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1 The role of parameters γ and α on the esti-6

mated non-linear neighborhood structures7

Let us evaluate the robustness of the SNS procedure with respect to the values
of the elastic net estimator parameter α (Zou and Hastie 2005) and the kernel
parameter γ in the PH-E model (see the model (14) in the article). We go
through all possible (γ, α) combinations using the following sparse grids:

α ∈ {1/3, 2/3, 1} and γ ∈ {1/5, 1, 2}.

The same simulated datasets and replicates are used as in the second exam-
ple analysis in the article (replicates are available in the supplementary materials
B). The simulation was proceeded such that a real protein expression dataset
provided by DREAM9 challenge (Noren et al. 2016) was used as a basis dataset.
This dataset consists of measurements of 231 proteins (X1, X2, . . . , X231) over
191 individuals diagnosed with acute myeloid leukemia. Subsequently, ten repli-
cates of six new proteins (Z1, Z2, Z3, Z4, Z5) were simulated on top of these 231
proteins such that

Z1 = X5 + cos(X100) +N (0, 0.62), Z2 = X15 +X2
47 +N (0, 12),

Z3 = X25 +X80X110 +N (0, 1.52), Z4 = X30 +X3
200 +N (0, 32),

Z5 = X35 +X40 +X50 +X8X150X220 +N (0, 0.62).

As reported in the article, the average proportions of signal variations on the8

overall variations were 0.73, 0.62, 0.41, 0.36 and 0.90 for the new simulated9

proteins Z1, Z2, Z3, Z4 and Z5 over the replicates (calculated as (var(Zk) −10

ε2k)/var(Zk) separately for each k = 1, . . . , 5).11

In the forthcoming examples, we only consider and estimate the neighbor-12

hoods of simulated proteins (Z1, Z2, Z3, Z4, Z5) for which the true underlying13

structures are fully known. The results of the analyses are averaged over the14

replicates. Moreover, despite some linear regulatory effects were simulated we15
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are considering only the non-linear relationships since identifying the linear16

neighborhoods in these examples would be a relatively simple task. The lin-17

ear relationships are only included to show how different outcomes in the linear18

step (e.g. resulted by different (γ, α) pairs) affect to the results of the non-linear19

neighborhood selection. Thus, we compute the receiver operating character-20

istics (ROC) curves with respect to the neighborhoods of simulated proteins21

(Z1, Z2, Z3, Z4, Z5) and compare the areas under the ROC curves (AUCs) re-22

sulted by different parameter pairs (γ, α).23

The estimation of linear and non-linear neighborhoods is done with the glm-24

net R-package (Friedman et al. 2010) in accordance to the article. For each25

pair (γ, α), the penalty parameter λ1,k and λ2,k values are chosen for the linear26

(λ1,k) and non-linear (λ2,k) neighborhood selection steps by the cross-validation27

(CV) criterion in each replicate.28

A hard-thresholding procedure is applied to calculate truncated and non-29

truncated areas AUCs from the estimated non-linear neighborhoods (given by30

CV based values λ1,k and λ2,k). Table S1 displays the non-truncated and trun-31

cated (at 0.10 and 0.40 false-positive rates) AUCs averaged over the replications32

for each parameter pair (γ, α). Note that the α parameter can be different for33

linear and non-linear neighborhood selection steps that are later separated with34

symbols α1 (linear) and α2 (non-linear). However, the results presented in Table35

S1 are produced using the same values for α1 and α2 that are simultaneously36

denoted by α.37

Table S1: Averaged areas under the truncated and non-truncated ROC curves
(AUCs) for the SNS procedure with different parameter pairs (γ, α) over ten
replicates in the simulated scenarios. Truncation points are set to 0.10 and 0.40
false-positive rates and shown in brackets above each corresponding column.
The same α parameter value is used for linear and non-linear neighborhood
selection steps. The CV based penalty parameters λ1,k in linear neighborhood
selection and λ2,k in non-linear neighborhood selection were used for each repli-
cate.

(γ, α) Truncated AUC (0.10) Truncated AUC (0.40) Non-truncated AUC
(0.20, 0.33) 0.832 0.908 0.928
(0.20, 0.66) 0.850 0.911 0.929
(0.20, 1.00) 0.847 0.916 0.934
(1.00, 0.33) 0.802 0.881 0.910
(1.00, 0.66) 0.811 0.876 0.900
(1.00, 1.00) 0.810 0.880 0.901
(2.00, 0.33) 0.747 0.848 0.873
(2.00, 0.66) 0.748 0.837 0.864
(2.00, 1.00) 0.762 0.840 0.869

It appears, that all parameter pairs (γ, α) are capable of identifying correct38

non-linear relationships efficiently – non-truncated AUCs are ranging between39

0.864 and 0.928 (see the right column in Table S1). In particular, these results40

suggest that the performance of the SNS procedure becomes slightly better with41
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smaller parameter γ values. We therefore recommend to use the value 0.20 for42

γ which is the smallest possible value that can be used in the exponential kernel43

function (see e.g. Shi and Choi, 2011). The same conclusion has been also44

made in Kontio and Sillanpää (2019) that focused on finding higher-order gene-45

by-gene interaction terms using the exponential kernel function. However, for46

each fixed value of γ ∈ {1/5, 1, 2} the SNS procedure shows extremely robust47

performance with respect to the changes in α parameter values. In fact, the48

truncated and non-truncated AUCs produced by different α values with fixed γ49

values are practically identical.50

We have also found that for a fixed value of γ ∈ {1/5, 1, 2} the SNS procedure51

is not sensitive to the choices of α1 and α2 even if they are different. For instance,52

few examples are given in Table S2 with the γ parameter fixed to 0.20.53

Table S2: Averaged areas under the truncated and non-truncated ROC curves
(AUCs) for the SNS procedure with fixed γ value 0.20 and different parameter α1

and α2 values over ten replicates in the simulated scenarios. Here α parameters
used for linear and non-linear neighborhood selection steps are separated with
symbols α1 (linear) and α2 (non-linear). Truncation points are set to 0.10 and
0.40 false-positive rates and shown in brackets above each corresponding column.
The CV-based parameter λ1,k and λ2,k values were used for each replicate in
both linear and non-linear estimation steps.

(γ, α1, α2) Truncated AUC (0.10) Truncated AUC (0.40) Non-truncated AUC
(0.20, 0.33, 1.00) 0.835 0.908 0.931
(0.20, 0.33, 0.66) 0.840 0.905 0.927
(0.20, 0.66, 1.00) 0.837 0.905 0.926

Note that the selection of optimal tuning parameters is extremely challenging54

task in general and is highly depending on the context. Especially, to same55

extent that the optimal choice of (γ, α) in some case is not necessarily the56

optimal one in another case, neither might be the criteria by which they are57

chosen. Considering this issue would be beyond the scope of this paper. In58

particular, the above examples only illustrate that we would get decent results59

even if the most optimal pair of (γ, α) is not used.60

2 Robustness with respect to the subsamples61

Let us now evaluate the robustness of the SNS method under a series of different62

subsamples to test if the results are sensitive to the small changes in data.63

We select ten different subsamples among the original 191 individuals each of64

which consisting of m randomly chosen individuals. Then we analyze the same65

simulated dataset separately over each subsample to see how much the results66

are differing from each other. The test dataset is chosen to be the first replicate67

among the simulated datasets described in the previous example (this specific68

dataset can be found in the supplementary materials B).69
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Figure S1: Non-truncated areas under the ROC curves (AUCs) over ten different
randomly chosen subsamples for each subsample size 121, 131, 141, 151, 161 and
171. The non-linear neighborhoods were estimated with the SNS method using
the parameter values γ = 0.20, α1 = 1/3 and α2 = 1. Here α parameters
used for linear and non-linear neighborhood selection steps are separated with
symbols α1 (linear) and α2 (non-linear). The CV based penalty parameters λ1,k
in linear neighborhood selection and λ2,k in non-linear neighborhood selection
were used in each case.

This subsampling analysis is repeated for different subsample sizes m ∈70

{121, 131, 141, 151, 161, 171}. In each case, the non-linear neighborhoods are es-71

timated with the SNS method using the parameters γ = 0.20, α1 = 1/3 and72

α2 = 1 as in the article. Similarly to the previous example, we only consider73

and estimate the neighborhoods around simulated proteins (Z1, Z2, Z3, Z4, Z5)74

as the corresponding true neighborhoods are known.75

The non-truncated AUCs over ten randomly chosen subsamples are dis-76

played in the Figure S1. Each plot corresponds to a different subsample size77

m ∈ {121, 131, 141, 151, 161, 171}. As we can see, the non-truncated AUCs are78

scattered around 0.90 with small variances in the majority of cases. Averaged79

AUCs over different subsamples are 0.891, 0.892, 0.912, 0.938, 0.915 and 0.93480

for sample sizes 121, 131, 141, 151, 161 and 171, respectively. It is evident that81

the SNS procedure captures the underlying signals concordantly even though82

randomness in data changes extensively. Only with the subsample size of 121,83

AUCs begin to be slightly more dispersed over subsamples. However, while84

the sample size of 121 is extremely low to capture non-linear relationships the85

performance of the SNS method is surprisingly robust over the subsamples.86
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3 Additional figures87

Here we provide additional information regarding the results shown in Table88

2 in the article. In Figure S2, we have plotted sensitivies against specificities89

separately in each replicate (ten replicates) for the SNS method and the best90

performing versions of both DC and MI based methods (DC-REL and MI-REL).91
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Figure S2: The receiver operator characteristic curves plotted for the SNS (black
solid lines), DC-REL (blue dashed lines) and MI-REL (red dotted lines) methods
in each ten replicate. In the SNS method, the CV-based parameter λ1,k and
λ2,k values were used for each replicate in both linear (with α1 = 1/3) and
non-linear (with α2 = 1) estimation steps.

It is evident that in each replicate the proposed SNS method consistently92

implies better accuracy than the best versions of the MI and DC based methods.93
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3.1 Yeast knock-out gene expression data94

Figure S3 shows the GRNs estimated using the REL-MI and REL-DC methods95

on the DREAM3 yeast knock-out data we are referring in the article. These96

results are also presented in the paper of Guo et al. (2014).
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Figure S3: The true network and the network structures estimated with the
REL-MI and REL-DC methods.
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