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1. Haploid Model 
 
Here we rigorously solve the haploid model with age-structure and endogenous reproductive 

variance, relate our results to previous work that considered special cases, investigate the 

properties of the effective population size in age-structured populations, and show that our main 

results also apply for general dependencies between realized reproduction at different ages. In 

Section 1.1 we spell out our assumptions about endogenous reproductive variance. In Section 1.2 

we solve for the joint stationary distribution of the age and relative reproductive success associated 

with an allele, going backwards in time. Based on this distribution, we calculate the stationary per-

generation coalescence rate for a sample of two alleles, to obtain Eq. 10 in the main text: 

𝑁$ =
&⋅(
)

.           (S1) 

In Section 1.3 we formally show that Eq. 10 holds in the limit in which the census population size 

goes to infinity while the population’s age structure is held constant; we then derive a general and 

tight bound on the rate at which this solution is approached as the population size is increased. In 

Section 1.4, we recast our results in terms of reproductive variance, to show that the relationship 

derived by Hill for the case with age-structure alone (HILL 1972): 

𝑁$ = 𝐺 ⋅ 𝑀,/𝑉,          (S2) 

which is our Eq. 13, applies to the extended model with endogenous reproductive variance. We 

also show that the reproductive variance in this case is 

𝑉 = 𝑊 ⋅ (𝑀,/𝑀),          (S3) 

which is our Eq. 13. This concludes the derivations of our main results. 

 

In Section 1.5 we show that in the case without endogenous reproductive variance, our Eq. 10 (Eq. 

S1 above) reduces to Felsenstein’s formula (FELSENSTEIN 1971), and consider a simple example 

of how age-structure affects the effective population size. In Section 1.6 we investigate the 

properties of the effective population size in age-structured populations with endogenous 

reproductive variance. In particular, we derive an upper bound for the effective population size 

and derive the conditions under which it can be attained. In Section 1.7, we consider an alternative 

model, which allows for general dependencies between realized (rather than expected) 

reproductive success at different ages, and show that Hill’s formula also applies to this model.   

 



 3 

1.1 Requirements on 𝑓"  

 
When we introduced the haploid model with endogenous reproductive variance, we assumed that 

each newborn is assigned a relative reproductive success vector 𝑟, where the (constant) proportion 

of individuals with a given vector 𝑟 in age class a was denoted by 𝑓"(𝑟) (see Table S1 for summary 

of notation). Here we describe the requirements on the probability mass function 𝑓"  that these 

assumptions entail. First, given that the probability of being born to a parent of age a is 𝑝", and to 

a specific parent of age a and with reproductive success 𝑟 is 𝑝" ⋅
56
&6

, we require that 𝐸86(𝑟") =

∑ 𝑓"(𝑟) ∙ 𝑟" =5⃗ 1 for any age a. Second, given that the number of individuals with a given 𝑟 can 

only decrease with age (due to mortality), we further require that 𝑀" ⋅ 𝑓"(𝑟) ≥ 𝑀"=, ⋅ 𝑓"=,(𝑟). 

  

Third, requiring that the number of individuals of a given age a and with a given 𝑟 is constant and 

equal to 𝑀" ⋅ 𝑓"(𝑟) implies that this number needs to be an integer. Notably, if we would like to 

model the distribution of relative reproductive success using a given (continuous or discrete) 

distributions 𝑓">(𝑟), which satisfies the first two requirements, we would need to discretize 𝑓">  to 

obtain a probability mass function 𝑓?"@ such that 𝑀" ⋅ 𝑓?"@	(𝑟) is always an integer. However, if we 

assume that the relative sizes of the age-class, i.e., the ratios 𝑀B/𝑀C, are constant, and increase the 

total population sizes, the discretized functions 𝑓?"@ will approach 𝑓"> , and the value of the 𝑊B,C =

𝐸8?EF	G𝑟B ⋅ 𝑟CH = 𝐸G𝑟B ⋅ 𝑟C|survival	to	age	𝑗H terms, which summarize the effect of endogenous 

reproductive variance on the effective population size, will approach 𝐸8V> G𝑟B ⋅ 𝑟CH. We implicitly 

assumed this limit when we considered the special case in which relative reproductive success is 

independent of age and of mortality rates. More generally, while the assumption that for any age 

a,  𝑀" ⋅ 𝑓"(𝑟) is an integer, might appear highly restrictive, these restrictions are relaxed under the 

standard coalescent assumption that the population size is sufficiently large.  
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Notation Definition Remarks 

𝑝" Probability that a newborn descends from a parent of age a W 𝑝"
"

= 1 

𝑞" Probability that a newborn descends from a parent of age ≥ 𝑎 𝑞" =W 𝑝B
BZ"

 

𝐺 Expected generation time 𝐺 =W 𝑎 ⋅ 𝑝"
"

 

𝑀" Number of individuals of age a 

(𝑀, is the number of newborns per-year) 

𝑀"=, ≤ 𝑀" 

𝑟 Relative reproductive success, where component 𝑟" is the relative 

reproductive success at age a 

 

𝑓"(𝑟) The proportion of individuals with relative reproductive success 𝑟 

among individuals of age a 

 

𝑔"(𝑟) Given an individual I of age a and a newborn n, 𝑔"(𝑟) is the probability 

that I has relative reproductive success 𝑟, conditioned on n being 

descended from I  

𝑔"(𝑟) = 𝑟"𝑓"(𝑟) 

𝜖(𝑎, 𝑟) Joint stationary probability of age a and relative reproductive success 𝑟 

along a lineage, going backwards in time 

𝜖(𝑎, 𝑟)

=
1
𝐺
W 𝑝C𝑔C(𝑟)

CZ"
 

𝜖" Marginal stationary distribution of age a 𝜖" = 	
𝑞"
𝐺  

𝑀 Effective age-class size See Eq. S16 

𝑊B,C  Average value of 𝑟B ⋅ 𝑟C  among individuals of sex s and age a Defined for 𝑖 ≤ 𝑗 

𝑊 Weighted average of the 𝑊B,C  See Eq. S15 

𝑋, 𝑋" An individual’s number of offspring, throughout its life or at age a, 

respectively 

 

𝑉 Reproductive variance (i.e., 𝑉 = 𝑉𝑎𝑟(𝑋)) See Eq. S43 

𝑆" The event of surviving to age ≥ 𝑎  

 
Table S1: Notation for the haploid model, with parameters of the model in red. 
 

1.2 Stationary coalescence rate and effective population size 
 
Here, we extend the derivations of Sagitov and Jagers (SAGITOV AND JAGERS 2005) to account for 

endogenous reproductive variance. Tracing an allele backward in time, the age 𝑎a and relative 

reproductive success 𝑟a of the individual 𝐼a who carries the allele t years in the past defines a 

Markov chain (𝑎a, 𝑟a). To define the transition probabilities of the chain, we distinguish between 

two cases.	First, if the individual carrying the allele is not a newborn, i.e., 𝑎a > 1, then at time t+1 
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that individual will be one year younger and its relative reproductive success 𝑟 will remain 

unchanged, i.e., (𝑎a=,, 𝑟a=,) = (𝑎a − 1, 𝑟a) with probability one. Second, if the individual carrying 

the allele is a newborn, i.e., 𝑎a = 1, then 𝑎a=, equals a with probability 𝑝". The probability mass 

function of 𝑟a=, conditional on 𝑎a=,, follows from Bayes’ theorem, further conditioning on the 

fact that the parent, 𝐼a=, = 𝐼, necessarily reproduced successfully 

         𝑃(𝑟f = 𝑟|𝐼a=, = 𝐼, 𝑎a=, = 𝑎) 

= g(fhijkf|5⃗hijk5⃗,"hijk")⋅g(5⃗lk5⃗|	"hijk")
g(fhijkf)

 = (56/&6)⋅86(5⃗)
∑ 	(56/&6)⋅86(mn⃗ )onn⃗

= 𝑟" ⋅ 𝑓"(𝑟).  (S4) 

We denote this probability by 𝑔"(𝑟) ≡ 𝑟" ⋅ 𝑓"(𝑟), and conclude that  

𝑃((𝑎a=,, 𝑟a=,) = (𝑎, 𝑟)|𝑎a = 1) = 𝑝" ⋅ 𝑔"(𝑟).     (S5) 

 

𝑔" is a proper probability mass function since ∑ 𝑔"(𝑟)5⃗ = ∑ 𝑟" ⋅ 𝑓"(𝑟)5⃗ = 1. Moreover, the 

parent’s expected value of 𝑟" is 𝐸5⃗~r6(𝑟") = 𝐸5⃗~86(𝑟"
s) = 1 + 𝑉5⃗~86(𝑟") ≥ 1. The latter inequality 

makes intuitive sense, as it implies that the allele is more likely to be descended from an individual 

that has higher than average relative reproductive success in its age class. 

 

We rely on the transition probabilities to derive and solve a recursion for the stationary probability 

𝜖(𝑎, 𝑟) of age, a and relative reproductive successes, 𝑟, of the individuals carrying the allele. 

Namely, 

𝜖(𝑎, 𝑟) = 𝜖(𝑎 + 1, 𝑟) + G∑ 𝜖G1, 𝑘n⃗ Hmn⃗ H ⋅ 𝑝" ⋅ 𝑔"(𝑟),     (S6) 

where the first term corresponds to aging within the same individual and the second corresponds 

to parenting a newborn. In order to solve these recursions, we first consider the marginal stationary 

distribution of age, 𝜖" = ∑ 𝜖(𝑎, 𝑟)5⃗ . To this end, we sum the recursions over 𝑟 to obtain recursions 

on the marginal distribution,  

𝜖" = 𝜖"=, + 𝜖, ⋅ 𝑝",         (S7) 

where we also require that ∑ 𝜖"" = 1. This recursion was solved by Sagitov and Jagers (SAGITOV 

AND JAGERS 2005) for the case without endogenous reproductive variance, yielding 

𝜖" = 𝑞"/𝐺,          (S8) 

 where 𝑞" ≡ ∑ 𝑝CCZ" . Substituting this expression into Eq. S6, the recursions simplify to 

𝜖(𝑎, 𝑟) = 𝜖(𝑎 + 1, 𝑟) + ,
(
⋅ 𝑝" ⋅ 𝑔"(𝑟),      (S9) 

where we further require that ∑ 𝜖(𝑎, 𝑟)",5⃗ = 1. The solution of these recursions is 
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𝜖(𝑎, 𝑟) = ,
(
∑ 𝑝C𝑔C(𝑟)CZ" .         (S10) 

The marginal stationary probability mass function of 𝑟 is ∑ 𝜖(𝑎, 𝑟)" = ,
(
∑ G𝑗 ⋅ 𝑝CH ⋅ 𝑔C(𝑟)C , which 

is a proper probability mass function because   ,
(
∑ 𝑗 ⋅ 𝑝CC = 1, and ∑ 𝑔"(𝑟)5⃗ = 1 for any age a. 

  

We rely on the stationary distribution to derive the probability of coalescence of two alleles, along 

the same lines as detailed in the main text for the case without endogenous reproductive variance. 

For the coalescence to occur at time t in the past, one of the alleles (A) would descend from the 

other (B) or both would descend from the same parental allele at that time (this is contrary to the 

case of non-overlapping generations, in which coalescence necessarily occurs when both alleles 

descend from the same parental allele in the previous generation). For example, if allele A is 

associated with a newborn, one coalescence scenario would be for allele B to be associated with 

an individual of age 𝑎 > 1	, from which A descends a single time step (e.g., year) further in the 

past; a second coalescence scenario would be for both alleles to be associated with newborns at 

the same time, and descend from the same individual. Specifically, if allele B is in an individual 

of age a and relative reproductive success 𝑟 at time t (with probability 𝜖(𝑎, 𝑟)), then allele A must 

be in a newborn at time t-1 (with probability 𝜖,) having descended from the same individual 

carrying allele B (with probability 𝑝" ⋅
56
&6

). Summing over the individual’s possible ages and 

reproductive success vectors, we obtain the probability 

∑ 𝜖(𝑎, 𝑟) ⋅ 𝜖, ⋅ 𝑝" ⋅
56
&6",5⃗ = ,

(v
∑ ∑ w6wE ∑ 56rE(5⃗)xnn⃗Ey6

&6" = ,
(v
∑ ∑ w6wE)6,EEy6

&6" ,   (S11) 

where for 𝑗 ≥ 𝑖,  

𝑊B,C = ∑ 𝑟B𝑔C(𝑟)5⃗ = ∑ 𝑟B𝑟C𝑓C(𝑟)5⃗ = 𝐸5⃗~8E(𝑟B ⋅ 𝑟C)      (S12) 

is the expectation of (𝑟B ⋅ 𝑟C) conditional on surviving to age ³ j. Further allowing for either allele 

or both to be the newborn (using the inclusion-exclusion principal to subtract the probability 

𝜖,s ∑
w6v)6,6	
&6"  that both alleles were in a newborn prior to coalescence), and measuring the 

coalescence rate in generations (rather than years), we obtain the per-generation coalescence rate 

and corresponding effective population size: 
,
z{
= ,

(
∑ w6v)6,6=s∑ w6wE)6,EE|6

&6" .       (S13) 

Eq. S13 can be rearranged to obtain Eq. 7 of the main text. To this end, we define  



 7 

𝑤B = (𝑝Bs𝑊B,B + 2∑ 𝑝B𝑝C𝑊B,CC�B )/𝑊,       (S14) 

where  

𝑊 =	∑ 𝑝Bs𝑊B,BB + 2∑ 𝑝B𝑝C𝑊B,CB�C        (S15) 

is a weighted average of the 𝑊B,C. Noting that ∑ 𝑤"" = 1, we then define the effective age class 

size as a weighted harmonic average of the age class sizes, 
,
&
= ∑ �6

&6" .          (S16)   

Substituting this expression into Eq. S13, we obtain Eq. 7 of the main text: 
,
z{
= 𝑊/(𝑀 ⋅ 𝐺).         (S17) 

 
1.3 Convergence to the stationary solution  
 
Here, we provide a formal justification for using the stationary coalescence rate and effective 

population size. To this end, we define the coalescence process and expected TMRCA rigorously, 

detail the condition under which our asymptotic expression for the expected TMRCA and thus 

effective population size (Eq. 10 in the main text) are exact, and derive a tight bound on the rate 

of convergence to the asymptotic rate of coalescence as the population size increases. Lastly, we 

relate our results to previous work that considered the convergence to asymptotic coalescence 

rates. 

 

In Section 1.2 we modelled the state of an allele as a Markov chain. We defined the state space of 

the chain as the set 𝑆 containing all possible pairs 𝑠 = (𝑎, 𝑟), where a is the age of the allele, and 

𝑟 its relative reproductive success. We calculated the transition matrix, in which 𝑃(𝑠, 𝑡) is the 

transition probability between state 𝑠 and state 𝑡, and its stationary distribution 𝜖(𝑠) = 𝜖(𝑎, 𝑟). In 

doing so and in what follows, we assume the existence of a unique stationary distribution 𝜖. While 

this requirement imposes conditions on model parameters, we expect it to be satisfied for realistic 

age-structures. Notably, the non-trivial requirement is for the chain to be aperiodic, which would 

be satisfied, for example, if there are two consecutive ages in which reproduction can occur (EMIGH 

AND POLLAK 1979). 

 

To define the coalesce process of two alleles formally, we first need to define the alleles’ joint 

states as a Markov chain. We do so in two steps. First, we consider a chain 𝑋a� in which the states 
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of the alleles are completely independent. This definition corresponds to a hypothetical infinite 

population with the specified age-structure, in which the alleles never coalesce. The state space of 

the chain is 𝑆� = 𝑆 × 𝑆, and its transition matrix is 𝑃�G𝑠, 𝑡H = 𝑃(𝑠,, 𝑡,) ⋅ 𝑃(𝑠s, 𝑡s), with 

subscripts corresponding to each of the alleles. It follows that the stationary distribution associated 

with this chain is 𝜋�(𝑠,, 𝑠s) = 𝜖(𝑠,) ⋅ 𝜖(𝑠s). 

 

Second, we consider a corresponding chain 𝑋a&  that incorporates coalescence. This chain 

corresponds to the same age-structure, but with a finite effective age class size 𝑀. The state space 

of the chain is 𝑆& = 𝑆� ∪ {𝑐}, where 𝑐 is an absorbing state, to which the chain transitions upon 

coalescence (we do not track the specific state of the allele after coalescence). The transition matrix 

of this chain for 𝑠, 𝑡 ∈ 𝑆� is: 

𝑃&G𝑠, 𝑡H = 𝑃�G𝑠, 𝑡H ⋅ (1 − 𝐶�⃗,a⃗),  

𝑃&G𝑐, 𝑡H = 0,	 

𝑃&(𝑐, 𝑐) = 1, and  

𝑃&(𝑠, 𝑐) = ∑ 𝑃�(𝑠, 𝑦⃗) ⋅ 𝐶�⃗,�n⃗�n⃗ ∈	�×� ,            (S18) 

where 𝐶�⃗,a⃗ is the probability of coalescence conditioned that the two alleles transition from states 

𝑠 to states 𝑡. Note that the stationary distribution of the chain 𝑋a&  is trivial, i.e., it is c with 

probability 1 (and not 𝜋�). 

 

The probabilities of coalescence 𝐶�⃗,a⃗ can be described explicitly using the parameters of the model, 

but we do not require the explicit form for our purposes here. What is of interest to us, as will 

become clear below, is their weighted average: 

∑ 𝜋�(𝑥⃗) ⋅ 𝑃�(𝑥⃗, 𝑦⃗) ⋅ 𝐶�⃗,�n⃗�⃗,�n⃗ ∈�� .        (S19) 

This average is the probability that a pair of alleles, each drawn independently from the stationary 

distribution 𝜖, coalesce in some state y within a single time step. In Section 1.2 we referred to this 

probability informally as the ‘stationary probability of coalescence per-year’, and found it to be  

∑ 𝜋�(𝑥⃗) ⋅ 𝑃�(𝑥⃗, 𝑦⃗) ⋅ 𝐶�⃗,�n⃗�⃗,�n⃗ ∈�� = )
&⋅(v

 .       (S20) 

 

Next, we define the TMRCA of a sample of two alleles. Using the standard definition of a hitting 

time, i.e., 𝜏� = min	{𝑡 ≥ 0: 𝑋a ∈ 𝐴}, the TMRCA of the sample is simply 𝜏{�}
& , where by 𝜏& and 
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𝜏� we refer to the hitting times of the chains 𝑋a&  and 𝑋a�, respectively. We denote the expected 

TMRCA, given an initial state of the chain 𝑋�& ∈ 𝑆�, by 

𝑒� ≡ 𝐸(𝜏{�}
& |𝑋�& = 𝑥).         (S21) 

Note that this definition is restricted to the case in which the two alleles are initially distinct (i.e., 

𝑋�& ≠ 𝑐). 

 

We can now derive several results about the expected TMRCA. By conditioning on the first step, 

i.e., on the value of 𝑋,& = 𝑦, we find that 

𝑒� = 1 + ∑ 𝑃&(𝑥, 𝑦) ⋅ 𝑒��∈�� = 1 + ∑ 𝑃�(𝑥, 𝑦) ⋅ (1 − 𝐶�,�) ⋅ 𝑒��∈�� .   (S22) 

It follows that if the initial state of the chain is sampled from the stationary distribution of the chain 

𝑋a� then the expected TMRCA satisfies 

∑ 𝜋�(𝑥) ⋅ 𝑒��∈�� = 1 + ∑ 𝝅�(𝒙) ⋅ 𝑷�(𝒙, 𝒚) ⋅ 𝒆𝒚𝒙,𝒚∈𝑺� − ∑ 𝜋�(𝑥) ⋅ 𝑃�(𝑥, 𝑦) ⋅ 𝐶�,� ⋅ 𝑒��,�∈�� .  

(S23) 

The term in bold, simplifies to 

∑ 𝜋�(𝑥) ⋅ 𝑃�(𝑥, 𝑦) ⋅ 𝑒��,�∈�� = ∑ [∑ 𝜋�(𝑥) ⋅ 𝑃�(𝑥, 𝑦)]�∈�� ⋅ 𝑒��∈�� = ∑ 𝜋�(𝑦) ⋅ 𝑒��∈�� , 

(S24) 

and therefore Eq. S23 simplifies to 

∑ 𝜋�(𝑥) ⋅ 𝑃�(𝑥, 𝑦) ⋅ 𝐶�,� ⋅ 𝑒��,�∈�� = 1.       (S25) 

Relying on Eq. S20, we can then rewrite Eq. S25 as 

∑ 𝛼� ⋅ 𝑒��∈�� = &⋅(v

)
,          (S26) 

where 𝛼(𝑦) =
∑ ¨�(�)⋅g�(�,�)⋅©ª,«ª∈¬�

) (&⋅(v)⁄  and ∑ 𝛼(𝑦)�∈�� = 1. Intuitively, 𝛼(𝑦) is the stationary 

probability that the coalescence eventually occurs at state y. Eq. S26 implies that if ages and 

relative reproductive success in the initial sample are distributed according to 𝛼, the expected 

TMRCA, in units of the generation time, is exactly (𝑀 ⋅ 𝐺) 𝑊⁄ . Note that we have made no 

asymptotic assumptions, i.e., this result is exact and holds even when the census size is very small. 

Also note that this result should hold in the more general context of the structured coalescent.  
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Next, we consider the expected TMRCA when the initial sample is not distributed according to 𝛼 

(e.g., when the alleles are sampled uniformly from a population at steady state). First, from Eq. 

S26 we see that 

¯𝑒� −
&⋅(v

)
¯ = °∑ 𝛼� ⋅ (𝑒� − 𝑒�)�∈�� ° ≤ ∑ 𝛼� ⋅ °𝑒� − 𝑒�°�∈�� .    (S27) 

To bound the terms °𝑒� − 𝑒�°, we consider the first visit of the chain to states c or y. The time it 

takes to get from x to c can be partitioned to the time it takes to get to c or y, plus the time to get 

from there to c, and thus 

𝑒� = 𝐸G𝜏{�,�}
& °𝑋�& = 𝑥H + 𝑃 ±𝑋²{«,³}´

& = 𝑦µ𝑋�& = 𝑥¶ 𝑒� ≤ 𝐸G𝜏{�,�}
& °𝑋�& = 𝑥H + 𝑒�. (S28) 

To bound the term 𝐸G𝜏{�,�}
& °𝑋�& = 𝑥H, we define a coupling of the chains 𝑋a&  and 𝑋a�, i.e. we define 

both chains on the same probability space, such that the chains have the exact same states until 

coalescence occurs. Formally, we assume that 𝑋�& = 𝑋��, and given 𝑋a&, 𝑋a� such that 𝑋a& ∈

{𝑋a�, 𝑐}, we define 𝑋a=,& 	 and 𝑋a=,�  as follows. First, 𝑋a=,�  is chosen with the appropriate probability 

conditioned on 	𝑋a�. Second, if 𝑋a& = 𝑐 then 𝑋a=,& = 𝑐; if not, then 𝑋a=,& = 𝑐 with probability 

𝐶·h�,·hij� , and 𝑋a=,& = 𝑋a=,�  otherwise. In this coupling, if 𝑋a� = 𝑦 then 𝑋a& ∈ {𝑦, 𝑐}. It follows that 

𝐸G𝜏{�,�}
& °𝑋�& = 𝑥H ≤ 	𝐸G𝜏{�}

� °𝑋�� = 𝑥H.       (S29) 

Defining 𝐶 = max
�,�∈	��

𝐸G𝜏{�}
� °𝑋�� = 𝑥H, we conclude that for any initial sample 𝑥 ∈ 	𝑆�, the 

expected TMRCA in units of the generation time 𝐺 , 𝑒� 𝐺⁄ , satisfies 

¯$ª
¹
− &⋅(

)
¯ ≤ ©

(
.          (S30) 

Since C is defined on the chain 𝑋a�, it does not depend on the specific value of 𝑀. In other words, 

if we fix the age-structure (i.e., the breeding distribution p, the survival rates, and the distribution 

of relative reproductive success) and let the census size tend to infinity, the difference between the 

exact expected TMRCA and the asymptotic expectation, 𝑀 ⋅ 𝐺 𝑊⁄ , remains bounded by 𝐶 𝐺⁄ . 

Intuitively, the value of C corresponds to the mixing time of the chain 𝑋�, which is 𝑂(1) and thus 

becomes negligible relative to the asymptotic expectation when 𝑀 is sufficiently large. In other 

words, Eq. S30 provides a bound on the difference between the asymptotic effective population 

size and its value for any given effective age class size 𝑀.   
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Previous works utilizing a similar framework relied on Möhle’s lemma (MÖHLE 1998) to 

demonstrate weak convergence to Kingsman’s coalescence process (NORDBORG AND KRONE 

2002; SAGITOV AND JAGERS 2005). For example, considering a sample of size n from the present 

population, and denoting the number of unique ancestors of the sample t generations in the past by 

𝑍a, the convergence to our Eq. 9 is stated as 

𝑍¼a/(½⋅´¾ )¿ → 𝑅a,         (S31) 

where (𝑅a)aZ� is the standard Kingman coalescent for a sample of size n (KINGMAN 1982), and 

the limit holds for any series of age-structured populations for which 𝐺 ⋅ 𝑀 𝑊⁄ → ∞. Although 

weak convergence does not generally imply convergence of moments, Möhle’s lemma can be 

easily extended to show that convergence holds for the expected TMRCA of a sample of two 

alleles, i.e., 
Ã(Ä&Å©�)
(⋅& )⁄

→ 1.           (S32) 

While our result (Eq. S30) does not prove weak convergence (SAGITOV AND JAGERS 2005) and is 

limited to a sample of two alleles, it provides proof for convergence of the first moment (i.e., it 

justifies Eq. 10 in the main text) and establishes tighter asymptotic rates of convergence compared 

to previous work (i.e., it proves that ¯𝐸(𝑇𝑀𝑅𝐶𝐴) − (⋅&
)
¯ ≤ C 𝐺⁄ ). These results suggest that the 

asymptotic approximation is applicable even to very small populations.  

 
1.4 Reproductive variance  
 
To recast our results for 𝑁$ in terms of the reproductive variance 𝑉, we first consider the case with 

non-overlapping generations in a haploid population of constant size, i.e., with Wright-Fisher 

sampling.  We denote the number of offspring of the ith individual by 𝑘B and the census size by 𝑁. 

The expected number of offspring is 1, i.e., ,
z
∑ 𝑘B = 1B , and we denote the variance in number of 

offspring, which we also refer to as the reproductive variance, by 𝑉 = ,
z
∑ (𝑘B − 1)sB . In the 

standard neutral model, without endogenous reproductive variance, 𝑉 = 1.   Since the probability 

that two distinct gametes descend from the same ancestor in the previous generation is 

∑ mÈ
z
⋅ mÈÉ,
zÉ,B = Ê

zÉ,
, we find that the effective population size is 

𝑁$ =
zÉ,
Ê
≅ z

Ê
,          (S33) 
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which is the expression derived by Wright (WRIGHT 1939/1986) and presented in Eq. 12 of the 

main text. 

 

To extend Eq. S33 to the case with overlapping generations, we consider the first two moments of 

an individual’s number of offspring, 𝑋, throughout its lifetime. First, we note that an individual’s 

number of offspring can be expressed as a sum over the number at each age, i.e., 𝑋 = ∑ 𝑋"" , where 

𝑋" is the number of offspring at age a; 𝑋" = 0 if the individual does not survive to that age. In 

these terms, the first two moments are 

𝐸(𝑋) = ∑ 𝐸(𝑋")"  and 𝐸(𝑋s) = ∑ 𝐸(𝑋"s)" + 2∑ 𝐸(𝑋B ⋅ 𝑋C)B�C .    (S34) 

Denoting the event of surviving to age ³ a by 𝑆", we note that  

𝐸G𝑋"B H = 𝑃𝑟(𝑆") ⋅ 𝐸G𝑋"B °𝑆"H =
&6
&j
⋅ 𝐸G𝑋"B °𝑆"H,     (S35)  

The latter term, 𝐸G𝑋"B °𝑆"H, can be simplified further by conditioning on 𝑟. Since the probability 

mass function of 𝑟 conditional on 𝑆" is 𝑓" , 

𝐸G𝑋"B °𝑆"H = 𝐸5⃗~86𝐸G𝑋"
B °𝑆", 𝑟H.        (S36) 

Moreover, the distribution of 𝑋" conditional on 𝑆" and 𝑟 is simply (𝑋"|𝑟, 𝑆")	~𝐵𝑖𝑛(𝑀,, 𝑝" ⋅

𝑟"/𝑀"), and therefore  

       		𝐸(𝑋"|𝑆") = 𝐸5⃗~86 Î
&j56w6
&6

Ï = &jw6
&6

   

and   

𝐸(𝑋"s|𝑆") = 𝐸5⃗~86 ±𝑀,
56w6
&6

+ 2 Î𝑀,
2 Ï Î

56w6
&6
Ï
s
¶ = &jw6

&6
+ 2 Î𝑀,

2 Ï Î
w6
&6
Ï
s
𝑊",". (S37) 

Substituting these expressions into Eq. S35, we find that  

𝐸(𝑋") = 𝑝"  and	𝐸(𝑋"s) = 𝑝" +	
&jÉ,
&6

𝑝"s ⋅ 𝑊",".      (S38) 

To calculate the remaining terms in Eq. S34, 𝐸(𝑋B ⋅ 𝑋C) for 𝑗 > 𝑖, we note that conditioning on 𝑆C, 

and on 𝑟|𝑆C, 

𝐸G𝑋B ⋅ 𝑋CH = 𝑃𝑟G𝑆CH ⋅ 𝐸G𝑋B ⋅ 𝑋C°𝑆CH =
&E

&j
⋅ 𝐸5⃗~8E𝐸G𝑋B ⋅ 𝑋C°𝑆C, 𝑟H.   (S39)  

The latter term is easily calculated, since conditional on 𝑆C and 𝑟, 𝑋B and 𝑋C are independent 

binomial variables, with G𝑋B°𝑟, 𝑆CH~𝐵𝑖𝑛(𝑀,, 𝑝B ⋅ 𝑟B/𝑀B) and G𝑋C°𝑟, 𝑆CH~𝐵𝑖𝑛G𝑀,, 𝑝C ⋅ 𝑟C/𝑀CH, 

yielding  
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𝐸G𝑋B ⋅ 𝑋CH =
&E

&j
⋅ 𝐸5⃗~8E ±

&jvwÈwE5È5E
&È&E

¶ = &jwÈwE)È,E

&È
.     (S40)  

Substituting the expressions from Eqs. S38 and S40 into Eq. S34 we find that 

𝐸(𝑋) = 1	 and 𝐸(𝑋s) = 1 +𝑀, ∑ 	wÈ
v⋅)È,È=s∑ wÈwE)È,EE|È

&È
B − ∑ wÈ

v⋅)È,È
&È

B .  (S41) 

 

Assuming that the total population size is sufficiently large for the ratios 𝑀B/𝑀C and terms 𝑊B,C  to 

be approximated as fixed, and for the higher order term ∑ wÈ
v⋅)È,È
&È

B  to be negligible, we find that   

𝐸(𝑋) = 1	 and 𝐸(𝑋s) ≅ 1 + &j
&
𝑊,        (S42) 

and therefore the reproductive variance is 

𝑉 = 𝐸(𝑋s) − 𝐸s(𝑋) = &j
&
𝑊,        (S43) 

which is Eq. 14 of the main text. These assumptions correspond to the standard practice of 

neglecting higher order terms in 1/𝑁 in models with non-overlapping generations. From Eqs. S17 

and S43 we find that the effective population size is   

𝑁$ = (𝐺 ⋅ 𝑀,)/𝑉,          (S44) 

which is the same form as in the case without age-structure (Eq. S33), and the general form 

presented in Eq. 13 of the main text. 

  
1.5 Age-structure alone 

  
Felsenstein used a different approach to solve the haploid model without endogenous reproductive 

variance, relying on the definition of the effective population size as the inbreeding effective 

number (FELSENSTEIN 1971). To see that his results agree with ours (as well as with those of 

Sagitov and Jagers (SAGITOV AND JAGERS 2005)), consider the case without endogenous 

reproductive variance, where Eq. S17 reduces to 

𝑁$ = 𝑀𝐺 = (

∑
ÐÈ
viv∑ ÐÈÐEE|È

´È
È

= (
∑ ÐÈ
´È
(ÑÈ=ÑÈij)È

,      (S45) 

where 𝑞B = ∑ 𝑝BCZB . Noting that 𝑝B(𝑞B + 𝑞B=,) = (𝑞B − 𝑞B=,)(𝑞B + 𝑞B=,) = 𝑞Òs − 𝑞B=,s , we find that 

𝑁$ =
(

∑ÐÈ
´È
(ÑÈ=ÑÈij)

= (&j
∑´j
´È
GÑÈ
vÉÑÈij

v H
= (&j

,=∑ ÑÈij
v ( ´j

´Èij
É´j´È

)È
,     (S46) 

where Felsenstein’s functional form (p. 585 in (FELSENSTEIN 1971)) is on the rightmost side. 
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To better understand the effect of age-structure on the effective population size, consider a simple 

example in which there is no endogenous reproductive variance, and no age-dependence in 

reproductive success. In other words, the only difference among individuals’ numbers of offspring 

arise from the stochasticity of mortality and reproduction. In this case, the probability of having a 

parent of age a is proportional to the size of the age class, i.e.,  𝑝" = 	𝑀" 𝑁⁄  where 𝑁 = ∑ 𝑀""  is 

the census size. Following our derivations, the effective population size (Eq. 5 in the main text) 

then reduces to 𝑁$ =
(

(s(É,)
𝑁, and if the generation time 𝐺 ≫ 1 then 𝑁$ ≈

,
s
𝑁. In other words, 

the age structure reduces the effective population size to half of the census size. 

 
1.6 Upper bound on the effective population size  
 
Here, we provide an upper bound for the effective population size of age-structured populations. 

With non-overlapping generations, the maximal effective population size equals the census 

population size, and it is attained when all individuals are equally likely to reproduce. In this case, 

endogenous reproductive variance reduces the effective population size below the census size (Eq. 

12). In contrast, with age-structure, the maximal effective population size is attained when short-

lived individuals are given a higher chance of reproducing while they live. In this case, we show 

that the effective population size can exceed the census size, but it is bound by the number of 

offspring per generation, 𝐺 ∙ 𝑀,. We also consider the conditions on 𝑀" and 𝑝" under which this 

upper bound can be attained, and describe the distributions of endogenous reproductive variances 

for which it is attained.    

 

We begin by showing that the reproductive variance 𝑉 ≥ 1. Given that we have shown that in age-

structured populations 𝑁$ = 𝐺 ⋅ 𝑀,/𝑉 (Eq. 13), showing that 𝑉 ≥ 1 establishes that 𝐺 ∙ 𝑀, is an 

upper bound on 𝑁$. To this end, we consider an individual’s number of offspring, 𝑋, conditional 

on its relative reproductive success 𝑟 and longevity 𝑑. Employing the notation of Section 1.4, 𝑋 =

∑ 𝑋BÖ
Bk, , where the number of offspring at age 𝑖, 𝑋B~𝐵𝑖𝑛(𝑀,,

wÈ5È
&È
), and the 𝑋Bs are independent of 

one another. It follows that 

𝐸(𝑋|𝑟, 𝑑) = 𝑀, ∑
wÈ5È
&È

Ö
Bk,  and 𝑉𝑎𝑟(𝑋|𝑟, 𝑑) = 𝑀, ∑

wÈ5È
&È

Ö
Bk, (1 − wÈ5È

&È
) ≅ 𝐸(𝑋|𝑟, 𝑑),  (S47) 
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where the approximation for the variance becomes exact in the limit in which 𝑀B/𝑀C are held 

constant and the census population size goes to infinity. In other words, when the population size 

is sufficiently large, 𝑋|(𝑟, 𝑑) is well approximated by a Poisson variable. From Eq. S48 and the 

law of total variance we have 

𝑉 = 	𝐸	𝑉𝑎𝑟(𝑋|𝑟, 𝑑) + 𝑉𝑎𝑟	𝐸(𝑋|𝑟, 𝑑) ≅ 𝐸	𝐸(𝑋|𝑟, 𝑑) + 𝑉𝑎𝑟	𝐸(𝑋|𝑟, 𝑑) = 𝐸(𝑋) + 𝑉𝑎𝑟	𝐸(𝑋|𝑟, 𝑑) 

= 1 + 𝑉𝑎𝑟	𝐸(𝑋|𝑟, 𝑑) ≥ 1.         (S48) 

Intuitively, Eq. S48 states that the in age-structured populations the distribution of the number of 

offspring is overdispersed due to stochasticity in longevity and endogenous reproductive variance. 

This implies that, in contrast to the case of non-overlapping generations, the number of offspring 

in age-structured populations is generally not well approximated by a Poisson variable. Eqs. 12 

and S48 imply that  

𝑁$ ≤ 𝐺 ⋅ 𝑀,,          (S49) 

i.e., the effective population size is bound by the number of newborns per generation. This bound 

generalizes the bound 𝑁$ ≤ 𝑁 in the case of non-overlapping generations.  

 

Next, we consider an age-structured population with given values of 𝑀" and 𝑝", and ask which 

distributions of relative reproductive success, 𝑓"(𝑟), maximize 𝑁$, and what are the conditions on 

𝑀" and 𝑝" for this maximum to equal the bound 𝐺 ⋅ 𝑀,. Eq. S48 implies that maximizing 𝑁$ is 

equivalent to minimizing 𝑉𝑎𝑟	𝐸(𝑋|𝑟, 𝑑), and that the bound 𝐺 ⋅ 𝑀, is attained when 𝐸(𝑋|𝑟, 𝑑) =

1 for any combination of (𝑟, 𝑑) that occurs with non-zero probability. A distribution of  𝑟 that 

minimizes 𝑉𝑎𝑟	𝐸(𝑋|𝑟, 𝑑) can be explicitly constructed by the following algorithm: 

1. Set 𝑛 = 1. For each 𝑑 ≥ 1, initiate the 𝑀Ö −𝑀Ö=, vectors 𝑟 of length 𝑑, corresponding to 

the 𝑀Ö − 𝑀Ö=, individuals with longevity 𝑑, with zeros. 

2. Choose the maximal 𝑘 ≥ 𝑛 at which the expression &j(Ñ×ÉÑoij)
&×É&oij

 attains its minimum value 

𝑣  (see Table S1 for the definition of 𝑞). For intuition, consider the case when 𝑛 = 1: since 

there are 𝑀, − 𝑀m=, individuals with longevity 1 ≤ 𝑑 ≤ 𝑘, and 𝑀,(𝑞, − 𝑞m=,) offspring 

that descend from parents in this range of ages, 𝑣 is an upper bound on the expected number 

of offspring that an individual with longevity in this range can have. We will assign vectors 

𝑟 such that 𝑣 is attained. 
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3.  For 𝑑 = 𝑛,… , 𝑘: Assign values 𝑟Ú,… , 𝑟Ö to the individuals of longevity d, such that 

∑ 𝑀,𝑝B
5È
&È

Ö
BkÚ = 𝑣, and under the constraint that 𝑟" over the ath age class should average to 

one. If 𝑛 > 1, 𝑟,, … , 𝑟ÚÉ, remain zero. Such an assignment always exists, but is not 

necessarily unique (Fig. S1). 

4. If k is smaller than the maximal longevity in the population, set 𝑛 = 𝑘 + 1 and return to 

step 2. 

 

The bound 𝐺 ⋅ 𝑀, is attainable if and only if (iff) the algorithm requires exactly one step, which 

occurs iff 

𝑀" ≥ 𝑞" ⋅ 𝑀, for all 𝑎 ≥ 1.         (S50) 

An example for an age-structured population that satisfies this condition, and for distributions of 

𝑟 given by the algorithm, are shown in Figs. S1A and S1B. The condition in Eq. S50 implies that 

𝑁$ ≤ 𝐺 ⋅ 𝑀, = ∑ 𝑞"" ⋅ 𝑀, ≤ ∑ 𝑀" = 𝑁"        (S51) 

(note that ∑ 𝑞"" = 𝐺 always holds), and thus that the effective population size cannot exceed the 

census size. In populations that do not satisfy the condition in Eq. S50, however, the effective 

population size is always smaller than 𝐺 ⋅ 𝑀, but can be larger than the census size (Fig. S1C). 

Figure S1: Maximal effective population sizes for specific age-structures. (A and B) An age 
structured population that satisfies the condition in Eq. S50 and thus has a maximal effective size 
equal to 𝐺 ⋅ 𝑀,. In this example, 𝑁$ = 𝐺 ⋅ 𝑀, =

Û
s
∙ 𝑀, < 𝑁 = Ý

Þ
∙ 𝑀,. (A) and (B) show different 

distributions of 𝑟 that derive from the algorithm and thus attain the maximal effective population 
size, illustrating that the construction is not unique. (C) An age-structure that does not satisfy the 

condition in Eq. S50. In this example the maximal effective size, 𝑁$ =
Þ=Û√s
à

∙ 𝑀, ≅ 1.37 ∙ 𝑀,, is 

strictly smaller than 𝐺 ⋅ 𝑀, = √2𝑀,, but larger than the census size, Þ
Û
∙ 𝑀,. 
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4ç 𝑀, 
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𝑟 = (0,2) 

𝑟 = (4 5⁄ , 0,1) 
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𝑀s = 1
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𝑝s = √2 − 1 
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1.7 Realized reproductive success 
 
The model we considered so far allows for dependencies between endogenous but not realized 

reproductive success in different ages. Here we consider an alternative model that allows for such 

dependencies (also see (EVANS AND CHARLESWORTH 2013)). Our model builds on the work of 

Sagitov and Jagers (SAGITOV AND JAGERS 2005), who parametrize their model in terms of the 

distribution of the realized (rather than potential) number of offspring. We generalize their model 

to allow for any dependency between individuals’ numbers of offspring in different ages. 

Importantly, we show that our formula for the effective population size (Eq. 13) holds under this 

model.  

 
We assume that each newborn is assigned a vector ℎn⃗ = (ℎ,,… ℎêGënn⃗ H) of non-negative integers, such 

that it will survive to age 𝑙Gℎn⃗ H, have ℎB	offspring at age 𝑖,  and have 𝑆Gℎn⃗ H = ∑ℎB offspring in total.  

The model’s parameters consist of a set 𝐻 of 𝑀, such vectors, where ∑ 𝑆(ℎn⃗ )ënn⃗ ∈î = 𝑀, to ensure 

that the population size remains constant; this parametrization allows for general dependencies 

between individuals’ numbers of offspring at different ages. At each time step, the 𝑀, vectors in 

𝐻 are assigned to the 𝑀, newborns at random. The model is fully characterized by the set 𝐻. 

Notably, the age-class sizes are 

𝑀" = ∑ 1ënn⃗ ∈î:êGënn⃗ HZ"           (S52) 

and the probability that a newborn descends from a parent of age 𝑎 is  

𝑝" = ∑ ℎ" 𝑀,⁄ënn⃗ ∈î:êGënn⃗ HZ" .         (S53) 

The generation time is defined as 𝐺 = ∑ 𝑖 ⋅ 𝑝B. We can also define an individual’s relative 

reproductive success at a given age 𝑎 as the ratio of its realized success and the average realized 

success in that age-class, i.e.,  

𝑟ënn⃗ ," =
ë6

∑ r6ïnn⃗ ∈ð:ñ(ïnn⃗ )y6 &6⁄ ;        (S54) 

this definition is useful for comparing our main model with this one.  

 

This model can be solved along the same lines we described in Sections 1.2 and 1.4. Here we 

provide only the main results, as the derivations are almost identical. First, the stationary 

distribution of a (age) and ℎn⃗  is 
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𝜖G𝑎, ℎn⃗ H =
∑ ∑ ëÈ

ñ(ònn⃗ )
Èó6ònn⃗ ∈ð:ñGònn⃗ Hy6

&j⋅(
.         (S55) 

We rely on this distribution to solve for the stationary yearly rate of coalescence and corresponding 

effective population size. To this end, we define the effective age class size as 𝑀 ≡ (∑𝑤" 𝑀"⁄ )É,, 

with weights 

𝑤" = (∑ 𝑝"𝑟ënn⃗ ," (ℎ" − 1) 𝑀,⁄ënn⃗ ∈î:êGënn⃗ HZ" + 2∑ 𝑝"𝑟ënn⃗ ," (∑ ℎBB�" ) 𝑀,⁄ënn⃗ ∈î:êGënn⃗ HZ" ) 𝑊⁄ , (S56) 

where W is defined such that these weights add up to 1. In these terms, the effective population 

size is well approximated by the same form as Eq. (10): 

𝑁$ ≅ 𝑀 ⋅ 𝐺 𝑊,⁄           

where the conditions for the approximation are the same as in Section 1.4. These results establish 

that 𝑁$ takes the same form as it does for the model we described in the main text, although the 

definitions of 𝑀 and 𝑊 differ between the models.  

 

We can also recast the results for this model in terms of reproductive variance 𝑉. Calculating the 

reproductive variance in this model is straightforward: 

𝑉 =
∑ G�Gënn⃗ HÉ,H

v
ònn⃗ ∈ð

&j
.          (S57) 

A simple rearrangement of terms in Eq. S57 then established that 

𝑁$ = 𝐺 ⋅ 𝑀, 𝑉⁄ , 

which is Hill’s formula and our Eq. 13. Thus, our main results apply under general dependencies 

between realized reproductive success in different ages.  

 

Note, however, that in this model, the effective population size can exceed 𝐺 ⋅ 𝑀,. The difference 

between models arises because in our main model, the distribution of the number of offspring is 

overdispersed compared to a Poisson distribution, whereas this model allows for the distribution 

to be under-dispersed. As an extreme example, consider a constant-sized population with non-

overlapping generations, in which each individual has exactly one offspring; in this case, 𝑉 = 0 

and 𝑁$ = ∞ (coalescence never occurs).  
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2. Diploid Model  
 

2.1 Overview  
 
Here we rigorously define and solve the diploid model with two sexes and endogenous 

reproductive variance, and derive formulas for the effective population sizes of X and autosomes. 

While the diploid model is more elaborate, the model and results follow along the same lines as 

we described for the haploid model.  In Section 2.2 we detail the assumptions of the diploid model 

and introduce the notation required for the derivations that follow. In Section 2.3 we solve for the 

joint stationary distribution of the age and relative reproductive success of autosomal and X-linked 

alleles. We build on the joint stationary distribution to solving for the stationary per-generation 

coalescence rates and corresponding effective population sizes on X and autosomes. Since some 

of the explicit equations we derive are not presented in the main text, we briefly review them here.  

 

Notably, to extend the haploid formula for the effective population size, 𝑁$ = 𝑀𝐺/𝑊 (Eq. 10), to 

the diploid case, we require explicit expressions for the effective age-class size 𝑀, generation time 

𝐺, and 𝑊, corresponding to the X and autosomes. First, we define these measures for each sex in 

the same way that we did in the haploid model (i.e., as in Eqs. S15 and S16). We then define 𝐺 

and 𝑊 for X and autosomes, as simple weighted averages over their values in males and females: 

𝐺· =
s
Û
𝐺ô +

,
Û
𝐺& and 𝐺� =

,
s
(𝐺& + 𝐺ô)       (S58) 

and 

𝑊· =
s
Û
𝑊ô +

,
Û
𝑊&  and 𝑊� =

,
s
(𝑊& +𝑊ô)       (S59) 

(Table 2 in the main text), where the weights reflect the relative number of generations that X and 

autosomal linked loci spend in males and females (see Table S2 for notation). The effective age 

class sizes on X and autosomes are defined as weighted harmonic averages. In the case without 

endogenous reproductive variance, they are defined as 
,
&õ

= , Û⁄
&´

+ s Û⁄
&ö

  and  ,
&÷

= , s⁄
&´

+ , s⁄
&ö

.        (S60) 

In the case with endogenous reproductive variance, the weights further account for the effects of 

endogenous variances on the relative probability of coalescence in males and females, 
,
&õ

= , Û()´ )õ)⁄⁄
&´

+ s Û()ö )õ)⁄⁄
&ö

 and ,
&÷

= , s()´ )õ)⁄⁄
&´

+ , s()ö )õ)⁄⁄
&ö

    (S61) 
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(Table 2 in the main text). Using these definitions, the effective population size for the X and 

autosomes take the form 

𝑁$� =
s(÷&÷
)÷

 and 𝑁$· =
Û
Þ
⋅ s(õ&õ

)õ
,        (S62) 

where the factor 2, which is absent in the haploid case (Eq. 10), is not due to diploidy (which is 

already accounted for by defining 𝑁$ in diploids as ½ the inverse coalescence), but rather accounts 

for the effective number of age classes with two sexes (i.e., 2𝐺 instead of 𝐺 classes in the haploid 

case; see SI Section 2.3). To translate these effective sizes into coalescence rates, we also account 

for ploidy, yielding per generation rates of 1 2𝑁$�⁄ = 𝑊� 4𝐺�𝑀�⁄  on autosomes and 

1 (3 2⁄ )𝑁$·⁄ 	= 𝑊· 3𝐺·𝑀·⁄  on the X. Based on Eq. S62, the mutation rates on X and autosomes, 

and the standard forms for heterozygosity levels, we obtain the following expression for the X:A 

diversity ratio: 
Ã(¨õ)
Ã(¨÷)

= Û
Þ
⋅ 8(ø´ øö⁄ )⋅8((´ (ö⁄ )

8±¾´ ¾ö⁄
´´ ´ö⁄ ¶

.         (S63)  

 

In Section 2.4, we recast the results for the effective population size (Eq. S62) and the X:A 

diversity ratio (Eq. S63) in terms of male and female reproductive variances. First, we show that 

the reproductive variances in males and females, 𝑉&  and 𝑉ô , are given by 

𝑉� =
&j
ùú

)ú
&ú
− ,Éùú

ùúv
,          (S64) 

where the index s corresponds to M or F, and 𝛾&  and 𝛾ô  are the proportions of males and females 

among newborns, respectively. Thus, this equation does not assume a sex ratio of 1. Rewriting Eq. 

S63 in terms of male and female reproductive variances we find that 

𝑁$· =
Û
Þ
⋅ Þ(õ&j
v
üù´Ê´	=	

ý
üùöÊö	=

v
ü
þö
þ´

		=ýü	
þ´
þö

  and 𝑁$� =
Þ(÷&j

ù´Ê´	=	ùöÊö	=	
þö
þ´

=	þ´þö
,   (S65) 

where 𝑀, is the number of newborns of both sexes per year, and that 
Ã(¨õ)
Ã(¨÷)

= Û
Þ
⋅ 8(ø´/øö)⋅8((´/(ö)

𝑓±𝛾𝐹/𝛾𝑀	+	𝛾𝑀𝑉𝑀
𝛾𝑀/𝛾𝐹	+	𝛾𝐹𝑉𝐹

¶
.       (S66) 

These equations reduce to Eqs. 18 and 21 in the main text. In Section 2.5, we compare Eq. 18 (or 

Eq. S65) to Hill and Pollak’s more complex expressions for age structured populations (see 

Introduction and (HILL 1972; POLLAK 1980; POLLAK 1990; POLLAK 2011)). We show that in the 

general case in which the sex ratio at birth is not 1, relating our Eq. 18 and the results of Hill and 
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Pollak requires quite an elaborate derivation. In Section 2.6, we recast our results in terms of 

reproductive success of alleles rather than individuals, in order to provide intuition for the 

differences in denominator between Hill’s haploid formula, 𝑁$ = 𝐺 ⋅ 𝑀, 𝑉⁄ , and our extensions 

for diploids, e.g., 𝑁$ = 4𝐺�𝑀, (2 + 𝑉�)⁄  for autosomes, assuming equal sex ratios at birth. 
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Notation Definition Remarks 

𝑝�," Probability that a parent of sex s is of age a Σ"𝑝ô," = Σ"𝑝&," = 1 

𝑞�," Probability that a parent of sex s is of age ³ a 𝑞�," = ΣBZ"𝑝�,B 

𝐺&, 𝐺ô  Male and female generation times  𝐺� = Σ"𝑎 ⋅ 𝑝�," 

𝐺·, 𝐺� Generation times for X and autosomes See Eq. S58 

𝑀�," Number of individuals of sex s and age a 𝑀�,"=, ≤ 𝑀�," 

𝑀, Number of newborns of both sexes per-year  

𝛾&, 𝛾ô   Proportions of males and females among newborns 𝛾� = 𝑀�,,/𝑀, 

𝑟 Relative reproductive success  

𝑓�,"(𝑟) Proportion of individuals with relative reproductive success 𝑟 among 

individuals of sex s and age a 

 

𝑔�,"(𝑟) Given a newborn that descended from a parent of sex s and age a,  𝑔�,"(𝑟) is 

the probability that the parent has relative reproductive success 𝑟  

𝑔�,"(𝑟) = 𝑟" ∙ 𝑓�,"(𝑟) 

𝜖·(𝑠, 𝑎, 𝑟), 

𝜖�(𝑠, 𝑎, 𝑟). 

Joint stationary probability of sex s, age a, and relative reproductive success 𝑟 

for the X and autosomes 

See Eqs. S74 and 

S75 

𝜖�,"· , 𝜖�,"�  Marginal stationary distribution of sex 𝑠 and age a for the X and autosomes  

𝑀&,𝑀ô Effective male and female age-class sizes See Eq. S86 

𝑀·,𝑀� Effective X and autosome linked age-class sizes  See Eq. S90 

𝑊�,B,C Expectation of 𝑟B ⋅ 𝑟C  among individuals of sex 𝑠 conditional on surviving to 

age 𝑎 ≥ 𝑗 

Defined for 𝑗 ≥ 𝑖 

𝑊&,𝑊ô  Weighted averages of the 𝑊&,B,C and the 𝑊ô,B,C, respectively See Eq. S85 

𝑊·,𝑊� Weighted averages of 𝑊&  and 𝑊ô  for X and autosome linked loci See Eq. S59 

	𝑋�,", 𝑋� Random variables describing the number of offspring an individual of sex 𝑠 

has at age 𝑎 or throughout life, respectively 

 

𝑉&,𝑉ô  Male and female reproductive variances (i.e., 𝑉� = 𝑉(𝑋�)) See Eq. S108 

𝑆�," The event of a newborn of sex s surviving to age ³	𝑎  

𝑓(𝑥) 𝑓(𝑥) ≡ (2𝑥 + 4)/(3𝑥 + 3)  

𝜇&,𝜇ô Male and female expected mutation rates per generation  See Section 3 

𝜇·,𝜇� Expected mutation rates per generation on X and autosomes; 

𝜇· =
,
Û
𝜇& +

s
Û
𝜇ô and 𝜇� =

,
s
𝜇& +

,
s
𝜇ô  

 

𝑋$· , 𝑋$�  The number of newborns carrying a random X or autosome linked allele m  

𝑉·∗, 𝑉�∗ Reproductive variances of X and autosome linked alleles, respectively 

(i.e., 𝑽𝑿∗ ≡ 𝑽(𝑿𝒎𝑿 ) and 𝑽𝑨∗ ≡ 𝑽(𝑿𝒎𝑨 )) 

See Eqs. S126 and 

S130 

 
Table S2: Notation for the diploid model with two sexes, with parameters of the model in red.  
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2.2 Assumptions and notation 

 
We consider a panmictic, diploid population of constant size, with two sexes, and sex- and age-

dependent mortalities, fecundities and reproductive variances. We measure age in years, and 

assume that the number of individuals of sex s and age a, 𝑀�," , is constant. Specifically, the sizes 

of the newborn age classes, 𝑀&,, and 𝑀ô,,, may take any integer values, meaning that we do not 

assume that the sex-ratios at birth equals 1. More generally, the size of classes can vary between 

sexes, but for each sex they decrease with age, i. e. ,𝑀�,"=, ≤ 𝑀�," , reflecting sex- and age-specific 

mortalities. We further assume that age classes are partitioned according to individuals’ age-

dependent reproductive success. Namely, individuals are randomly assigned a vector 𝑟 at birth, 

reflecting their expected relative reproductive success at each age (see below). We then assume 

that the number of individuals in the population of sex s, age a and relative reproductive success 

𝑟, is constant and equal to 𝑀�," ⋅ 𝑓�,"(𝑟), where 𝑓�," is the probability mass function of 𝑟 among 

individuals of sex s and age a. Individuals with the same value of 𝑟 are chosen to survive to the 

next age class at random, i.e., there are no differences in viability, but 𝑀�," ⋅ 𝑓�,"(𝑟) ≥ 	𝑀�,"=, ⋅

𝑓�,"=,(𝑟) due to mortality, where rates of mortality can depend on the value of  𝑟.  

  
Sex and age dependent reproductive success is described backwards in time, in terms of the 

probability of an individual being chosen as a parent. Every newborn has a mother and a father, 

which are chosen independently. The probability that the parent of sex s is of a given age is 

described by a discrete distribution 𝐴� = (𝑝�,")"k,� , where the expectations 𝐺& = 𝐸(𝐴&) and 

𝐺ô = 𝐸(𝐴ô) are the generation times for males and females, respectively. The average probability 

per individual of age a is therefore 𝑝�," 𝑀�,"⁄ , which can be viewed as the fertility associated with 

that age and sex. The probability of being born to a specific parent of age a and relative 

reproductive success 𝑟 is 𝑝�," ⋅
56
&ú,6

, where 𝑟" is the a-th component of 𝑟. The value of 𝑟" thus 

reflects an individual’s expected (rather than realized) relative reproductive success.  

 

Similar to the haploid case (cf. Section 1.1), our assumptions imply several requirements on the 

form of the probability mass functions 𝑓�,". First, requiring that the probability of a parent of sex s 

being of age a is 𝑝�,", implies that for any sex s and age a,  𝐸8ú,6(𝑟") = 1. Second, requiring that 
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𝑀�," ⋅ 𝑓�,"(𝑟) ≥ 	𝑀�,"=, ⋅ 𝑓�,"=,(𝑟) implies that 𝑓�,"(𝑟) 𝑓�,"=,(𝑟)⁄ ≥ 𝑀�,"=, 𝑀�,"⁄ . Third, requiring 

that for any sex s and age a, 𝑀�," ⋅ 𝑓�,"(𝑟) is an integer, implies that the probability mass functions 

𝑓�," are discrete and can only take values 𝑖 𝑀�,"⁄  for 𝑖 = 0, 1,… ,𝑀�,". While the latter requirement 

may appear to be highly restrictive, if we fix the ratios 𝑀�,"/𝑀�@,"@ and assume that the total 

population size is sufficiently large, we can relax this requirement and assume any continuous or 

discrete distributions 𝑓�," that satisfy the first two requirements (by the same reasoning we applied 

to the haploid case in Section 1.2).  

 
2.3 Solution backwards in time 
 
Here, we extend the derivations of Pollak (POLLAK 2011) to account for endogenous reproductive 

variance. Tracing an allele backward in time, the sex 𝑠a, age 𝑎a and relative reproductive success 

𝑟a of the individual 𝐼a carrying the allele t years in the past defines a Markov chain, (𝑠a, 𝑎a, 𝑟a). To 

define the transition probabilities of the chain, we distinguish between two cases. First, if the allele 

is not carried by a newborn, i.e., if 𝑎a > 1, then at time 𝑡 + 1 the individual carrying it was one 

year younger, and its sex s and relative reproductive success 𝑟 remain unchanged, i.e., 

(𝑠a=,, 𝑎a=,, 𝑟a=,) = (𝑠a, 𝑎a − 1, 𝑟a) with probability 1. Second, if the allele is carried by a newborn, 

i.e., if 𝑎a = 1, then the sex of the parent, 𝑠a=,, is equally likely to be male or female if the allele is 

autosomal or if it is X-linked and the newborn was a female; if the allele is X-linked and the 

newborn was a male then the sex of the parent will be female with probability 1. Conditional on 

the parent’s sex, 𝑠a=,, its age 𝑎a=, = 𝑎 with probability 𝑝�hij," . The probability mass function of 

𝑟a=, conditional on (𝑠a=,, 𝑎a=,), follows from Bayes’ theorem, further conditioning on the fact 

that the parent, 𝐼a=, = 𝐼, necessarily reproduced successfully 

        𝑃(𝑟f = 𝑟|𝐼a=, = 𝐼, 𝑎a=, = 𝑎) 

= g(fhijkf|5⃗hijk5⃗,"hijk")⋅g(5⃗lk5⃗|	"hijk")
g(fhijkf)

 = G56/&ú,6H⋅8ú,6(5⃗)
∑ 	G56/&ú,6H⋅8ú,6(mn⃗ )onn⃗

= 𝑟" ⋅ 𝑓�,"(𝑟).  (S67) 

We denote this probability by 𝑔�,"(𝑟) ≡ 𝑟" ⋅ 𝑓�,"(𝑟), and conclude that when 𝑎a = 1, 𝑠a=, is 

distributed as we described above and  𝑃G(𝑎a=,, 𝑟a=,) = (𝑎, 𝑟)°𝑠a=,H = 𝑝�," ⋅ 𝑔�,"(𝑟).  

 

𝑔�," is a proper probability mass function since ∑ 𝑔�,"(𝑟)5⃗ = ∑ 𝑟" ⋅ 𝑓�,"(𝑟)5⃗ = 1. Moreover, the 

parent’s expected value of 𝑟" is 𝐸5⃗~rú,6(𝑟") = 𝐸5⃗~8ú,6(𝑟"
s) = 1 + 𝑉5⃗~8ú,6(𝑟") ≥ 1. The latter 
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inequality makes intuitive sense, as it implies that the allele is more likely to be descended from 

an individual that has higher than average relative reproductive success in its age class. 

 

We rely on the transition probabilities to derive and solve recursions for the stationary 

probabilities, 𝜖�(𝑠, 𝑎, 𝑟) and 𝜖·(𝑠, 𝑎, 𝑟), of sex s, age a, and relative reproductive successes 𝑟, of 

autosome and X linked alleles, respectively. For autosomal alleles 

𝜖�(𝑠, 𝑎, 𝑟) = 𝜖�(𝑠, 𝑎 + 1, 𝑟) + G∑ 𝜖�G𝑡, 1, 𝑘n⃗ Ha,mn⃗ H ⋅ ,
s
𝑝�," ⋅ 𝑔�,"(𝑟),    (S68) 

where the first term corresponds to aging by one year and the second corresponds to parenting a 

newborn. For X linked alleles 

𝜖·(𝑠, 𝑎, 𝑟) = 𝜖·(𝑠, 𝑎 + 1, 𝑟) + Î,
s
∑ 𝜖·(𝐹, 1, 𝑘n⃗ )mn⃗ + 𝕀�kô ∑ 𝜖·(𝑀, 1, 𝑘n⃗ )mn⃗ Ï ⋅ 𝑝�," ⋅ 𝑔�,"(𝑟),  

(S69) 

where 𝕀 denotes an indicator function (i.e., 𝕀�kô is 1 when 𝑠 = 𝐹 and 0 otherwise), and, similar to 

the autosomal case, the first term corresponds to aging by one year and the second corresponds to 

parenting a newborn.  

 

In order to solve these recursions, we first consider the marginal stationary distribution of age and 

sex, 𝜖�,"� = ∑ 𝜖�(𝑠, 𝑎, 𝑟)5⃗  for autosomes and 𝜖�,"· = ∑ 𝜖·(𝑠, 𝑎, 𝑟)5⃗ . To this end, we sum the 

recursions over 𝑟 to obtain recursions on the marginal distributions, 

								𝜖�,"� = 𝜖�,"=,� + G𝜖&,,� + 𝜖ô,,� H ⋅ ,
s
𝑝�," and 𝜖�,"· = 𝜖�,"=,· + Î,

s
𝜖ô,,· + 𝕀�kô𝜖&,,· Ï ⋅ 𝑝�," ,  

(S70) 

where we also require that ∑ 𝜖�,"��," = ∑ 𝜖�,"·�," = 1. These recursions were solved by Pollak 

(POLLAK 2011) for the case without endogenous reproductive variance, yielding 

𝜖�,"� = 𝑞�,"/2𝐺�, 𝜖&,"· = 𝑞&,"/3𝐺· and 𝜖ô,"· = 2𝑞ô,"/3𝐺·,     (S71) 

where 𝑞�,C ≡ ∑ 𝑝�,CCZ"  is the probability that a parent of sex s is at least j years old. Substituting 

these expressions into Eqs. S68 and S69, the recursions simplify to 

𝜖�(𝑠, 𝑎, 𝑟) = 𝜖�(𝑠, 𝑎 + 1, 𝑟) + ,
s(6

𝑝�," ⋅ 𝑔�,"(𝑟)      (S72) 

for autosomes and 

𝜖·(𝑠, 𝑎, 𝑟) = 𝜖·(𝑠, 𝑎 + 1, 𝑟) + ,=𝕀úóö
Û(õ

⋅ 𝑝�," ⋅ 𝑔�,"(𝑟)     (S73) 
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for the X, where we further require that ∑ 𝜖�(𝑠, 𝑎, 𝑟)�,",5⃗ = ∑ 𝜖·(𝑠, 𝑎, 𝑟)�,",5⃗ = 1. The solution to 

these recursions is   

𝜖�(𝑠, 𝑎, 𝑟) = ,
s(÷

𝜖(𝑠, 𝑎, 𝑟)         (S74) 

for autosomes and  

𝜖·(𝑠, 𝑎, 𝑟) = ,=𝕀úóö
Û(õ

𝜖(𝑠, 𝑎, 𝑟)        (S75) 

for the X, where 𝜖(𝑠, 𝑎, 𝑟) ≡ ∑ 𝑝�,C ⋅ 𝑔�,C(𝑟)CZ" . 

 

The marginal stationary probability mass function of 𝑟 follows,  

𝜖5⃗
� = ∑ 𝜖�(𝑠, 𝑎, 𝑟)�," = ∑ C⋅wú,E

s(÷
⋅ 𝑔�,C(𝑟)�,C        (S76) 

for autosomes, and  

𝜖5⃗
· = ∑ 𝜖·(𝑠, 𝑎, 𝑟)�," = ∑ (,=𝕀úóö)⋅C⋅wú,E

Û(õ
⋅ 𝑔�,C(𝑟)�,C       (S77) 

for the X. These are proper probability mass functions since they are weighted averages of the 

probability mass functions 𝑔�,C, since ∑ C⋅wú,E
s(÷�,C = ∑ (,=𝕀úóö)⋅C⋅wú,E

Û(õ�,C = 1.  

 

Similar to the haploid case, we rely on the stationary distribution to derive the probability of 

coalescence of two alleles. Consider the autosomal case first. For coalescence to occur at time t in 

the past, one of the alleles (A) would descend from the other (B) or both would descend from the 

same parental allele at that time (we provide examples for both scenarios in the haploid section). 

Specifically, if allele B is in an individual of sex s, age a and relative reproductive success 𝑟 at 

time 𝑡 (with probability 𝜖�(𝑠, 𝑎, 𝑟)), then allele A must be in a newborn at time 𝑡 − 1 (with 

probability 𝜖&,, + 𝜖ô,,), having descended from the same individual carrying allele B (with 

probability ,
s
𝑝�," ⋅

56
&6

) and from allele B specifically (with probability ½). Summing over the 

individual’s possible sexes, ages and reproductive success vectors, we obtain the probability 

        ∑ 𝜖�(𝑠, 𝑎, 𝑟) ⋅ G𝜖&,,� + 𝜖ô,,� H ⋅ ,
s
𝑝�," ⋅ 	

56
s&ú,6�,",5⃗ = ,

+((÷)v
∑ ∑ wú,6wú,E ∑ 56⋅rú,E(5⃗)xnn⃗Ey6

&ú,6�,"   

= ,
+((÷)v

∑ ∑ wú,6wú,E)ú,6,EEy6

&ú,6�," ,         (S78) 

where, for 𝑗 ≥ 𝑖, 

𝑊�,B,C ≡ 𝐸5⃗~8ú,EG𝑟B ⋅ 𝑟CH = 𝐸5⃗~rú,E(𝑟B) = ∑ 𝑟B ⋅ 𝑔�,C(5⃗ 𝑟)     (S79) 
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is the expectation of G𝑟B ⋅ 𝑟CH over individuals of sex s and age j. Further allowing for either allele 

or both to be the newborn, and using the inclusion-exclusion principal to subtract the probability  

G𝜖&,,� + 𝜖ô,,� Hs ∑ Î,
s
𝑝�,"Ï

s
⋅ 56rú,6(5⃗)

s&ú,6�,",5⃗ = ,
+((÷)v

∑ wú,6wú,6)ú,6,6
&ú,6�,"     (S80) 

that both alleles were in a newborn prior to coalescence, the autosomal stationary coalescence rate 

per year is 
,

+((÷)v
∑ wú,6v )ú,6,6=s∑ wú,6wú,E)ú,6,EE|6

&ú,6�," .       (S81) 

The per generation coalescence rate (in terms of the autosomal generation time 𝐺�) and 

corresponding effective population size are therefore 
,

sz{÷
= ,

+⋅(÷
∑ wú,6v )ú,6,6=s∑ wú,6wú,E)ú,6,EE|6

&ú,6�,"        (S82) 

 

For the X, the stationary coalescence rate per year is  

         2 Î𝜖&,,· + ,
s
𝜖ô,"· Ï∑ 𝜖·(𝐹, 𝑎, 𝑟) ⋅ 𝑝ô," ⋅ 	

56
s&ö,6

",5⃗ + 2 ⋅ ,
s
𝜖ô,"· ∑ 𝜖·(𝑀, 𝑎, 𝑟) ⋅ 𝑝&," ⋅ 	

56
&´,6

",5⃗  

         −Î𝜖&,,· + ,
s
𝜖ô,,· Ï

s
∑ 𝑝ô,"s ⋅ 56rö,6(5⃗)

s&ö,6
",5⃗  −Î,

s
𝜖ô,,· Ï

s
∑ 𝑝&,"s ⋅ 56r´,6(5⃗)

&´,6
",5⃗   

= ,
,((õ)v

∑ (1 + 𝕀�kô)∑
wú,6v )ú,6,6=s∑ wú,6wú,E)ú,6,EE|6

&ú,6"�  ,    (S83) 

and the corresponding per generation coalescence rate, which defines the effective population size 

for the X, 𝑁$·, is  
,

sz{õ
= ,

,(õ
∑ (1 + 𝕀�kô)∑

wú,6v )ú,6,6=s∑ wú,6wú,E)ú,6,EE|6

&ú,6"�      (S84) 

(defined in terms of the X-linked generation time 𝐺·). 

 

As outlined in Section 2.1, the effective population sizes, 𝑁$· and 𝑁$�, can be rewritten in terms of 

the effective age class sizes, to obtain expressions that are analogous to Eq. 10 in the haploid case. 

To this end, the terms 𝐺, 𝑊 and 𝑀 in Eq. 10 need to be defined for the X and autosomes. First, we 

define these terms separately for males and females, by applying the haploid definitions. 

Specifically, we define  

𝑊� =	∑ 𝑝�,Bs 𝑊�,B,BB + 2∑ 𝑝�,B𝑝�,C𝑊�,B,CB�C        (S85) 

as a weighted average of the 𝑊�,B,C, and define 
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,
&ú
= ∑ �ú,6

&ú,6"             (S86) 

as a weighted harmonic average of the age classes sizes of sex s, with weights 

𝑤�,B = (𝑝�,Bs 𝑊�,B,B + 2∑ 𝑝�,B𝑝�,C𝑊�,B,CC�B )/𝑊�,      (S87) 

where ∑ 𝑤�,"" = 1. To extend the definitions of 𝐺, 𝑊 and 𝑀 to the X and autosomes, we define 

them as weighted averages over males and females. Specifically, 𝐺 and 𝑊 are defined as simple 

weighted averages, 

𝐺� =
,
s
(𝐺& + 𝐺ô) and 𝐺· =

s
Û
𝐺ô +

,
Û
𝐺&       (S88) 

and 

𝑊� =
,
s
(𝑊& +𝑊ô) and 𝑊· =

s
Û
𝑊ô +

,
Û
𝑊& .      (S89) 

The effective age class size M for X and autosomes is defined as a weighted harmonic average, 
,
&÷

= , s()´ )÷)⁄⁄
&´

+ , s()ö )÷)⁄⁄
&ö

 and ,
&õ

= , Û()´ )õ)⁄⁄
&´

+ s Û()ö )õ)⁄⁄
&ö

.    (S90) 

Expressing Eqs. S82 and S84 in these terms, we find that 

𝑁$� =
s&÷(÷
)÷

and	𝑁$· =
Û
Þ
⋅ s&õ(õ

)õ
,        (S91) 

which is Eq. 15 in the main text. The factor 2 in the numerators is absent in the analogous haploid 

expression, 𝑁$ = 𝑀 ⋅ 𝐺 𝑊⁄  (Eq. 10 and S17), and is not explained by diploidy, which is already 

accounted for by the defining 𝑁$ as half the inverse of the coalescence rates in the diploid case. 

To see that this is the case, consider how we might ‘adjust’ the haploid expression to describe 

autosomal alleles in diploids. Namely, we might expect to have 2𝑁$ = (2𝑀) ⋅ 𝐺 𝑊⁄ , where the 

factors of 2 follow from having the effective population and age-class sizes for alleles rather than 

individuals. Instead, the factor 2 accounts for the doubling the effective number of age classes, i.e., 

2G classes in the diploid model with two sexes instead of 𝐺 classes in the haploid model, where 

intuitively, this doubles the expected coalescence time because for a pair of alleles to coalescence 

they must be in an individual of a given age and sex.  

 

Assuming the standard expressions for neutral heterozygosity, 𝐸(𝜋�) = 4𝑁$�𝜇� and 𝐸(𝜋·) =

4𝑁$·𝜇· (see Section 3), and rearranging the expressions in Eq. S91, we find that 
Ã(¨õ)
Ã(¨÷)

= Û
Þ
⋅ 8(ø´/øö)⋅8((´/(ö)

8±¾´/¾ö
´´/´ö

¶
.         (S92)  
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When the mutation rate, age structure, and endogenous reproductive variance are identical in both 

sexes Eq. S92 reduces to the naïve neutral expectation of ¾. When these factors differ among 

sexes, Eq. S92 provides a simple expression for the effect of each factor.  

 
2.4 Reproductive variance 

  
To recast our results for the effective population sizes in terms of reproductive variances in males, 

𝑉& ,  and females,  𝑉ô , we follow the same steps as described for the haploid case (Section 1.4). 

First, we consider the case with non-overlapping generations in a diploid population of constant 

size, with 𝑁& males and 𝑁ô females. We denote the total population size by 𝑁 ≡ 𝑁& + 𝑁ô, the 

proportions of males and females by 𝛾� ≡
zú
z

, and the number of offspring of the ith individual of 

sex s by 𝑘B�. To maintain a constant population size, we require that the number of offspring arising 

from parents of each sex equals N, and therefore the sex-specific expectations are 𝐸(𝑘B�) =
,
zú
∑ 𝑘B�B = z

zú
. We denote the sex-specific variances by 𝑉� ≡ 𝑉(𝑘B�). 

 

We are interested in the probability that two distinct alleles descend from the same allele in the 

previous generation, as this probability is, by definition, 1 2𝑁$�⁄  for autosomes and 1 2𝑁$·⁄  for the 

X. For autosomes, the probability that the two alleles descend from individuals of sex s is ¼, the 

probability that they descend from the same individual of that sex is ∑ mÈ
ú

z
⋅ mÈ

úÉ,
zÉ,

zú
Bk, , and the 

probability that they descend from the same allele is 1/2, and therefore 
,

sz{÷
= ,

+
∑ ∑ mÈ

ú

z
⋅ mÈ

úÉ,
zÉ,

zú
Bk,� .        (S93) 

Substituting ∑ mÈ
ú

z
⋅ mÈ

úÉ,
zÉ,

zú
Bk, = ùú

zÉ,
Î𝐸G𝑘B�

sH − 𝐸(𝑘B�)Ï =
,

zÉ,
(𝛾�𝑉� +

,
ùú
− 	1) into Eq. S93, we find 

that 

𝑁$� =
Þ(zÉ,)

ù´Ê´=ùöÊö=	ùö ù´⁄ =ù´ ùö⁄ 	
≅ Þz

ù´Ê´=ùöÊö=	ùö ù´⁄ =ù´ ùö⁄    (S94) 

(cf. (WRIGHT 1939/1986)).  

 

For the X chromosome, the probability that two alleles descend from individuals of sex s depends 

on 𝛾&  and 𝛾ô . However, as we go further backwards in time, this probability approaches 1/9 for 

both being male and 4/9 for both being female, regardless of 𝛾&  and 𝛾ô . The probability that both 
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alleles descend from the same individual of that sex is ∑ mÈ
ú

z
⋅ mÈ

úÉ,
zÉ,

zú
Bk, , and the probability that they 

descend from the same allele is ½ for females and 1 for males, and therefore  

,
sz{õ

= ,
,
∑ mÈ

´

z
⋅ mÈ

´É,
zÉ,

z´
Bk, + ,

s
⋅ Þ
,
∑ mÈ

ö

z
⋅ mÈ

öÉ,
zÉ,

zö
Bk,  ,      (S95) 

and thus 

𝑁$· =
Û
Þ
⋅ Þ(zÉ,)
v
üù´Ê´	=

ý
üùöÊö	=

v
ü	
þö
þ´

=ýü	
þ´
þö

≅ Û
Þ
⋅ Þz
v
üù´Ê´	=

ý
üùöÊö	=

v
ü	
þö
þ´

=ýü	
þ´
þö

 .    (S96) 

Assuming a sex ratio of 1 (i.e., 𝛾& = 𝛾ô = 1/2), Eqs. S94 and S96 reduce to  

𝑁$� =
Þz

s=jvÊ´=
j
vÊö

 and 𝑁$· =
Û
Þ
⋅ Þz
s=jüÊ´=

v
üÊö

.    (S97) 

 

To extend these results to the case with overlapping generations, we consider the first two moments 

of an individual’s number of offspring, 𝑋�, throughout its lifetime. First, we note that an 

individual’s number of offspring can be expressed as a sum over the number at each age, i.e., 𝑋� =

∑ 𝑋�,"" , where 𝑋�," denotes the number of offspring at age a; and 𝑋�," = 0 if the individual does 

not survive to age a. In these terms, the first two moments are 

𝐸(𝑋�) = ∑ 𝐸(𝑋�,")"  and 𝐸(𝑋�s) = ∑ 𝐸(𝑋�,"s )" + 2∑ 𝐸(𝑋�,B ⋅ 𝑋�,C)C�B .   (S98) 

Denoting the event of surviving to age ³	𝑎 by 𝑆�,", we note that  

𝐸G𝑋�,"B H = 𝑃𝑟G𝑆�,"H ⋅ 𝐸G𝑋�,"B °𝑆�,"H =
&ú,6
&ú,j

⋅ 𝐸G𝑋�,"B °𝑆�,"H.    (S99)  

The latter term, 𝐸G𝑋�,"B °𝑆�,"H, can be simplified further by conditioning on 𝑟. Since the probability 

mass function of 𝑟 conditional on 𝑆�," is 𝑓�,", 

𝐸G𝑋�,"B °𝑆�,"H = 𝐸5⃗~8ú,6𝐸G𝑋�,"
B °𝑆�,", 𝑟H.       (S100) 

Moreover, the distribution of 𝑋�," conditional on 𝑆�," and 𝑟 is  

G𝑋�,"°𝑟, 𝑆�,"H	~𝐵𝑖𝑛G𝑀,, 𝑝�," ⋅ 𝑟"/𝑀�,"H,       (S101) 

where 𝑀, = 𝑀&,, + 𝑀ô,, is the number of newborns of both sexes per-year, and therefore 

𝐸G𝑋�,"°𝑆�,"H = 𝐸5⃗~8ú,6 ±
&j56wú,6
&ú,6

¶ = &jwú,6
&ú,6

      (S102) 

and   

        𝐸G𝑋�,"s °𝑆�,"H = 𝐸5⃗~8ú,6 -𝑀,
56wú,6
&ú,6

+ 2 Î𝑀,
2 Ï±

56wú,6
&ú,6

¶
s
. = &jwú,6

&ú,6
+ 2 Î𝑀,

2 Ï±
wú,6
&ú,6

¶
s
𝑊�,",".  

Substituting these expressions into Eq. S99, we find that 
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𝐸(𝑋�,") =
wú,6
ùú

  and	𝐸G𝑋�,"s H =
wú,6
ùú
+	&jÉ,

&ú,6

wú,6v

ùú
	 ⋅ 𝑊�,",",     (S103) 

where 𝛾&  and 𝛾ô  are the proportions of males and females at birth (i.e., 𝛾� = 𝑀�,,/𝑀,). To 

calculate the remaining terms in Eq. S98, 𝐸(𝑋�,B ⋅ 𝑋�,C) for 𝑗 > 𝑖, we note that conditioning on 𝑆�,C, 

and on 𝑟|𝑆�,C, 

𝐸G𝑋�,B ⋅ 𝑋�,CH = 𝑃G𝑆�,CH ⋅ 𝐸G𝑋�,B ⋅ 𝑋�,C°𝑆�,CH =
&ú,E

&ú,j
⋅ 𝐸5⃗~8ú,E𝐸G𝑋�,B ⋅ 𝑋�,C°𝑆�,C, 𝑟H. (S104)  

The latter term is easy to calculate: conditional on 𝑆�,C and 𝑟, 𝑋�,B and 𝑋�,C are independent binomial 

variables: G𝑋�,B°𝑟, 𝑆�,CH~𝐵𝑖𝑛G𝑀,, 𝑝�,B ⋅ 𝑟B/𝑀�,BH and G𝑋�,C°𝑟, 𝑆�,CH~𝐵𝑖𝑛G𝑀,, 𝑝�,C ⋅ 𝑟C/𝑀�,CH, and 

therefore 

𝐸G𝑋�,B ⋅ 𝑋�,CH =
&ú,E

&ú,j
⋅ 𝐸5⃗~8ú,E ±

&jvwú,Èwú,E5È5E
&ú,È&ú,E

¶ = &jwú,Èwú,E)ú,È,E

ùú&ú,È
.    (S105)  

Substituting the expressions from Eqs. S103 and S105 into Eq. S98 we obtain 

𝐸(𝑋�) =
,
ùú
	 and 𝐸(𝑋�s) =

,
ùú
+ &j

ùú
∑ 	wú,È

v ⋅)ú,È,È=s∑ wú,Èwú,E)ú,È,EE|È

&ú,È
B − ∑ 	wú,6

v ⋅)ú,6,6
ùú&ú,6" . (S106) 

 

Assuming that the total population size is sufficiently large for the ratios 𝑀�,B/𝑀a,C and terms 𝑊�,B,C 

to be approximated as fixed, and for the higher order terms ∑ 	wú,6
v ⋅)ú,6,6
ùú&ú,6"  to be negligible, we find 

that 

𝐸(𝑋�) =
,
ùú
	 and 𝐸(𝑋�s) ≅

,
ùú
+ &j

ùú

)ú
&ú

.        (S107) 

The reproductive variances of sex s, are therefore 

𝑉� = 𝐸(𝑋�s) − 𝐸s(𝑋�) ≅
&j
ùú

)ú
&ú
− ,Éùú

ùúv
.       (S108) 

From Eqs. S91 and S108, we obtain that   

𝑁$� =
Þ(÷&j

ù´Ê´	=	ùöÊö	=	ùö ù´⁄ =ù´ ùö⁄  and 𝑁$· =
Û
Þ
⋅ Þ(õ&j
v
üù´Ê´	=	

ý
üùöÊö	=

v
ü	
þö
þ´

=ýü	
þ´
þö

 ,  (S109) 

where 𝐺�𝑀, and 𝐺·𝑀, are the total numbers of newborns per-generation, for autosomes and the 

X, respectively. Eq. S109, which is equivalent to Eq. 18 in the main text, generalizes Eqs. S94 and 

S96 to the case with age-structure. 

 

Assuming that 𝐸(𝜋�) = 4𝑁$�𝜇� and 𝐸(𝜋·) = 4𝑁$·𝜇· (see Section 3), we find that 
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Ã(¨õ)
Ã(¨÷)

= Û
Þ
⋅ 8(ø´/øö)⋅8((´/(ö)

𝑓±𝛾𝐹/𝛾𝑀	+	𝛾𝑀𝑉𝑀
𝛾𝑀/𝛾𝐹	+	𝛾𝐹𝑉𝐹

¶
 ,       (S110) 

which is Eq. 21 in the main text. When the sex ratio at birth is 1 (i.e. that 𝛾& = 𝛾ô = 1 2⁄ ), Eqs. 

S109 and S110 reduce to  

𝑁$� =
Þ(÷&j

s=jvÊ´=
j
vÊö

, 𝑁$· =
Û
Þ
⋅ Þ(õ&j
s=jüÊ´=

v
üÊö

, and  
Ã(¨õ)
Ã(¨÷)

= Û
Þ
⋅ 8(ø´/øö)⋅8((´/(ö)

𝑓Î2+𝑉𝑀
2+𝑉𝐹

Ï
. (S111) 

 

2.5 Hill and Pollak’s results for age-structured populations 
 

As we reviewed in the Introduction, Hill derived an expression for the effective population size of 

autosomes in age structured populations (Eq. 2) and Pollak derived a similar expression for the X 

(HILL 1972; POLLAK 1980; POLLAK 1990; POLLAK 2011). Here we relate these expressions with 

our Eq. 18 (and S109), showing that in the general case this relationship is non-trivial. 

   

The relationship between our results and those of Hill and Pollak is straightforward in the special 

case in which the sex ratio at birth is 1 (i.e., 𝛾& = 𝛾ô = 1 2⁄ ). Hill and Pollak’s equations are cast 

in term of the variances and covariances of the number of male and female offspring of a parent 

of sex 𝑠, 𝑋�,& and 𝑋�,ô , respectively. When 𝛾& = 𝛾ô = 1 2⁄ , substituting 

𝑉� = 𝑉𝑎𝑟(𝑋�) = 𝑉𝑎𝑟G𝑋�,&H + 2𝐶𝑜𝑣G𝑋�,&, 𝑋�,ôH + 𝑉𝑎𝑟G𝑋�,ôH.   (S112). 

into Eq. 18 (or S109) yields Hill and Pollak’s expressions. In the general case (when 𝛾� ≠ 1 2⁄ ), 

however, this substitution falls short.  

 

Relating our results with those of Hill and Pollak in the general case requires us to express the 

variances and covariances 𝑉𝑎𝑟G𝑋�,aH and 𝐶𝑜𝑣G𝑋�,&, 𝑋�,ôH in terms of the birth proportions 𝛾� and 

variances 𝑉� (for 𝑠, 𝑡 = 𝑀, 𝐹). To this end, we note that conditioned on 𝑋�, the total number of 

offspring of either sex, 𝑋�,& and 𝑋�,ô, can be approximated by  

𝑋�,a|𝑋�~𝐵𝑖𝑛(𝑋�, 𝛾a).          (S113) 

This approximation neglects dependencies of the order of 1/𝑀,
s between the sexes of different 

offspring, which arise because we hold the total number of newborns of each sex per year fixed; 
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but it is consistent with standard coalescent approximations, in neglecting contributions that are 

smaller than on an order of 1 𝑁$⁄ . From Eqs. S113 and S107, we find that 

𝐸G𝑋�,aH = 𝐸𝐸G𝑋�,a°𝑋�H = 𝐸(𝛾a𝑋�) = 𝛾a 𝛾�⁄ .      (S114) 

Further using the law of total variance, we find that 

       𝑉𝑎𝑟G𝑋�,aH = 𝐸	𝑉𝑎𝑟G𝑋�,a°𝑋�H + 𝑉𝑎𝑟	𝐸G𝑋�,a°𝑋�H = 𝐸(𝛾&𝛾ô𝑋�) + 𝑉𝑎𝑟(𝛾a𝑋�) 

                        = 1 − 𝛾� +	𝛾as𝑉� .              (S115) 

And using the law of total covariance, we find that 

𝐶𝑜𝑣G𝑋�,&, 𝑋�,ôH = 𝐸	𝐶𝑜𝑣G𝑋�,&, 𝑋�,ô°𝑋�H + 𝐶𝑜𝑣 Î𝐸G𝑋�,&°𝑋�H, 𝐸G𝑋�,ô°𝑋�HÏ.  (S116) 

Given that 𝑋�,& + 𝑋�,ô = 𝑋�, we can express the first term in Eq. S116 as  

      𝐶𝑜𝑣G𝑋�,&, 𝑋�,ô°𝑋�H = 𝐸G𝑋�,& ⋅ G𝑋� − 𝑋�,ôH°𝑋�H − 𝐸G𝑋�,&°𝑋�H ⋅ 𝐸G𝑋�,ô°𝑋�H 

                                      = 𝐸G𝑋� ⋅ 𝑋�,& − 𝑋�,&s °𝑋�H − 𝛾&𝛾ô𝑋�s 

                                      = 𝛾&𝑋�s − 𝛾&𝛾ô𝑋� − 𝛾&s 𝑋�s − 𝛾&𝛾ô𝑋�s = −𝛾&𝛾ô𝑋�.         (S117) 

Intuitively, Eq. S117 shows that once we condition on the total number of offspring, the numbers 

of daughters and sons are negatively correlated. Lastly, substituting Eq. S117 into Eq. S116 and 

relying on Eqs. S113 and S107, we find that 

𝐶𝑜𝑣G𝑋�,&, 𝑋�,ôH = −𝛾&𝛾ô 𝛾�⁄ + 𝐶𝑜𝑣(𝛾&𝑋�, 𝛾ô𝑋�) = 𝛾&𝛾ô(𝑉� − 1 𝛾�⁄ ).   (S118) 

In summary, we find that  

𝑉𝑎𝑟G𝑋�,aH = 1 − 𝛾� + 𝛾as𝑉� and 𝐶𝑜𝑣G𝑋�,&, 𝑋�,ôH = 𝛾&𝛾ô(𝑉� − 1 𝛾�⁄ ).  (S119) 
 

With these non-trivial identities at hand, we can relate our results with those of Hill and Pollak 

(HILL 1972; POLLAK 1980; POLLAK 1990; POLLAK 2011). Substituting these identities into Hill’s 

equation (HILL 1972) yields our expression for 1 𝑁$�⁄  in Eq. 18 (and S109):  
,
z{÷
= s=0´´

v =s(ù´ ùö⁄ )©12($$,$8)=(ù´ ùö⁄ )v0´ö
v

,à&j∙ù´∙(÷
+ s=0öö

v =s(ùö ù´⁄ )©12(8$,88)=(ùö ù´⁄ )v0ö´
v

,à&j⋅ùö⋅(÷
  

              = Þù´
v Ê´=Ûùö=ù´

v ùöç
,àù´&j(÷

+ Þùö
vÊö=Ûù´=ùö

v ù´ç
,àùö&j(÷

= ù´Ê´	=	ùöÊö	=	ùö ù´⁄ =ù´ ùö⁄
Þ&j(÷

.        (S120) 

A similar exercise starting from Pollak’s expression (POLLAK 2011) yields our expression for the 

X. Our Eq. 18 (and S109) is considerably simpler than Hill’s and Pollak’s results, as it circumvents 

the need to consider variances in the number of offspring of each sex separately, or the covariance 

between the number of sons and daughters.  
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2.6 Allelic reproductive variance 
 
Here we derive expressions for the effective population size of the X and autosomes in terms of 

reproductive success of alleles rather than of individuals. We show that substituting the allelic 

reproductive variance into the haploid expression for 𝑁$ (Eqs. 13 and S44) yields the correct 

expression for autosomal alleles, whereas for the X this formulation applies only when the sex 

ratio at birth equals 1 (i.e., γ4 = γ5 = 1/2). These results provide intuition for the differences 

between our expression for 𝑁$ in the haploid case (Eq. 13) and our expressions for X and 

autosomes (Eq. 18).  

 

We begin with some motivation. We define the reproductive success of an allele as an individual’s 

number of offspring that carry that allele, and denote the reproductive variance associated with X 

and autosome linked alleles by 𝑉·∗ and 𝑉�∗, respectively. In these terms, we might hope that our 

expression for 𝑁$ in the haploid case (Eq. 13) would apply to the X and autosomes, i.e., that 

𝟐 ∙ 𝑁$· = 𝐺· Î
𝟑
𝟐
∙ 𝑀,Ï 𝑉·∗ç  and 𝟐 ∙ 𝑁$� = 𝐺�(𝟐 ∙ 𝑀,) 𝑉�∗⁄ ,    (S121) 

where the (bold) factors of 2 on the left-hand side follow from considering the effective size for 

alleles rather than individuals, and the (bold) factors of 3/2 for the X and 2 for autosomes on the 

right-hand side follow from considering the number of newborn alleles rather than individuals. 

Below, we show that assuming a sex ratio of 1 at birth, then 

𝑉·∗ =
,
Þ
(2 + ,

Û
𝑉& +

s
Û
𝑉ô) and 𝑉�∗ =

,
Þ
(2 + ,

s
𝑉& +

,
s
𝑉ô),     (S122) 

where the weights reflect the proportion of generations spent in males and females, and the additive 

factor 2 results from ploidy. Substituting these expressions into Eq. S121 we indeed obtain the 

correct effective population sizes, i.e., 

𝑁$· =
Û
Þ
⋅ Þ(õ&j
s=jüÊ´=

v
üÊö

 and 𝑁$� =
Þ(÷&j

s=jvÊ´=
j
vÊö

.      (S123) 

However, as we further show, this ‘shortcut’ yields the wrong answer for the X when the sex ratio 

at birth deviates from 1.  

 

First, we calculate the allelic variances. Consider an allele m carried by an individual 𝐼$ of sex 𝑠$. 

We define the allele’s realized reproductive success as the number of 𝐼$’s offspring who carry a 

copy of m, and denote it by 𝑋$�  when m is autosomal and by 𝑋$·  when it is X-linked. We denote 
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𝐼$’s total number of offspring (whether they carry m or not) by 𝑋f. First consider an autosomal 

allele. Since each offspring of 𝐼$ carries a copy of m with probability ½, the conditional 

distribution 𝑋$� |𝑋f~𝐵𝑖𝑛(𝑋f, 1 2⁄ ). From the law of total variance,  

𝐸(𝑋$� ) =
,
s
𝐸(𝑋f) and 𝑉(𝑋$� ) =

,
Þ
[𝐸(𝑋f) + 𝑉(𝑋f)].     (S124) 

Further conditioning on the sex of the individual carrying the allele, 𝑠f, we note that 𝐸(𝑋f|𝑠f) =

1/𝛾�l  (Eq. S107) and 𝑉(𝑋f|𝑠f) = 𝑉�l , where the individual 𝐼$ is male with probability 𝛾&  and 

female with probability 𝛾ô . Applying the law of total variance again, we find that 

𝐸(𝑋f) = 2 and 𝑉(𝑋f) = 𝛾&𝑉& + 𝛾ô𝑉ô +
(ù´Éùö)v

ù´ùö
.      (S125) 

Substituting these expressions into Eq. S124, we find that  

𝐸(𝑋$� ) = 1 and 𝑉�∗ ≡ 𝑉(𝑋$� ) =
,
Þ
[𝛾&𝑉& + 𝛾ô𝑉ô +

ù´
ùö
+ ùö

ù´
].    (S126) 

When the sex ratio at birth is 1, and thus 𝛾& = 𝛾ô = 1 2⁄ , Eq. S126 reduces to the autosomal part 

of Eq. S122. From Eqs. S109 and S126, we find that 

𝑁$� =
(÷⋅&j
Ê÷
∗            (S127) 

for any sex-ratio. Given that the effective population sizes are defined by requiring coalescence 

rates of 1/𝑁$ in haploids and  1/(2 ⋅ 𝑁$�) in diploids, Eq. S127 is, in fact, analogous to Eq. S44. 

 

Next, consider an X-linked allele. If the individual carrying the allele, 𝐼$, is male, then only his 

female offspring will inherit the allele, and thus, 𝑋$·|(𝑠f = 𝑀,𝑋f)~𝐵𝑖𝑛(𝑋f, 𝛾ô). Since 

𝐸(𝑋f|𝑠f = 𝑀) = 1/𝛾& (Eq. S107) and 𝑉(𝑋f|𝑠f) = 𝑉�l , the law of total variance implies that 

𝐸(𝑋$· |𝑠f = 𝑀) = 𝛾ô/𝛾&  and 𝑉(𝑋$· |𝑠f = 𝑀) = 𝛾ôs𝑉& + 𝛾ô .    (S128) 

The case in which 𝐼$ is a female is similar to the autosomal case, and thus, 𝑋$· |(𝑠f =

𝐹, 𝑋f)~𝐵𝑖𝑛(𝑋f, 1/2	), 

𝐸(𝑋$· |𝑠f = 𝐹) = ,
sùö

 and 𝑉(𝑋$· |𝑠f = 𝐹) = ,
Þ
𝑉ô +

,
Þùö

.     (S129) 

Given that there are 𝑀&,, X-linked alleles in newborn males and 2𝑀ô,, in newborn females, the 

probability that an X-linked allele in a newborn is in a male is 𝛾&/(1 + 𝛾ô) and the probability it 

is in a female is 2γ5/(1 + γ5). Applying the law of total variance therefore implies that  

𝐸(𝑋$· ) = 1 and 𝑉·∗ = 𝑉𝑎𝑟(𝑋$· ) =
ù´ùö

v

,=ùö
𝑉& +

ùö
s(,=ùö)

𝑉ô +
,=sù´ùö
s(,=ùö)

+ (,Ésùö)v

sù´ùö
.  (S130) 
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When the sex ratio at birth is 1, and thus 𝛾& = 𝛾ô = 1 2⁄ , Eq. S130 reduces to the X related 

expression of Eq. S122. From Eqs. S109 and S130, we find that  

𝑁$· =
(õ⋅&j
Êõ
∗ ,           (S131) 

only holds when 𝛾& = 𝛾ô = 1 2⁄ . Thus, the haploid result (Eqs. 13 and S44) applies to X-linked 

alleles only when the sex ratio at birth equals 1.  

 

To explain why this result fails in the general case, consider the reproductive success of an X-

linked allele in consecutive generations. As we have shown above, an allele’s expected 

reproductive success is 𝛾ô/𝛾& in males and 1/(2𝛾ô) in females (averaged over sexes the 

expectation is 1). Now consider the expected reproductive success in the next generation: if the 

allele was in a male in the previous generation it will necessarily be in a female, and the expected 

reproductive success of the offspring allele would be 1/(2γ5); if the allele was in a female in the 

previous generation, the expected reproductive success is obtained by averaging over the sex of 

the offspring, and is ,
s
+ 𝛾ô . Thus, unless 𝛾& = 𝛾ô = 1 2⁄ , the reproductive success of an X-linked 

allele will be negatively correlated between parents and offspring. This violates the assumption of 

the haploid model that the reproductive success of individuals and their offspring are independent.  
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3. Mutational process 
 
Here we describe the assumptions on the mutational model and derive formulas for the expected 

levels of heterozygosity. To incorporate what has recently been revealed about the dependencies 

of mutation rates on sex and age (e.g., (KONG et al. 2012; SEGUREL et al. 2014; WONG et al. 2016; 

GAO et al. 2019)), we allow for mutation rate in the diploid model to depend on sex and age. 

Namely, we assume that the number of de novo mutations that a parent of sex s and age a bequeaths 

to its newborn is a random variable with expectation 𝜇�," per base pair. Since mutation rates can 

vary with sex and age, the mutation rates per generation in males and females depend on the 

distributions of their breeding ages (i.e. 𝐴& and 𝐴ô, which were defined in Section 2). We denote 

the expected mutation rate per generation in males by 𝜇& = 𝐸�´G𝜇&,"H = ∑ 𝑝&," ⋅ 𝜇&,""  and the 

expected rate in females by 𝜇ô = 𝐸�ö(𝜇ô,"). The average rates on the autosomes and the X are 

given by 𝜇� =
,
s
(𝜇& + 𝜇ô) and 𝜇· =

s
Û
𝜇ô +

,
Û
𝜇& (Table 2). For the haploid model, we assume 

the expected number of mutations 𝜇" to be dependent of age and define the per generation rate as 

𝜇 = 𝐸�(𝜇"). In the special case in which the parameters 𝜇�,"  (or the 𝜇" in the haploid case) depend 

linearly on age, these expectations will depend only on the expected generation times 𝐺& and 𝐺ô, 

i.e., they are insensitive to higher moments of the distributions of breeding ages in males and 

females. As we show below, higher moments of the distributions of mutation rates per generation 

do not affect our results, which is how we avoid any further assumptions about these distributions.  

 

The standard expressions for heterozygosity (e.g., 𝐸(𝜋�) = 4𝑁$�𝜇�) are usually derived assuming 

that the genealogical and mutational processes are independent (HUDSON 1990). This assumption 

is violated in our case, because both the time to the most recent common ancestor and the number 

of accumulated mutations depend on the ages of the individuals along the lineage. To derive the 

expected autosomal heterozygosity 𝐸(𝜋�) under these conditions, we track alleles A and B 

backwards in time. Let 𝑋B denote the number of mutations occurring on the lineage leading from 

allele A in the ith generation and T denote the number of generations until the alleles coalesce. The 

number of mutations on the lineage leading to allele A is then ∑ 𝑋BÄ
Bk, . Although 𝑋B and T are 

dependent variables, Wald’s equation (BLACKWELL 1946) implies that 𝐸(∑ 𝑋B) = 𝐸(𝑇) ⋅ 𝐸(𝑋B)Ä
Bk,  

(to see that Wald’s equation holds, note that the indicator function 𝕀ÄZÚ is independent of 𝑋Ú, since 
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the first depends on the sexes and ages in the first 𝑛 − 1 generations, and the second on the 𝑛th 

generation). We have already shown that 𝐸(𝑇) = 2𝑁$�. Since 𝐸(𝑋B|𝑠B, 𝑎B) = 𝜇�," (where 𝑠B and 𝑎B 

are the sex and age in the ith generation), it follows that 𝐸(𝑋B) = 𝐸G𝜇�,"H = 	𝜇� . We conclude that 

the lineage leading to allele A has on average 𝐸(∑ 𝑋B) = 2𝑁$� ⋅ 𝜇�Ä
Bk,  mutations and therefore 

𝐸(𝜋�) = 4𝑁$�𝜇�. A similar argument shows that for the haploid model 𝐸(𝜋) = 2𝑁$𝜇.  

 

This argument requires modification for the X-chromosome, because the sexes 𝑠B and 𝑠B=, in 

consecutive generations along the lineage are dependent variables, leading to a dependence 

between 𝑋B=, and 𝑠B, in violation of the conditions for Wald’s equation. Instead, we define T as 

the number of females on the lineage until the coalescence occurs, and define 𝑋B as the number of 

mutations between the 𝑖th and 𝑖 + 1 females on the lineage. Under this definition, Wald’s equation 

holds and 𝐸(𝜋·) = 2𝐸(∑ 𝑋BÄ
Bk, ) = 2𝐸(𝑋B)𝐸(𝑇). It is then easy to show that 𝐸(𝑋B) =

Û
s
𝜇·  and 

𝐸(𝑇) = (4 3⁄ )𝑁$·, implying that 𝐸(𝜋·) = 4𝑁$·𝜇·. 
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4. Life history and population size that change over time  
 
Thus far we considered models with constant population size and life history parameters. Here we 

extend our results to models in which population size and life history traits change over time. 

Specifically, we consider models with piecewise-constant age-structures, endogenous 

reproductive variances and population sizes. We rely on our results showing that with constant 

population sizes, the coalescence process with age structure is well approximated by Kingsman’s 

coalescence process with non-overlapping generations, with the appropriate parameters (i.e., 

effective population sizes and time units). This allows us to approximate the coalescence rates per 

year in each time interval with constant parameters. We then derive simple recursions for expected 

heterozygosities on the X and autosomes at any point in time (Section 4.2), rely on these recursions 

to solve the example discussed in the main text (Eq. 24 and Fig 2), and specify how existing 

coalescence simulators can be used in order to account for life history effects (Section 4.3). The 

approximations we detail can be also be applied to models with multiple populations and 

piecewise-constant migration rates.  

 
4.1 Model 

 
We measure time in years, backwards from the present, 𝑡 = 0, and assume we are given n time 

intervals, where the i-th interval is [𝑇BÉ,, 𝑇B), and 0 = 𝑇� < 𝑇, < ⋯ < 𝑇Ú = ∞. The effective 

population sizes, generation times, and mutation rates, for the X and autosomes are defined as 

before, and are assumed to be constant in each time interval, where we denote their values in the 

i-th interval with an addition index i. 

 

It may sometimes be useful to specify the model in terms of different, equivalent sets of 

parameters. For example, in Amster et al. (AMSTER et al. 2019), we rely on estimates of the 

autosomal effective population size, 𝑁$
�,B, for a given set of time intervals, 𝑖 = 1, … , 𝑛, which were 

inferred for human populations, assuming a constant autosomal generation time of  𝐺� = 30 years. 

We then express the effective population sizes and generation times on the X in these intervals in 

terms of the sex ratios of generation times, (𝐺& 𝐺ô⁄ )B, and reproductive variances, 

[(𝛾&𝑉& + 𝛾ô 𝛾&⁄ ) (𝛾ô𝑉ô + 𝛾& 𝛾ô⁄ )⁄ ]B, for 𝑖 = 1, … , 𝑛, as 
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𝑁$
·,B = Û

Þ
⋅ 8(((´ (ö⁄ )È)
8([(ù´Ê´=ùö ù´⁄ ) (ùöÊö=ù´ ùö⁄ )⁄ ]È)

⋅ 𝑁$
�,B,     (S132) 

(relying on Eq. 20) and  

𝐺·B = 𝐺� ⋅ 𝑓((𝐺& 𝐺ô⁄ )B) =
s
Û
𝐺�[1 + 1 (1 + (𝐺& 𝐺ô⁄ )B)⁄ ],    (S133) 

where 𝑓(𝑥) = s�=Þ
Û�=Û

 is the same function used in the main text (Eqs. 20 and 21). We also rely on a 

model that describes human maternal and paternal mutation rates as a function of their respective 

generation times (JÓNSSON et al. 2017), and therefore specify the mutation rates per generation on 

the X and autosomes in time interval i as 

𝜇�B = 𝜇�(𝐺�, (𝐺& 𝐺ô⁄ )B) and 𝜇·B = 𝜇·(𝐺�, (𝐺& 𝐺ô⁄ )B).    (S134) 

 
4.2 A recursion for heterozygosity on X and autosomes 
 
Provided the effective population size, generation times, and mutation rates in each time interval 

for the X and autosomes, we can write down a simple recursion for the expected heterozygosities 

at present, 𝜋· and 𝜋�. We first consider the autosomal case, and denote the expected 

heterozygosity at time 𝑡 by 𝜋�(𝑡). The n-th time interval, [𝑇ÚÉ,,∞), is infinitely long with constant 

effective population size and mutation rate, and therefore 

	𝜋�(𝑇ÚÉ,) = 4𝑁$
�,Ú𝜇�Ú.        (S135) 

 

Next, we assume that we know that we know	𝜋�(𝑇B) and solve for 	𝜋�(𝑇BÉB). To this end, we denote 

the event of two alleles sampled at time 𝑇BÉB coalescing in the i-th time interval (i.e., until time 𝑇B) 

by 𝐸, and its complement, i.e., that they do not coalesce, by 𝐸© . Under the infinite sites assumption, 

the heterozygosity at time 𝑇BÉB is then 

 	𝜋�(𝑇BÉB) = P(𝐸) ∙ 	𝜋�(𝑇BÉB|𝐸) + P(𝐸©) ∙ 	𝜋�(𝑇BÉB|𝐸©) 

= P(𝐸) ∙ G2 ∙ E(𝑡&Å©�|𝐸) ∙ 𝜇�B 𝐺�B⁄ H + G1 − P(𝐸©)HG	𝜋�(𝑇B) + 2(𝑇B − 𝑇BÉB) ∙ 𝜇�B 𝐺�B⁄ H, (S136) 

where P denotes probability, and 𝑡&Å©�  denotes the time to the most recent common ancestor of 

the aforementioned sample. Approximating the time to coalescence in the i-th interval with an 

exponential distribution with rate 1 2𝐺�B𝑁$
�,B⁄  (where 𝐺�B  is included for the process to be describe 

in years rather than generations), we find that  

P(𝐸) = 1 − exp ±− ÄÈÉÄÈ;j
s(÷

È z{
÷,È¶,         (S137) 
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and 

𝐸(𝑡&Å©�|𝐸) = 2𝐺�B𝑁$
�,B − (𝑇B − 𝑇BÉ,)

,É<(Ã)
<(Ã)

.      (S138) 

Substituting these expressions into Eq. S136, we find that  

𝜋�(𝑇BÉ,) = -1 − exp ±− ÄÈÉÄÈ;È
s(÷

È z{
÷,È¶. ⋅ 4𝑁$

�,B𝜇�B + exp ±−
ÄÈÉÄÈ;È
s(÷

È z{
÷,È¶ ⋅ 𝜋�(𝑇B=,).  (S139) 

 

By the same token, we find that for the X: 

𝜋·(𝑇ÚÉ,) = 4𝑁$
·,Ú𝜇·Ú,         (S140) 

and  

𝜋·(𝑇BÉ,) = -1 − exp ±− ÄÈÉÄÈ;È
s(õ

È z{
õ,È¶. ⋅ 4𝑁$

·,B𝜇·B + exp ±−
ÄÈÉÄÈ;È
s(õ

È z{
õ,È¶ ⋅ 𝜋·(𝑇B=,). (S141) 

Eqs. S135 and S139-S141 can be solved recursively for 𝜋� and 𝜋· (i.e., for 𝜋�(𝑇�) and 𝜋·(𝑇�)), 

respectively. The same recursions can be used to solve for 𝜋�(𝑡) and 𝜋·(𝑡) at any time 𝑡, where 

for 𝑡 in the i-th interval, we solve the same recursion until time 𝑇B, and for the last step, we replace 

𝑇BÉ, by 𝑡 in Eqs. S139 and S141.  

 
4.3 Simulations 
 
The coalescence process on the X and autosomes accounting for life history effects can be 

simulated using standard tools. For example, to use ms (HUDSON 2002), one can use per-generation 

coalescence rates (e.g.,  1 2𝑁$
�,B⁄  and 1/2𝑁$

·,B for intervals 𝑖 = 1, … , 𝑛, in the aforementioned 

model), and convert the duration of time intervals into units of generations, with the appropriate 

generation time (e.g., (𝑇B − 𝑇BÉB) 𝐺�B⁄  and (𝑇B − 𝑇BÉB) 𝐺·B⁄  for intervals 𝑖 = 1,… , 𝑛, in the 

aforementioned model). 

 

Simulating the mutational process requires a custom tool, as the standard ones assume fixed 

mutation rates, whereas we assume rates can change. It is, however, straightforward to implement 

such a tool, e.g., taking trees generated by ms (i.e., with the -T flag) as input, and incorporating 

piecewise constant mutation rates. We provide such a tool in https://github.com/sellalab/XA_poly. 
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