SUPPLEMENTARY MATERIALS for Chan, Prasad, and Matsudaira, "Genetic selection based on a Ste6*C-HA-Ura3 substrate identifies new cytosolic quality control alleles in *Saccharomyces cerevisiae*"

TABLE	S1
-------	-----------

Strain	Genotype	Source
W303 WT	MATa, leu2-3,112, his3-11, trp1-1, ura3-1, can1-100, ade2-1	P. Walter (UCSF)
SNY106	MATa, pRP37, W303 background	This study
SNY105	MATa, ubr1::KANMX, pRP37, W303 background	This study
RPY454	MATa, san1::KANMX, pRP37, W303 background	This study
SNY329	MATa, san1::KANMX, ubr1::KANMX, pRP37, W303 background	This study
RPY145	MATa, pRP22, W303 background	Prasad et al., 2012
RPY205	MATa, pRP42, W303 background	Prasad et al., 2010
SNY726	MATa, pDN431, W303 background	This study
SNY736	MATa, pDN1002, W303 background	This study
SNY1128	MATa, pSM1083, W303 background	This study
SNY1261	MATa, pRP37, pRS314, W303 background	This study
SNY1246	MATa, pRP37, pSN87, W303 background	This study
SNY1262	MATa, pRP37, pSN59, W303 background	This study
SNY1145	MATa, pRP22, pRS314, W303 background	This study
SNY1146	MATa, pRP22, pY109, W303 background	This study
SNY1249	MATa, pRP22, pSN87, W303 background	This study
SNY1405	MATa, pRP22, pSN59, W303 background	This study
SNY1333	MATa, pRP42, pRS314, W303 background This study	
SNY1150	MATa, pRP42, pY109, W303 background	This study
SNY1247	<i>MATa</i> , <i>pup2-L101P</i> , <i>lcl-K2E</i> , <i>rpc31-G10A</i> , <i>pRP37</i> , <i>pRS314</i> , W303 background	This study
SNY1248	<i>MATa</i> , <i>pup2-L101P</i> , <i>lcl-K2E</i> , <i>rpc31-G10A</i> , pRP37, <i>pSN87</i> , W303 background	This study
SNY672	MATa, pup2-L101P, lcl-K2E, rpc31-G10A, pRP22, W303 background	This study
SNY674	MATa, pup2-L101P, lcl-K2E, rpc31-G10A, pRP42, W303 background	This study
SNY843	MATa, pup2-L101P, lcl-K2E, rpc31-G10A, pDN431, W303 background	This study
SNY1319	MATa, pup2-L101P, lcl-K2E, rpc31-G10A, pDN1002, W303 background	This study
SNY1320	MATa, pup2-L101P, lcl-K2E, rpc31-G10A, pSM1083, W303 background	This study
SNY1250	MATa, pup2-L101P, lcl-K2E, rpc31-G10A, pRP22, pRS314, W303 background	This study
SNY1251	MATa, pup2-L101P, lcl-K2E, rpc31-G10A, pRP22, pSN87, W303 background	This study
SNY1045	MATa, <i>\(\Delta\) doa4::KANMX</i> , W303 background	This study
SNY1260	MATa, \[\Deltadoa4::KANMX, pRP37, W303 background]	This study
SNY1078	MATa, Δdoa4::KANMX, pRP37, pSN59, W303 background	This study
SNY1058	MATa, Δdoa4::KANMX, pRP22, W303 background	This study
SNY1059	MATa, Δdoa4::KANMX, pRP42, W303 background	This study
SNY1063	MATa, \(\Delta doa4::KANMX, pDN431, W303\) background	This study
SNY1064	MATa, \(\Delta doa4::KANMX, pDN1002, W303\) background	This study

SNY1129	MATa, \(\Delta doa4::KANMX, pSM1083, W303\) background	This study	
SNY1147	MATa, \(\Delta doa4::KANMX, pRP22, pRS314, W303\) background	This study	
SNY1148	MATa, \(\Delta doa4::KANMX, pRP22, pY109, W303\) background	This study	
SNY1406	$MATa, \Delta doa4::KANMX, pRP22, pSN59, W303$ background This study		
SNY1151	$MATa, \Delta doa4::KANMX, pRP42, pRS314, W303$ background This study		
SNY1152	MATa, \(\Delta doa4::KANMX, pRP42, pY109, W303\) background	This study	
SNY1263	MATa, doa4-Q626*, tcb3-N1211L, prp38-C174Y, pRP37, pRS314, W303 background	This study	
SNY1264	<i>MATa</i> , <i>doa4-Q626*</i> , <i>tcb3-N1211L</i> , <i>prp38-C174Y</i> , <i>pRP37</i> , <i>pSN59</i> , W303 background	This study	
SNY901	<i>MATa</i> , <i>doa</i> 4- <i>Q</i> 626*, <i>tcb3-N1211L</i> , <i>prp38-C174Y</i> , <i>pRP22</i> , W303 background	This study	
SNY902	<i>MATa</i> , <i>doa4-Q626*</i> , <i>tcb3-N1211L</i> , <i>prp38-C174Y</i> , <i>pRP42</i> , W303 background	This study	
SNY1265	<i>MATa</i> , doa4-S329*, ino1-C19G, pRP37, pRS314, W303 background	This study	
SNY1266	<i>MATa</i> , doa4-S329*, ino1-C19G, pRP37, pSN59, W303 background	This study	
SNY941	MATa, doa4-S329*, ino1-C19G, pRP22, W303 background	This study	
SNY942	MATa, doa4-S329*, ino1-C19G, pRP42, W303 background	This study	
SMUra#38	MATa, ubr1-A580S, pRP37, W303 background	This study	
SMUra#114	MATa, Spontaneous mutant #1, pRP37, W303 background	This study	
SMUra#125	MATa, Spontaneous mutant #2, pRP37, W303 background	This study	
SMUra#22	MATa, Spontaneous mutant #3, pRP37, W303 background	This study	
SMUra#54	MATa, Spontaneous mutant #4, pRP37, W303 background	This study	
SNY638	<i>MAT</i> a , <i>rpt5-E282D</i> , <i>chm7-I238M</i> , <i>pRP37</i> , <i>pRP22</i> , W303 background	This study	
SNY640	MATa, rpt5-E282D, chm7-I238M, pRP37, pRP42, W303 background	This study	
SNY545	MATa, rvb2-M175R, pre7-Y24S, tos1-E121G, pRP22, W303 background	This study	
SNY563	MATa, rvb2-M175R, pre7-Y24S, tos1-E121G, pRP42, W303 background	This study	
SNY634	MATa, rpt3-V209D, pRP22, W303 background	This study	
SNY636	MATa, rpt3-V209D, pRP42, W303 background	This study	

TABLE S1: YEAST STRAINS USED IN THIS STUDY.

TABLE S2

Plasmid	Encoded protein	Promoter	Vector	Source
pRP37	Ste6*C-HA-Ura3	PRC1	pRS313	This study
pRP22	Ste6*C-HA	TDH3	pRS313	Prasad et al., 2012
pRP42	Δ ssPrA-HA	TDH3	pRS313	Prasad et al., 2010
pDN431	СРҮ*-НА	PRC1	Ycp50	Ng et al., 2000
pDN1002	Sec61-2-HA	SEC61	pRS315	Vashist et al., 2001
pSM1083	Ste6*-HA	STE6	CEN URA3	Loayza et al., 1998
pSN87	Pup2	PUP2	pRS314	This study
pSN59	Doa4	DOA4	pRS314	This study
pY109	Ub	TDH3	pRS314	Davis Ng Lab Collection

TABLE S2: PLASMIDS USED IN THIS STUDY.

TABLE S3

Primer	Plasmid	Sequence (5' → 3')
RP205	pRP37	GTCAGGATCCATGATACCCGATATAAGTAGAGGC
RP52	pRP37	GCGCCCGGGAGCGTAATCTGGAACATCATATGGGTA
SN427	pSN87	GATAAGCGGCCGCGTAGGTGAGAAAGTTTCTTGTTGGTC G
SN428	pSN87	GATGCGTCGACCGATTGATCCAATGACTATTCCTGGC
SN295	pSN59	GATAAGCGGCCGCCACTCCAAGACAATTGATGCGTAAATCG
SN296	pSN59	GATGCCTCGAGGATTTGCAACTGGACCCGTTTGAC

 TABLE S3: OLIGONUCLEOTIDE PRIMERS USED IN THIS STUDY.

TABLE S4

Elimination method	Number of Spontaneous mutants
False positives	Total: 61
Transformation of known CytoQC genes	UBR1: 41
	RPN11: 1
	UMP1: 1
	Total number identified: 43
Whole genome sequencing method	Number of Spontaneous mutants
Unidentified true positives	Total: 13
	• Temperature sensitive: 4
	• Non-temperature sensitive: 9
	Identified: 6
	• PUP2: 1
	• DOA4: 2
	• RPT3: 1
	• RPT5: 1
	• PRE7: 1

TABLE S4: TABULATION OF SPONTANEOUS MUTANT SELECTION ISOLATES

Figure S1: Schematic diagram of the genome-wide selection based on spontaneous mutations. Selection is based on the observation of the CytoQC-defective phenotype displayed by colonies that grow on the synthetic complete (SC) selection plates lacking uracil (SC-Ura). Colonies growing on SC-Ura are further isolated and streaked on SC-His and SC-Ura plates for confirmation.

Figure S2: Stabilization of the reporter substrate in CytoQC-defective mutants. Cells were treated with 200µg/ml of cycloheximide and chased for the indicated timepoints. Lysates harvested were resolved on SDS-PAGE and analyzed by immunoblotting (IB) with anti-HA antibody. Kar2 was probed as loading control. Graph on the right shows the quantification of the substrate bands in the immunoblot. Intensity of substrate bands are normalized to the loading control of each sample.

Figure S3: Degradation of CytoQC substrates is delayed in the CytoQC mutants. Selected spontaneous mutants from initial characterization assays were transformed with plasmid expressing CytoQC substrates Ste6*C or Δ ssPrA. (A and C) All the selected spontaneous mutants stabilize both CytoQC substrates albeit to varying degrees. Strains were pulsed with 35S-Met/Cys for 5min for Ste6*C and 10min for Δ ssPrA, followed by chase for the indicated time points. (B and D) Graph of the relative amount of CytoQC substrate remaining in each spontaneous

mutant at the last time point (30min for Ste6*C and 60min for Δ ssPrA). WT-30 refers to WT strain pulse-chased at 30° and WT-37 refers to WT strain at 37°. Non-temperature sensitive mutants (left) were pulse-chased at 30° while temperature-sensitive mutants (right) were pulse-chased at 37°.

Figure S4: Rescue of the degradation delay of Ste6*C in the *pup2-10* mutant. The empty vector (vector) or PUP2 was transformed into WT and *pup2-10* strains expressing CytoQC substrate Ste6*C. Strains were pulsed with 35S-Met/Cys for 5min followed by chase for the indicated time points.

Figure S5: An accumulation of polyubiquitinated ERAD substrate Sec61-2 is observed in *pup2-10*. Quantification of polyubiquitinated CytoQC (from Figures 2F and 4F) and ERAD substrates in WT and *pup2-10*. Misfolded substrates expressed in WT and *pup2-10* were immunoprecipitated (IP) by anti-HA antibody, resolved by SDS-PAGE and analyzed by immunoblotting (IB) with anti-ubiquitin antibody to detect polyubiquitinated substrates.

Figure S6: Degradation kinetics of Ste6*C in *doa4* mutants. (A) Stabilization of CytoQC substrate Ste6*C was observed in the *doa4* spontaneous mutants, *doa4-12* and *doa4-13*, compared to WT. (B) Rescue of degradation delay of Ste6*C in $\Delta doa4$. The empty vector (vector) or DOA4 was transformed into WT and $\Delta doa4$ strains expressing CytoQC substrate Ste6*C. Strains were pulsed with 35S-Met/Cys for 5min followed by chase for the indicated time points.

Figure S7: Quantification of polyubiquitinated CytoQC substrates in WT and $\Delta doa4$ in the absence and presence of ubiquitin (Ub) overexpression from Figures 2F, 4F and 5B. Quantification by the Odyssey infrared imaging system and ImageJ.