     #genes with snps 
 
 # mp: marker SNPs that are mapped to the genetic map  
 # -------------------------------------  
 snp_win_mp <- pos_mp_all %>%  
  arrange(desc(start)) %>% 
   group_by(chr) %>% 
    do(data.frame( 
     window.start = rollapply(.$start, width = 
window, by = step, FUN = min, align = "left", fill = NA, partial = TRUE), 
     window.end = rollapply(.$start, width =  
window, by = step, FUN = max, align = "left", fill = NA, partial = TRUE), 
     snp_num = rollapply(.$count, width =  window, 
by = step, FUN = sum, align = "left", fill = NA, partial = TRUE))) 
   
 ####################################################### 
 
 # 7-3 Remove all rows with NA value and merge all tables in one 
 # ------------------------------------------------------------------
---------------------- 
 snp_win_rs2 = snp_win_rs %>%  
  drop_na(window.start) 
 
 snp_win_mp2 = snp_win_mp %>%  
  drop_na(window.start) 
 
 colnames(snp_win_rs2)[4] = "rs" 
 colnames(snp_win_mp2)[4] = "mp" 
 
 # Merge tables  
 all_tab=Reduce(function(...) merge(..., all = TRUE, 
by=c("chr","window.start","window.end")), 
     list(snp_win_rs2, snp_win_mp2)) 
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 # Rename columns 
 all_tab1 = all_tab 
 names(all_tab1)[4:5] = c("marker", "mappedMarker") 
 
 # Check duplicates 
 # dup <- 
all_tab[which(duplicated(all_tab1[,c('chr','window.start')])==T),] 
 #> dim(dup) 
 #[1] 3759    7 
 
 # 7-4 Remove duplicates (chr and window.start). Keep only the row 
with the max value in window.end 
 # ------------------------------------------------------------------
---------------------- 
 all_tab10 = all_tab1 %>%  
  group_by(chr, window.start) %>%  
   top_n(1, window.end)     
      
 # Create a column with log2 values 
 all_tab10$marker_log2 = log(all_tab10$marker,2)  # Red Fife vs 
Stettler or markers 
 all_tab10$mappedMarker_log2 = log(all_tab10$mappedMarker,2)  # 
mapped markers 
  
 # Assign 0 to any undefined value [log2(0) == undefined] 
 all_tab10$marker_log2 = ifelse(all_tab10$marker == 
0,0,all_tab10$marker_log2) 
 all_tab10$mappedMarker_log2 = ifelse(all_tab10$mappedMarker == 
0,0,all_tab10$mappedMarker_log2) 
 
 # Export tables 
 ####################################################################
####### 
 write.table(all_tab10,file=paste("15_8_IBD_per_",window,"_genes_per"
,step,"_steps.txt",sep=""),row.names=FALSE,col.names=TRUE,sep="\t") 
 ####################################################################
####### 
 
 # 7-5 Print the result (criteria and number of the IBD regions) on 
the screen and in a pdf file 
 # ------------------------------------------------------------------
---------------------- 
 interval <- function(x,y){ 
  lx <- length(x) 
  ly <- length(y) 
  n <- max(lx,ly) 
   as.vector(rbind(rep(x, length.out=n), rep(y, length.out=n)))} 
 # NB log2 allows to separate out the curves from different types of 
SNPs.  
 # The problem is that log(0) is undefined # NEED TO BE CHECKED 
################################################ 
  
 # Graphs with log2 values 
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 siz=1 
 n=2 
 my_breaks = seq(0,800,50) 
 my_labels <- interval(seq(0,800,by=100), "") [-18] 
 graph=ggplot(all_tab10, aes(x = window.start/1000000)) + 
  # mp: marker SNPs that are mapped to the genetic map  
  geom_line(aes(y = all_tab10$mappedMarker_log2), size=siz, 
color="green")+  
  # marker: SNP markers (Red Fife vs Stettler) 
  geom_line(aes(y = all_tab10$marker_log2), size=0.3) +   
  facet_wrap(~ chr, scales = "free_x", nrow = 7) + 
  guides(linetype = FALSE) +  
  theme_classic(base_size = 10) +  
  #theme(axis.line = element_line (colour = "black", size = 1, 
linetype = "solide"))+ 
  theme(axis.text=element_text(size=8), 
axis.title=element_text(size=9,face="bold")) + 
  #theme(axis.text.x = element_blank()) + 
  #theme(axis.ticks.x = element_blank()) + 
  geom_hline(yintercept = 1, linetype="dotted", colour="grey") + 
# snp number = 2 (threshold) 
  scale_x_continuous(breaks = my_breaks, labels = my_labels) + 
  #scale_x_continuous(breaks = equal_breaks(s=50)) + 
  #theme(axis.title.x=element_text("hello there")) 
  labs( x = "Position (Mbp)", y = paste("log2 (Number of SNPs 
per ",window," genes)", sep="")) 
  
 # Export the graph 
 ####################################################################
####### 
 pdf(paste("15_8_plot_1MB_allChrom_Figure_log", n, "_", step, 
"_steps_nbSNPper_",window,"_Genes.pdf", sep="")) 
 print(graph) 
 dev.off() 
 ####################################################################
####### 
} 
################################# END 
##############################################   
################################# END 
##############################################  
################################# END 
##############################################   
 
 
 


