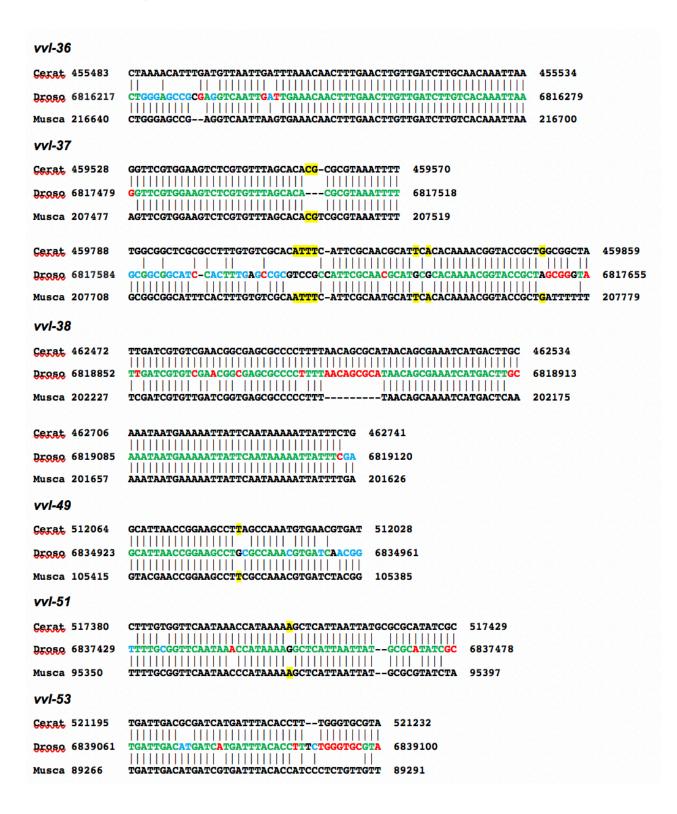
Ultraconserved non-coding DNA within insect phyla

Thomas Brody^{1*} Amar Yavatkar², Alexander Kuzin¹ and Ward F. Odenwald^{1*}

¹Neural Cell-Fate Determinants Section, ²Division of Intramural Research, Information Technology Program, NINDS, NIH, Bethesda, Maryland, USA


Running title: Ultraconserved sequences in insect enhancers

*Corresponding authors: Tel: 301-496-3435 E-mail: <u>brodyt@ninds.nih.gov</u>,

Supplemental Table and Figures

Bee species (superfamily Apoidea)	Ant species (superfamily Formicoidea)
Apidae – social bees	Myrmicinae –
<i>Apis mellifera</i> - Western honey bee <i>Apis dorsata</i> - Giant honey bee <i>Apis florea</i> - Dwarf honey bee	Atta cephalotes – Leafcutter ant Acromyrmex echinatior – Panama leaf-cutting ant Wasmannia auropunctata - Little fire ant Pogonomyrmex barbatus - Red harvester ant
Bombus terrestrialis - Buff-tailed bumblebee Bombus impatiens - Common eastern bumblebee Habropoda laboriosa - Southeastern blueberry bee	Monomorium pharaonis - Pharaoh ant Solenopsis invicta – Red fire ant Vollenhovia emeryi – Japanese ant Cardiocondyla obscurior – a tramp ant
Megachilidae <i>Megachile</i> rotundata - alfalfa leafcutter bee – solitary	Formicinae Lasius niger - Black garden ant Ooceraea biroi - Army ant – colonial raider ant Camponotus floridanus - Florida carpenter ants
	Ponerinae <i>Harpegnathos saltator</i> - Jerdon's jumping ant
	Dolichoderinae
	Linepithema humile - Argentine Ant

Supplemental Table S1: Ant and Bee species formatted for *EvoPrint* analysis

Α

В

D	
Cerat 387653	GTTGAAGAAGCTGTGAT-ATTTGTGAGCATAT 387626
Droso 10613790	GTAGAAGCAGCTGTGATAAATAGTGCGCATAT 10613756
Droso 10613564	CATCGATTTATCAC 10613577
Musca 35636	CATGGATTTATGAC 35649
Cerat 386904	TCAAAACCACATATACAAGCATTGTATACGATTTTAAAGCAACAAAATTAT-TAAATTATT 386865
Droso 10613458	CAACGGCAACCAACAA-ATTGTATACGATTTTT-ATAAACCAAACAAAtgcTATGTAAATAATt 10613522
Musca 35742	CAAC <mark>AA</mark> CAACCA-CAACAAAATTGTATACGATTTTTTCTAAAACAAA <mark>A</mark> ATATAATAATTAAT
Cerat 386251	AAAAGTGGCACA-GGTCGGGCT <mark>G</mark> GAC <mark>A</mark> TCGCTCCCAGAGCATTAATGGCTCA <mark>A</mark> CC <mark>T</mark> AGGGTAAGTACAT 386184
Droso 10613042	AAAAGTGGCACA-AATCGGGTTAGACGTCGCTCCCAGAGCATTAATGGCTCAGCCCAGGGTAAGTAgat 10612975
Musca 383950	AAAAAGTGGCACAAATCGGGTTGGACACCGCTCCTAGAGCATTAATGGCTCAACCTAGGGTAAGTATTG 384012

Anopheles gambiae Anopheles gambiae-S1		Anopheles melas			Anopheles merus						
Compo	site <i>e</i> B	LAT	Composite eBLAT		Composite eBLAT			Composite eBLAT			
Score	Start	End	Score	Start	End	Score	Start	End	Score	Start	End
1420	1	1420	1405	1	1420	1374	1	1420	1357	1	1420
87	15	992	84	916	1172	73	322	517	76	332	1065
77	332	1061	80	376	1118	50	332	484	87	341	965
Selecte	ed for E	voPrinting	🗿 1 st		Alignments	O 1 st ○ All Alignments			1 st All Alignments		
Anoph	eles ch	aristyi	Anopheles epiroticus		Anopheles culicifacies			Anopheles funestus			
Compo	site eB	LAT	Composite eBLAT		Composite eBLAT			Composite eBLAT			
Score	Start	End	Score	Start	End	Score	Start	End	Score	Start	End
940	50	1390	733	107	1266	535	137	1382	534	137	1384
75	50	168	123	234	1414	105	476	953	131	285	974
92	286	507	84	329	716	86	332	429	99	33	356
O 1 st		Alignments	O 1 st ○ All Alignments		O 1 st ○ All Alignments		O 1 st ○ All Alignments				
Anoph	eles di	rus Anopheles farauti		Culex pipiens			Aedes aegypti				
Compo	Composite eBLAT Composite eBLAT		LAT	Composite eBLAT			Composite eBLAT				

· ·							•				
Composite	e eBLA	т	Composite eBLAT			Composite eBLAT			Composite eBLAT		
Score St	tart E	ind	Score	Start	End	Score	Start	End	Score	Start	End
447 14	45 12	265	413	145	1172	204	44	1172	181	245	824
86 52	22 10	028	85	7	531	109	31	578	172	245	824
101 2	9	03	84	5	300	85	44	922	71	761	1055
O 1 st ○	All Alig	gnments	O 1 st (lignments	○ 1 st (lignments	○ 1 st (Alignments

A							
Apis_Mellifera (Bee) (Ref Sequence)	Apis_dorsata (Bee)	Apis_Florea (Bee)	Bombus_Terrestrialis (Bee)				
Composite eBLAT	Composite eBLAT	Composite eBLAT	Composite eBLAT				
Score Start End	Score Start End	Score Start End	Score Start End				
2808 1 2808	2388 76 2788	2299 61 2808	917 261 2497				
322 717 1780	284 700 1654	253 1143 1826	127 881 1800				
227 438 1652	245 1223 1796	195 968 1853	122 1305 1985				
Selected for EvoPrinting	O 1 st ○ All Alignments ○ None	1 st All Alignments None	1 st All Alignments None				
Bombus_Impatiens (Bee)	Habropoda_Laboriosa (Bee)	Megachile_Rotundata (Bee)					
Composite eBLAT	Composite eBLAT	Composite eBLAT					
Score Start End	Score Start End	Score Start End					
860 261 2462	762 287 2453	307 2070 2450					
196 481 1806	259 681 1810	119 1589 1798					
159 677 1811	142 1140 1947	127 1705 1894					
Ist ○ All Alignments ○ None	1 st All Alignments None	O 1 st ○ All Alignments ○ None					

в

aaaacgttatatattattattatatgtataatatttgaatagtgttttgggacagtcatgacaatcattgacta tactatcgtagcgatatatttttcgataatcgttaataattcattgacaaagttgtgaagcaataattttta caaaagttttttgaaattatctaaaatcgattgatctctggaacaccctatatatcttgttgtatgttctcg TTA AAT ctatcc Ctatata TACATCTATCAGGATCAGCC GCAATTAATTC cacacg CAtAtTTCATCC gtg cgaatGTacacatttACACaaggattaccgccatgtccactgtctcgaattcttcgacaagcaacgattttt tccaaagaggattggcgaacatttatacgCtCGAAATTGTCGCGaGAAA GAGCGAGAAGTTTTAATTGCtc $c{\tt GCgt}{\tt ACg}{\tt AGCgCaCCaATt}{\tt GAATCgTCTTt}{\tt GTgcgACGATATTGTTT}{\tt AatacACaccttcg}{\tt AAAGGTTtc}$ aTGCTTACaACTCGTTAAAagtgcagacatgtgcagaGAcaAAACggtgtatcgaTACAATgCGGTTCccCG TCTttcTtTcTcttttttttagatttttttttTGTTTGcaATTTAATtCaACaTTCGAAtgGAAAATtttac tacggtGAacagagcgGAAAAAGTTTaTAAATGGAGcGCgtAaATTTAAcgttCgcCgATTAAAtGAAAGTG ttCGTTTggtcggttTTttttCAGaGgAATCGACaGgAAATTGtatGaATTAATcGCTCGaATTcgAAtgaCa tttcagtttttgcaacagaatgaatcattcaaactgaaatagaaatattttacaatatcgtttttgttttgact tttttgaaaaatattttacgtattttttatttttatttcactataaagttattaataatgatattgtaaaa ttttatataatttatcatgtaaaacattagtattttaaattgcaattataacatatcaaaatatgtaaagta atctttccaatataattgtaaaaattatttatctttttttactatttaacatcatgcaacaaataatttca catttttctcatttattaaatattqttttqtttaaaacagttaacatttaaaatattqttttttcaatatt atcaacaaattcaaagatattggaataataattaaaaaaatattcgaaaaataattaaatagtctgtatatac ttatttaatgaaaacgcatacacaaatatatttacaaattctactcacgtaatcaaccttgaaccgacgcat tcgtacatgatataaatttcacaggcgcgtctcaTATTTCTtGCgGCctAaATAATATTACaaCGCCTTTGT TCCCCttcagtgagtaCTATATTTCCGTAAGCGTAACATATCCATCTTACTAATAGCGCtATGGTCAGACTG **CACGTAATTCGAGGtAGTC**accaacqqttccccctqtqqtatatatctcctqtATGTaCAtqtcqtatatqq ccccgtaTACATACGcgGtaTATCcAtgTTGAATAGATCCGAacAGGCAGGCATAGGTAGCAGCATCGAGT GT GATACCGAAACTACATAACC ATCCAAGCCGGCTGACTTGGCCGACAATCGCTATTTAGGaagCCGCTTA TCTCaGCCaGTCTTAGCTGatCTAATGTCTCttqqCGAATtTGcTTtAaCacGTAGAtGcAATAACGTatac gGAaTcttagatagaaatgttgtgtttagaacgaagcaagaaaaaggaaaactaaaagcgagaagggaaaga ggaaaaaaaattgaagggataaggggtaaaaaggaaaatggcaaaggtgaagagaaagtcgtgaggggaatg ggggtgagagtggtcgtgaaaatggaagaaatttggagcaaggatgataatacgaaaaaggaaaaagtgagaa atacaatttattqqaqaqaaaaatatqaaaqqattattqttaaaatatqtataqttttatqtcaattttatt

Α
${\tt tggaatatgttgaagcaacgacggaatatttcgtatataattttgattcaaaattgaaatcgattgatt$
a atga atgt ctttgtcg a atgctttccttc atcttc agga a atccttggtt a attcgg a aata a atagcttg ccccg cgg t
tccgcgtatattacacgcgtccctccccccgcggcgtatggatctcgtg GCGt AAAAATGAAAGAAGGCGc AAAATCCTCG
cgggtggaccgaCGCgTTCcGCAAcgAAATTTCCTTtATGCCCcCgAgGGCTTTAAGTATTTCACCCCGCAAGAACCtcggC
GCAGATTGGGGGaTGCGCaggCTGAAATCCGCAATCCGTTTCGATCACGCgCGAACGATTTAGCTcCTTGCAATCCCGtgtt
GGAAGAtgaAAAACGAGAAGGAAAAAATATGCAACggcatcggcggttctcaatggagagagagagagagagaga
TTCGCACATTTTTATGCgGaGACGTCGCCTCTAAGCAGCTTTCTTCgAGATTTTAAACCAAAACATCCCTTGGGacccggg
gatggttcccagtatttttttcccacttcccttttcacgcggaataaggttgcgaattgttgagaaacgttattacaatttt cqtcqctctatcggcgataaacgcgaaacctttcacgtttcgattaatcttcttttaactcctccttggtcgtttcctttc
cttccatttttaaqaaaataqtaacqctttttaaaqtqatctaacaqqcatttqttttactcttatttqqqaqqctaaqaa
tqacqtttaatqaaaaatccataaqaaaaqaatatttttttcatatctttttacqaaattctctaaatacqtaaaatatat
aacatacttcctttatgattctctttcgtttcatcgatgtcttcgatcga
gaatatagttcaactattcattatttccagaaatggaacgattattatcaaagagatggctcttttgataaaaatttttcg
tttcatcgaagtaaagattttaagaaatgggattaaTTTAAtattattaacgatagttTTtTCTcgttTTCAGCtGCAGCA
TA+CC+AgTTTaTA+TCCGG-GG+TACGTgGCaG-AATGGCAGC-GCCGGCGTTTCgCT+CACGG+CAaCCGGCCTTCTA+
CACGCgGCTCATCCTAtCAAATAAATCCAAAGCCaCGGCtgtggggCCgATGGCgAAgAGGAAGCGTCGtCAAGGACG
ATATTACGAGGAGCAGCTGGAACAACTGGAAGCAACTTCGACAAGACGCACTATCCaGAGGAGAACAG
CT_GCtCTtCAgGTCGATCTCAAGGAgGAacGAATCGAGGTGAGTttagacaaaataagttgtatgtttcaagatcttacg
a cac gt gt att g cag t a cat g att at g a a a t t t cag t t t t t t g a a g a t t t t c t t t t g a a g a a t a t t c c c c a c t a c c c c a c t a c c c c
$a {\tt gtgtttgtaatttggatttattttgttcttcgtacttatattgatagtttttctatttttcaattaaatttcgttaaat$

в

tgacaccggcgcttattattaaatcggccggagttactcgacttcgcgctggagaggcgatccgattcgcgtgagtgccga gagaaaaactttcgcggtttcgcgtagaaataatgtgaggcaaaaaaggcactgtcttatccaaagatgtatatttcttcgttqtaqcqaqaGGGAGAATAATacqcqccqaaTTCTCCCttqccacaCtTTTTTTcccctctcqqtaacactccqttcctct TotttotcocctgaagactaAActCTTTCTCTTTTTgcaccgggatgcgtATACGtTCTtGCAGAAaCgctgcACGGGCgGc CAALGTACGCqcqttccctccGtTcCTqACGGCACATATACCACqaaGAGCqGGGAGTCCCCCGcGAGCCaCGAGAAATAT TCGACAATTTTTAAACTCGTTCCTGAaCacgcGGCATTCAAACqccGCGCaccagcctctcgcaqtcaqCAAGTAcGAAT TTCTGAGAA
ttcggccgCGTCCTGGTaGGGtGcACcgAA
tgctggatgacgcgtgatagatgttgggttgggattagaa cactcgagcccgaggaggacactccgggtttcgaccgatgtgacacgtgatttgttgtcgttctgtgatcggccccgcgctgcgtccgattaatcaacgagaagcgcagtcgcgatgcgcctttgttcgtaattcgctgatatggcccgactaatacatata tagtgcccggcgggaaagtacgagtataggacggctcgtggaagagggtttgccgcgtccaccggtattcgacatgcccg AATAATAAAATTTAAATACaTcctGGCAAGAAATGCAAATGCGaCCGCTtGAGAGtGCTTTAACTGTAGAATtaTTCGTTT A GCAAAAAAAaaaGGGqqqaqaatacqqcatqqtqtatqtqtqtqtqtqtqtqtqCqCAGtTtaTTTCCATCTCGTG ±GCGCATTACCTCGGGAGATAATTATCGCgAGCGAGGATTGGTCAACCGAATTGCGTCT_GCGCTCAATATTTTCTTGCGT tccqcatcGCCCGCGGCCACgCCaCGCTTTTTGCATAttGCGTATTGCGATCGGcCCcGATAGTTctttcttttttaag gcgcgcccatcgGgCAACCAGTTTTCGGtcgcgcgcgCGAGAGtgCCaTAGGTCGACGAACGgtgGGTCaTAACTCgC GgTATGTGTATCAGaagtcattccggtatgcgccgttTCcTCgcggatGTGAACGCgaacccgtattatccagaccgata qtatcqcccaqaacACaCGGTCGGTAAAataAGAtGGTTqcCTqtqGAqGqacqtqtttatqccaqaccqaqccqaqttca tatcgaccgaatacccatctggctcgcacggaagacgaagacctcgcgcagatttctagggcagtttgtgatctactg agatctqtcqaqctttqaatttqaaatttqattttqataqcaacttttaqacatttataqtatttcacaaatatttcactt attataacacgttcattgtacattaaatcaaaattatattataacgtaatctactttgaataagaaacggagaattgttgtcgaaatgttcttgcttatttgatttgattttgtgtaacattttcttcttgtatattttacaaatatttcacctattata ${\tt ttatacactagatcaaaattatattaacgtaatatctactttaagttagaaacggagaattgtcgttgaaatattcttgct$ taaqaqtqtttctcqtctqtcaCAGCcTTGcTCAGGCAGAGtATGTCtCCGGTaGCqGAttCTcTaTGaGtGGTTCCAAa acgtcgGTGTCCCAaCCgATCATCGATTATTCCCGATACGTGAGgaGaTataCgTCCaGcCAaGAATGCGGCAGTACGTAC TGCAAgGAacTgGGtTGCAGgGAgCACTTtCAtTGTCTgGACTGtAGCGGcagggtgTTCGTGAAgAAggagGAaATGATC GA AA CA CC GG CG GA CTGTCCGCA AA TA GAAAGCA AC CA TA CATTGCAT CACGAGAATTGCGACAA GT G TATATATCGACGTCGGACGTCCAGATGCACGCGAATTACCACCGCAACGACTCGCCATCATACAGAGGGCTTCCAGCGA TTTCGgCCACGAgAGTTGCGCGACtGAgCATTGTccgTTGCtGGaCAaCGgACcACGCACTTTCACTGTCGtCGACCg GgaTGTCGGTTCACgTTCAAAAATAAgGCCGATATGGGTgagAAgcgaactgtttgcgTGATtAaTGcTCGCtctagatcg agactattcatcAATCgaagCCTTtcactagaaacttaatqtgtcgcaaacgtttcggatttaattcttacqctgagagaa cgattacgttgatacatttttatttgatgtacatatctaattatattttgtcgttatttcagatctctcccatgatttgctc tacaagttttcttttttttttttttttcagacaagcacaagtcttatcacatcaaggacgaacaactgtcgcgcgacgg

Apis_Mellifera (Bee) hth Genomic Relaxed EvoPrint

Cerapachys_Biroi (Ant) hth Genomic Relaxed EvoPrint

Supplemental Figure 1. Ultra-conserved DNA in *Drosophila vvl* enhancers identified in *Ceratitis capitata* and *Musca domestica* orthologous DNAs.

Three-way *Ceratitis-Drosophila-Musca* BLASTn alignments of CSBs within six different *in vivo* tested *Drosophila vvl* enhancers. *Drosophila* sequences that are shared with *Ceratitis* and *Musca* are shown in green. Red bases are shared only between *Drosophila* and *Ceratitis* and blue text represent bases shared exclusively between *Drosophila* and *Musca*. Yellow highlighted *Ceratitis* and *Musca* bases are not shared in *Drosophila*. Flanking BLASTn designator numbers indicate genomic base positions.

Supplemental Figure 2. Ultra-conserved *Drosophila*, *Ceratitis capitata* and *Musca domestica* sequences within the *homothorax locus*.

A) A 1,065bp *EvoPrint* of the *D. melanogaster homothorax locus* that includes 5' nontranscribed sequence, its 5' UTR, the first five codons of its encoded protein and 102bp of the first intron. Capital letters represent bases in the *D. melanogaster* reference sequence that are conserved in *D. simulans, D. sechellia, D. yakuba, D. erecta, D. ananassae, D. persimilis, D. grimshawi, D. mojavensis and D. virilis* orthologous DNAs. Lower case grey letters represent bases that are not conserved in one or more than one of the test species. *Drosophila* CSBs that are shared with *Ceratitis* and *Musca*, as detected in figure 1, are shown in green. Red bases are shared only between *Drosophila* and *Ceratitis* and blue text represent bases shared exclusively between *Drosophila* and *Musca*. The translation start codon is marked by an underlined ATG. **B**) BLASTn two and three-way alignments of the ultra-conserved CSBs. Font color annotations are as in panel A. Yellow highlighted bases in *Ceratitis* and *Musca* are not shared in *Drosophila*. Flanking BLASTn designator numbers indicate genome base positions.

Supplemental Figure 3. Combined Ant and Bee *EvoPrints* identify ultraconserved *Hymenoptera* DNA

A) An *Apis mellifera goosecoid (gsc) EvoPrint* generated with four evolutionary divergent bee genomes and then overlaid with a print that includes the four bee genomes plus four divergent ant species. The *Apis* honeybee *gsc* DNA (1,701 bp) includes 5' non-coding, the first exon and intron sequences. All uppercase bases (both black and red font) are conserved in bees and sequences that are conserved in both bees and ants are denoted with red-font uppercase bases. Lowercase gray-

colored bases are not conserved in one or more of the bee test genomes. Bee test genomes: Bombus terrestrialis, Bombus impatiens, Habropoda laboriosa and Megachile rotundata. Ant test genomes: Linepithema humile, Monomorium pharaonis, Wasmannia auropunctata and Atta cephalotes. B) EvoPrints of the ant Wasmannia auropunctata castor (cas) gene locus. The 3,078 bp Wasmannia genomic DNA includes *cas* 5' non-coding, the first exon and flanking intron genomic sequences. The initial *Evoprint* was generated with four evolutionary divergent ants and then super-imposed with a print that included these four ants plus four bee genomes. All uppercase bases (both black and red font) are conserved in the ants Cerapachys biroi, Linepithema humile, Atta cephalotes and Vollenhovia *emeryi*. Sequences that is conserved in both ants and bees (*Apis florea, Bombus* impatiens, Habropoda laboriosa and Megachile rotundata) are shown as red colored uppercase bases. Lowercase gray-colored bases are not conserved in one or more of the ant test species. The translation initiation codon is underlined. The left flanking vertical brown bar indicates an ant-specific conserved DNA cluster that is not found in bees. Note, in the exon ORF most, but not all, of the conserved codons do not have conserved wobble positions indicating that the cumulative evolutionary divergence of the test species used to generate the *EvoPrint* afford near base pair resolution of essential DNA.

Supplemental Figure 4. Conserved sequence clusters within the honeybee dscam2 gene

EvoPrinter analysis reveals *Apis mellifera* non-coding sequence elements that are conserved in other bee species or only in a subset of species. **A**) Alignment data generated from oneon-one comparisons of a 2.8 kb sequence from the honeybee 16 kb *dscam2* second intron. For each species, the top three independent *e*BLAT alignment scores are listed. Scores indicate the total number of bases within the reference sequence, the *Apis mellifera dscam2* intron, that align with the test species genome. The test species; *Apis dorsata, Apis florea, Bombus terrestrialis, Bombus impatiens, Habropoda laboriosa* and *Megachile rotundata* are listed (L -> R) based on their highest alignment score in descending order. Website links to individual *e*BLAT alignments and superimposed composite *e*BLATs are indicated in either red or blue font colors. As indicated in the alignment scorecard by the blue selection buttons, the top (highest scoring alignment) for each test species has been selected for *EvoPrinting*. **B**) A color-coded relaxed *EvoPrint* of the 2.8 kb honeybee *dscam2* second intron generated from the alignment data shown in panel A. Black uppercase letters indicate bases conserved in all test species. Font colors represent sequences conserved in all species except for *Apis dorsata, Apis florea, Bombus terrestrialis, Bombus impatiens, Habropoda laboriosa or Megachile rotundata.* Gray lowercase nucleotides are not conserved in at least two of the test species.

Supplemental Figure 5. Combined Ant and Bee *EvoPrints* identify ultraconserved *Hymenoptera* DNA

A) An Apis mellifera goosecoid (gsc) EvoPrint generated with four evolutionary divergent bee genomes and then overlaid with a print that includes the four bee genomes overlaid with an *EvoPrint* that includes four divergent ant species. The Apis honeybee gsc DNA (1,701 bp) includes 5' non-coding, the first exon and intron sequences. All uppercase bases (both black and red font) are conserved in bees and sequences that are conserved in both bees and ants are denoted with red-font uppercase bases. Lowercase gray-colored bases are not conserved in one or more of the bee test genomes. Bee test genomes: Bombus terrestrialis, Bombus impatiens, Habropoda laboriosa and Megachile rotundata. Ant test genomes: Linepithema humile, Monomorium pharaonis, Wasmannia auropunctata and Atta cephalotes. **B**) EvoPrints of the ant Wasmannia auropunctata castor (cas) gene locus. The 3,078 bp Wasmannia genomic DNA includes cas 5' non-coding, the first exon and flanking intron genomic sequences. The initial *Evoprint* was generated with four evolutionary divergent ants and then super-imposed with a print that included these four ants plus four bee genomes. All uppercase bases (both black and red font) are conserved in the ants Cerapachys biroi, Linepithema humile, Atta cephalotes and *Vollenhovia emervi*. Sequences that is conserved in both ants and bees (*Apis florea*, Bombus impatiens, Habropoda laboriosa and Megachile rotundata) are shown as red colored uppercase bases. Lowercase gray-colored bases are not conserved in one or more of the ant test species. The translation initiation codon is underlined. The left flanking vertical brown bar indicates an ant-specific conserved DNA cluster that is not found in bees. Note, in the exon ORF most, but not all, of the conserved codons do not have conserved wobble positions indicating that the cumulative evolutionary divergence of the test species used to generate the *EvoPrint* afford nearu base pair resolution of essential DNA.

Supplemental Figure 6. Side-by-side comparison of conserved sequences within ant and bee *homothorax* loci identifies shared exon/intron architecture and species-specific conserved sequences.

EvoPrints of bee and ant genomic DNA that includes *homothorax* (*hth*) encoding an exon isologous to the 2nd exon of *Drosophila hth* plus flanking intronic sequences. Blue and red underlined regions are coding and non-coding sequences, respectively, and align with homologous regions in the two panels. Black uppercase bases are conserved in all test species and colored uppercase bases are conserved in all but one of four bee tests species in panel A and all but one of three ant test species in panel B. A) Relaxed *EvoPrint* of *Apis mellifera* genomic sequences (6.3kb; Group5:7,111,526-7,117,900). Vertical red bars flanking the *EvoPrint* indicate conserved bee-specific sequences that are not found in ants. Colored uppercase bases are conserved in all but one of the color-coded test species: *Apis* florea, Habropoda laboriosa, Bombus terrestrialis and Bombus impatiens. B) Relaxed EvoPrint of Cerapachys biroi genomic DNA (5.1kb; 6532628-6527517, Ooceraea biroi isolate clonal line C1 chromosome 14, Obir v5.4). The green vertical bar flanking the *EvoPrint* indicates ant-specific conserved sequence that in absent in bees. Black uppercase bases are conserved in all test ant species and colored uppercase bases are conserved in all but one of the color-coded test species: Monomorium pharaonis, Atta cephalotes, *Vollenhovia emervi, Acromyrmex echinatior, Lasius niger, Pogonomyrmex* barbatus, Wasmannia auropunctata, Cardiocondyla obscurior or Linepithema humile.