
Supplementary text

Simulated lifecycle
Here we describe the simulated lifecycle, which mimics that
used in previous models of evolutionary rescue in gradually
changing environments (Bürger and Lynch 1995). Let ni(t) be
the number of individuals with genotype i ∈ {aa, Aa, AA} at
the beginning of generation t, with N(t) = ∑i ni(t) the total
population size. Viability selection, where genotype i survives
with probability Vi ∈ [0, 1], is assumed to occur before repro-
duction. Each surviving individual then “mothers" B offspring,
each with a randomly chosen mate (possibly oneself), and each
mating produces a single offspring. If there are more than N(0)
offspring (we assume the population starts at carrying capacity)
we randomly choose N(0) to begin the next generation.

We next describe the deterministic allele frequency dynamics.
Let pj,k(i) be the probability a mating between genotypes j and
k produces an offspring with genotype i. The expected number
of individuals of genotype i after reproduction is then

n∗i (t) = ∑
j,k

ñj(t)B
ñk(t)
Ñ(t)

pj,k(i), (A1)

where ñi(t) = ni(t)Vi is the expected number of individuals
with genotype i and Ñ(t) = ∑i ñi(t) is the expected popula-
tion size after viability selection. Assuming fair Mendelian
transmission, the expected number of A alleles after reproduc-
tion is n∗Aa(t) + 2n∗AA(t) = WAanAa(t) + 2WAAnAA(t), where
Wi = ViB is referred to as the fitness of genotype i. Given that
the total number of alleles after reproduction is expected to be
2N∗(t) = 2 ∑i ni(t)Wi = 2N(t)W(t), where W(t) is the mean
population fitness at the beginning of generation t, the expected
frequency of allele A after reproduction is

p∗(t) =
1
2 WAa pAa(t) + WAA pAA(t)

W(t)
, (A2)

where pi(t) = ni(t)/N(t) is the frequency of genotype i in gener-
ation t. Since density-dependence is random it does not change
this expectation, so that the allele frequency in next generation
is p(t + 1) = p∗(t). Thus the allele frequency dynamics are
the same as those in a population of constant size with relative
fitnesses Wi (equation 5.2.3 in Crow and Kimura 1970). Further,
one can use Equation A2 to show that the genotype frequencies
are expected to remain in Hardy-Weinberg proportions, allow-
ing us to capture the dynamics of the whole system by tracking
only the expected changes in the frequency of allele A and total
population size (Equation 1).

Genetic drift in the simulated lifecycle
Probability of establishment In our simulated lifecycle, in gener-
ation t a rare allele with a viability of Vi survives to reproduction
with probability Vi, and given so, is present in Y + Z offspring,
where Y is binomial with B trials and probability of success
1/2 (number of offspring mothered and Mendelian segregation),
and Z is binomial with parameters BN(t) and (1/N(t))/2 (ran-
domly chosen as a father and Mendelian segregation). With V
the population mean viability, the expected number of offspring
produced is N(t)BV = N(t)W. When this is less than N(0)
there is no density dependence, so that all offspring survive
to the next generation, while if N(t)W > N(0) we randomly
choose N(0) offspring to begin the next generation, implying
each survives with probability N(0)/(N(t)W).

From this we can calculate the mean and variance in the
number of mutant alleles contributed to the next generation by
a rare mutant allele in an individual with viability Vi. In the
absence of density dependence (e.g., in a declining population,
where W < 1) the expected number of copies of the allele con-
tributed to the next generation is Wi = BVi and the variance is
Wi(3 + 4(B −Wi))/4 + O(1/N(t)). In a large population the
heterozygote therefore has growth rate ε = WAa − 1 and vari-
ance v = WAa(3 + 4(B−WAa))/4, which we use in calculating
its probability of establishment (Equation 2) for the forward-time
predictions.

With density dependence (i.e., when N(t)W > N(0)) the
expected number of copies contributed to the next genera-
tion is (Wi/W)(N(t)/N(0)) and the variance is (Wi(3 + 4(B−
Wi))/4)(N(t)/(N(0)W))2 +O(1/N(t)). When the current pop-
ulation size is N(0) these reduce to Wi/W and Wi(3 + 4(B −
Wi))/(4W2

) +O(1/N(t)). Thus the backward-time growth rate
of the heterozygote in a large population of mutant homozy-
gotes at carrying capacity is ε = 1−WAa/WAA and its variance
is WAa(3 + 4(B−WAa))/(4W2

AA), which we use in calculating
the probability of establishment (Equation 2) for the effective
final allele frequency (Equation 3).

Effective population size With slow changes in population size,
N(t− 1) ≈ N(t) and the mean number of gametes contributed
to the next generation by each diploid individual in the cur-
rent generation is 2. The inbreeding and variance effective
population size, Ne(t), is then roughly (4N(t) − 2)/(σ2 + 2)
(equation 7.6.4.3 in Crow and Kimura 1970), where σ2 is the
variance in the number of gametes contributed to the next gen-
eration by a parent. Therefore, in a large population, N(t)� 1,
the ratio of the effective size to the census size is roughly
Ne(t)/N(t) ≈ 4/(2 + σ2), where σ2 depends on the particu-
lar lifecycle.

In our lifecycle, in a large population with weak selection
(Wi ≈W ≈ 1) the variance is σ2 ≈ 4B− 3 regardless of whether
or not the population is at carrying capacity (File S1). We there-
fore use σ2 = 4B− 3 to calculate the effective population size,
Ne(t)/N(t) ≈ 4/(2 + σ2) (see Event rates). Throughout we
use B = 2, meaning that σ2 ≈ 5 and Ne(t)/N(t) ≈ 7/4, and
thus our model imparts nearly twice as much drift as a large
Wright-Fisher population (where σ2 ≈ 2).

Note that drift increases with B because larger B imply that
fewer individuals survive viability selection (V = W/B) but
those that do have more offspring. To keep our model close
to a Wright-Fisher population we use the smallest value of B
consistent with long-term population persistence, B > 1. An
alternative model where the expected number of offspring upon
reproduction is any positive real number, say Poisson with mean
B, would allow rates of drift closer to that of a Wright-Fisher
population (by setting B closer to 1).

Simulation details

Forward-time simulations of the life-cycle described in Simu-
lated lifecycle were performed in SLiM (version 3.3; Haller and
Messer 2019) with tree-sequence recording (Haller et al. 2019).

We simulated 20 Mb chromosomes with the selected locus
one of the centre bases, all other sites were neutral. We assumed
a per base pair recombination rate of rbp = 2 × 10−8 (i.e., 2
cM/Mb; e.g., Mackay et al. 2012) and per base mutation rate at
neutral loci of U = 6× 10−9 (e.g., Haag-Liautard et al. 2007).
The recombination rate between two loci n bases apart was
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calculated as the probability of an odd number of crossover
events assuming n independent Bernoulli trials, r = (1− (1−
2rbp)

n)/2 ≈ (1− e2rbpn)/2 (equation 3 in Haldane 1919), i.e., no
crossover interference.

A population was considered rescued (or a sweep complete)
when the beneficial mutation was fixed and the population size
had recovered to N(0). Once a population was rescued we
used msprime (Kelleher et al. 2016) to recapitate the population
(simulate the neutral coalescent back in time from the start of
the forward-time simulation, using Hudson’s algorithm, until
all sites had fully coalesced) using an effective population size
of Ne(0) = 4N(0)/7.

From a random sample of chromosomes in the population at
the time it was considered rescued, average pairwise diversity
(Tajima’s π), Tajima’s D, and site-frequency spectra were calcu-
lated across 100 adjacent non-overlapping windows (i.e., each of
length 200 Kb ≈ 0.4 cM) using the diversity(), Tajimas_D(),
and allele_frequency_spectrum() functions in tskit (Kelle-
her et al. 2018). We use a sample size of 100 chromosomes
throughout. Linkage disequilibrium was calculated by first
identifying the segregating mutation closest to each window’s
midpoint and then using tskit.LdCalculator().r2() to cal-
culate disequilibrium between it and the segregating mutation
closest to a recombination distance of r = 0.001 away.

For comparison we also run simulations with a constant ex-
pected population size by setting d = 0. In this case the ancestral
genotype aa has an absolute fitness of 1, meaning that any re-
alized population size trajectory will be a random walk with
an upper boundary at N(0) so that extinction is assured in the
long-term. However, with the parameter values used here (rela-
tively large initial population size and fast onset of the selective
sweeps), populations decline only slightly before remaining
constant at the carrying capacity once the sweep has started in
earnest (since the mutants have fitnesses ≥ 1). We chose to use
this setup as the constant population size comparison (rather
than, say, a Wright-Fisher population) because it allows us to
keep the same variance in gamete numbers (affecting the proba-
bility of establishment and the rate of coalescence; see Genetic
drift in the simulated lifecycle) as well as the same census popu-
lation size (affecting the initial and effective allele frequencies)
as in the case of rescue.

Deriving the structured coalescent
Let the allele frequency and population size τ generations be-
fore the present be p′(τ) and N′(τ). Following Pennings and
Hermisson (2006a), we artificially subdivide the time within a
generation to be able to identify any period between two suc-
cessive events in our lifecycle (Figure A1). We now go about
deriving the probabilities in the structured coalescent (Equation
6).

Migration The number of migrant alleles that arrive each gen-
eration is Poisson with mean m. Given that there are 2N′(τ −
1)p′(τ− 1) beneficial alleles in the next generation, the probabil-
ity that any one is a new migrant is therefore P = m/[2N′(τ −
1)p′(τ − 1)] ≈ m/[2N′(τ)p′(τ)], where the approximation as-
sumes the number of beneficial alleles changes little from one
generation to the next. The probability that at least one of k
beneficial alleles is a migrant is 1− (1− P)k, which, with rare
migration, is approximately

pmig(k, τ) = k
m

2N′(τ)p′(τ)
. (A3)

selection

τ ,τ − 1

recombination

τ−1/5

syngamy

τ−2/5

mutation

τ−3/5

migration

τ−4/5

census

Figure A1 Life-cycle and time notation. The arrows indicate
the forward-time direction and the numbers indicate the time
before fixation (i.e., starting in generation τ and moving for-
ward in time through τ − 1/5, τ − 2/5, ... we arrive at genera-
tion τ − 1, one generation closer to fixation).

For a given probability of being replaced by a migrant allele, the
rate of migration in a diploid model is half that of the haploid
model (equation 15 in Pennings and Hermisson 2006a, replacing
M with m) as there are twice as many resident alleles.

Mutation The number of beneficial alleles after mutation,
2N′(τ − 4/5)p′(τ − 4/5), is the number before mutation plus
the number of new mutants

2N′(τ − 4/5)p′(τ − 4/5) = 2N′(τ − 3/5)p′(τ − 3/5)

+u2N′(τ − 3/5)[1− p′(τ − 3/5)].
(A4)

Because the population size does not change during mutation,
N′(τ − 4/5) = N′(τ − 3/5), the frequency of beneficial alleles
after mutation is simply

p′(τ − 4/5) = p′(τ − 3/5) + u[1− p′(τ − 3/5)]. (A5)

The probability a beneficial allele is a new mutant is therefore
u[1− p′(τ − 3/5)]/p′(τ − 4/5), which, using Equation A5, is
equivalent to

P =
u[1− p′(τ − 4/5)]
(1− u)p′(τ − 4/5)

. (A6)

The probability that at least one of k beneficial alleles is a new
mutant is 1− (1− P)k, which, when mutation is rare, is approx-
imately ku[1− p′(τ − 4/5)]/p′(τ − 4/5). With little change in
allele frequency from one generation to the next this is approxi-
mately

pmut(k, τ) = ku
1− p′(τ)

p′(τ)
. (A7)

This is equivalent to the haploid result (e.g., equation 5 in Pen-
nings and Hermisson 2006a) as both the mutation rate and num-
ber of alleles are multiplied by the ploidy level, which cancels.
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Coalescence Considering k beneficial alleles at the time of cen-
sus, and ignoring any migration or mutation, the probability of
at least one coalescence event is then(

k
2

)
1

2N′e(τ − 2/5)p′(τ − 2/5)
, (A8)

where N′e(τ − 2/5) is the effective population size at the time of
syngamy. When allele frequency and effective population size
changes little from one generation to the next this is roughly

pcoal(k, τ) =

(
k
2

)
1

2N′e(τ)p′(τ)
. (A9)

This is half the rate observed in a haploid model with the same
population size (equation 5 in Pennings and Hermisson 2006a)
as there are twice as many alleles in a diploid population.

Recombination Consider a neutral locus at recombination dis-
tance r from the selected site. Assuming weak selection such that
the survivors of viability selection remain in Hardy-Weinberg
proportions, the number of alleles linked to the beneficial allele
after recombination is

2N′(τ − 2/5)p′(τ − 2/5)

= 2N′(τ − 1/5)p′(τ − 1/5)[
p′(τ − 1/5) +

[
1− p′(τ − 1/5)

]
(1− r)

]
+ N′(τ − 1/5)[1− p′(τ − 1/5)]p′(τ − 1/5)r.

(A10)

The first term on the right hand side is the number of alleles
linked to the beneficial allele before recombination multiplied
by the probability of being in a beneficial homozygote plus the
probability of being in a heterozygote but not recombining. The
second term on the right hand side is the number of alleles not
linked to the beneficial allele before recombination times the
probability of being in a heterozygote and recombining onto the
beneficial background. The probability an allele on the beneficial
background after recombination was not there before is then

P =
2N′(τ − 1/5)[1− p′(τ − 1/5)]p′(τ − 1/5)r

2N′(τ − 2/5)p′(τ − 2/5)
, (A11)

which, because recombination does not change allele frequency
or population size, is

P =
2N′(τ − 1/5)[1− p′(τ − 1/5)]p′(τ − 1/5)r

2N′(τ − 1/5)p′(τ − 1/5)

= [1− p′(τ − 1/5)]r.
(A12)

The probability at least one of k alleles on the beneficial back-
ground recombines off is 1− (1− P)k, which, when recombi-
nation is rare, is approximately kr[1− p′(τ − 1/5)]. Assuming
allele frequency changes little through one bout of selection this
is kr[1− p′(τ)]. Finally, assuming migration, mutation, and coa-
lescence are rare, the probability that none of k beneficial alleles
migrate or mutate times the probability none coalesce times the
probability at least one of the k linked alleles recombines off is
roughly (table 1 in Hudson and Kaplan 1988)

prec(k, τ) = kr[1− p′(τ)]. (A13)

A simultaneous, but independent, bottleneck and sweep
from SGV

In Rescue from standing genetic variation (SGV) we have com-
pared the genetic signatures of rescue to those from sweeps in
populations of constant size. Two of key differences we have
identified, lower absolute diversity and positive Tajima’s D at
unlinked sites under rescue, arise simply because of the pop-
ulation bottleneck. This suggests that it will be yet harder to
distinguish rescue from a sweep that occurs during a bottleneck,
where the sweep and bottleneck are coincident but independent.
Taking this argument to its logical limit, if the population size
dynamics during an externally forced bottleneck are exactly like
those expected under rescue, then the expected genetic signa-
tures will be identical. As a middle-ground, we can compare an
instance of rescue that has an expected effective population size
of Ne during its sweep to a population that is bottlenecked to
a constant effective population size Ne during its sweep (let’s
call the latter the ‘coincident’ scenario). Then, under the same
allele frequency dynamics (which will not be exactly true as
population size and decline rate affect the effective initial and
final allele frequencies), both populations would have similar
genome-wide diversity and Tajima’s D values.

In File S1 we show that coincident scenario produces patterns
of relative diversity at the selected site like sweeps in popula-
tions of constant size (i.e., like the red curve at 0cM in Figure
??), meaning that rescue causes deeper dips in diversity than a
coincident sweep and bottleneck. This is because the coincident
scenario assumes smaller population sizes at the beginning and
end of the sweep, causing higher effective initial frequencies and
lower effective final frequencies, which shortens the length of
the sweep and thus increases the probability that no events occur
in the history of the sample during the sweep, P∅(k, t f ). These
shorter sweeps also mean that the coincident scenario leaves less
time for coalescence on the ancestral background and thus pro-
duces higher genome-wide absolute diversity than populations
that have been rescued. In contrast, rescue and the coincident
scenario similarly slow the recovery of relative diversity as we
move away from the selected site, causing their dips in diver-
sity to have similar width (i.e, like the blue curve in Figure ??).
This is because both scenarios increase rates of coalescence early
in the sweep, preventing recombination off and thus lowering
Poff(k, t f ). The shape of Tajima’s D values across the genome
are much the same in the coincident scenario as they are after a
sweep in a population of constant size (i.e., like the red curves in
Figure ??), just shifted up so that the background levels closely
match those under rescue (i.e., they have intercepts like the blue
curves in Figure ??). In summary: for a given strength of selec-
tion and effective population size during a sweep, the dynamics
of rescue produce 1) deeper dips in diversity, 2) lower absolute
diversity genome-wide, and 3) a greater range of Tajima’s D
values. These differences arise because the lower population
sizes at the beginning and end of the coincident scenario cause
faster establishment and fixation, leading to shorter sweeps.

To explore whether there is additional signal to be gained
from the different timings of coalescence and recombination in
the coincident and rescue scenarios we have also looked at the
full site frequency spectra arising from simulations (of which
pairwise diversity and Tajima’s D are summaries; Wakeley 2009,
p. 116). Figure A2 shows the site frequency spectra at three re-
combination distances for a case where relative diversity and
Tajima’s D values are very similar in the two scenarios (s = 0.2,
κ = 10; see File S1). Far from the selected site the entire spectra
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are very similar in the two scenarios, both documenting a recent
short drop in population size (a deficiency of rare alleles, as
indicated by positive genome-wide Tajima’s D). As we move
towards the selected site the patterns diverge slightly, the harder
sweep during rescue now causing a larger deficit of interme-
diate frequency alleles and a larger excess of high frequency
alleles (as indicated by a slightly more negative Tajima’s D at
the shoulders of the selected site). At selected site the spectra
are again very similar, although with more noise as there are
less polymorphic sites. Thus the strongest signal of rescue vs. a
bottlenecked sweep seems to be provided at moderately linked
sites, where the relative timings and strengths of coalescence
and recombination have the most impact. For instance, the tim-
ing and probability of coalescence at 1cM is nearly identical in
rescue vs. the coincident scenario here, but the probability of
recombination is slightly reduced and tends to occur slightly
later under rescue. This reduction in recombination is predicted
to create phylogenies that are more star-like, which may explain
much of the greater deficit of intermediate frequency mutations.
The fact that recombination is also delayed and thus overlaps
more with coalescence, in rescue relative to the coincident sce-
nario, may help explain the perhaps flatter spectrum across low
to high frequency mutations near the selected site, as the overlap
creates more variance in the number of coalescence events that
occur prior to the lineage recombining off the sweep (similar
to the effect of recurrent mutation; Pennings and Hermisson
2006b). Note that if we instead compared site frequency spectra
in windows with similar absolute genetic diversity (as in figure
6 of Kim and Gulisija 2010), differences between the three scenar-
ios would be more apparent. Thus a combination of summary
statistics may help differentiate rescue from a simultaneous, but
independent, bottleneck and sweep.

Site frequency spectra (and summaries of them) are character-
istics of individual loci. As a final potential signature of rescue
vs. the coincident scenario we look at linkage disequilibrium,
which captures correlations in the pairwise coalescence times be-
tween two loci (Wakeley 2009, p. 236). Figure A3 shows linkage
disequilibrium between neutral loci that are a recombination
distance of r = 0.001 apart, as a function of their distance from
the selected site. As we can see, the sweep causes elevated link-
age disequilibrium near the selected site, as expected for sites
that were segregating before the sweep (Kim and Nielsen 2004;
McVean 2007). Meanwhile population bottlenecks tend to in-
crease linkage disequilibrium genome wide, as expected given
that bottlenecks decrease mean coalescence times more than
they decrease the variance (McVean 2002). The differences in
linkage disequilibrium patterns between the rescue and coinci-
dent scenario are much greater than the differences observed in
relative diversity, Tajima’s D, or the full site frequency spectrum.
The differences in linkage disequilibrium do, however, largely
mirror those observed in absolute diversity (see File S1), which
can largely be explained by the shorter sweeps, and thus less
coalescence, in the coincident scenario.

Population dynamics and the coalescent under rescue by mi-
gration

Effective initial allele frequency and the backward-time dynam-
ics Dividing the (truncated) exponential waiting time distribu-
tion for the first successful migrant allele by the probability of
rescue gives the waiting time distribution conditioned on rescue.
Following the same approach as above (see ??), the effective

initial frequency of the beneficial allele given rescue is then

pMIG
0|rescue =

1
2N(0)

1
Pest

2m
(

1− (1− PMIG
rescue)N(0)−Pest/(2d)

)
(1 + 2m)PMIG

rescue
.

(A14)
When the migration rate is small this last factor is nearly inde-
pendent of m (analogous to the mutation case). As in the case of
de novo mutation, to characterize the backward-time dynamics
in a population of constant size we do not need to know when
the sweep begins, just the effective initial frequency at this time,
1/(2N(0)Pest).

Figure A4 compares our analytical approximations (Equa-
tions 5 and A14) against individual-based simulations. We see
the predictions do fairly well for larger values of m, but can fair
quite poorly with small m. In the latter case the first successful
migrant allele sometimes arrives when the population is so small
that the beneficial allele increases in frequency much faster than
the deterministic expectation. Here we enter a different regime,
which we do not attempt to approximate.

The structured coalescent Figure A5 shows the timing of migra-
tion relative to recombination and coalescence (Equation 7). As
with rescue from standing genetic variance or mutation (Figures
?? and ??), the bottleneck increases the overall coalescence rate
and shifts its timing closer to fixation, overlapping more with re-
combination. Migration scales with coalescence (Equation 6) and
is thus similarly increased and shifted. When migration rates
are small enough that the migrant allele tends to fix when the
population is very small the simulations show an initial spike
in expected coalescence, which is expected to greatly reduce
diversity.

Genetic signatures at linked neutral loci The genetic signatures
at linked neutral loci produced by a sweep that arises from mi-
gration depends on the history of the metapopulation, e.g., how
and when the sweeps occurred in each patch and the historical
migration rates between them. We therefore omit an exploration
of the signatures produced in this scenario, which deserves a full
and careful treatment on its own. Previous work has explored
some potential signatures of migrant sweeps in populations of
constant size. For example, if the historic migration rate between
the migrant and focal population is low then we should expect
few migrant alleles away from the selected site. Then, under low
contemporary migration rates we expect a relatively hard sweep
and the so-called “volcano" pattern of genetic diversity (Setter
et al. 2019), where diversity is maximized at an intermediate
distance from the selected site due to a more balanced presence
of both migrant and non-migrant alleles.
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Figure A4 Allele frequency and population size during a selective sweep from migration in evolutionary rescue (blue; d = 0.05) or
in a population of roughly constant size (red; d = 0). The thick solid curves are analytic approximations (Equation 5), using p0 =
pMIG

0|rescue (Equation A14) as the initial frequency and p f (Equation 3) as the final allele frequency. The thin curves are 100 replicate
simulations where a sweep (and population recovery) was observed. The stars show the predicted time to fixation (Equation 4).
The arrows show the mean time to fixation observed in simulations.
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Figure A5 The timing of events in the structured coalescent (Equation 7) for a sample of size k = 2 at a linked neutral locus (r =
0.01) during a selective sweep from migration in evolutionary rescue (blue; d = 0.05) or in a population of roughly constant size
(red; d = 0). Thicker opaque curves use the analytic expressions for allele frequency and population size (Equation 5) while the
thinner transparent curves show the mean probabilities given the observed allele frequency and population size dynamics in 100
replicate simulations (these become more variable in the past as less replicates remain polymorphic).
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