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A. Supplementary text 

1. Proof that is the first-order approximation of  in 

COXMEG-sparse  

Here, we show that  is a first-order approximation of , where 

. We follow the notations used in the main text. One useful observation 

about  is that the columns corresponding to the censored subjects in  do not contribute 

to  because their corresponding elements in  are zero. Denote by  the 

matrix after removing the columns corresponding to the censored subjects from , where  is 

the number of subjects experiencing the event of interest. We rewrite  as  

, (S1) 

where  

 

, (S2) 

.  (S3) 

Because  is always positive definite after removing those subjects censored before the first 

failure, we then rewrite  in the following way  
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,  (S4) 

Denote by  the spectral norm of , which is the largest eigenvalue of when  is SPD (i.e.,

 is ). Now we show that the spectral norm of  in the last line in e.q. (S4) is 

strictly less than one, that is, 

. 

Note that both  and  are SPD, so their product  

 

has only positive eigenvalues. This implies that all eigenvalues of  are strictly less than 

one. Therefore, we can rewrite  by expanding the first inverse term in e.q. (S4) using a 

Neumann series, which gives 

, 

from which we obtain  by taking the first two terms in the series.    

2. Local convergence of COXMEG-sparse  

We first show that COXMEG-sparse is locally convergent, and then discuss the factors affecting 

its convergence rate. There are multiple ways to investigate the local convergence of COXMEG-

sparse. Our approach is to show that COXMEG-sparse belongs to a class of inexact Newton 

methods (Dembo et al. 1982) with the following property 

, (S5)    

where  is the step change in each iteration in COXMEG-sparse, and  and  are the 

score function and negative Hessian evaluated at the current step , respectively. The goal is 

to show that the step chosen in COXMEG-sparse satisfies inequality (S5) with the forcing term 

. We first consider the convergence of using the zero-order approximation of  (i.e., 

replacing  by  in  ). Note that the zero-order approximation of  amounts to 

adding  to the bottom-right corner of . So, the iteration step in this case is  



 , (S6) 

where we denote . Plugging e.q. (S6) into the left-hand side of (S5) gives 

 . 

It remains to show that the forcing term  is uniformly less than one. Under regularity 

conditions (e.g., Assumption 2.2.1 in (Kelley 1999)),  is Lipschitz continuous within a 

neighbourhood of  and is nonsingular at  for which . This suggests that we can 

always find a neighbourhood of so that the smallest eigenvalue of  is bounded away 

from zero. Because the largest eigenvalue of  is one, we can find a neighbourhood of , 

within which  has all positive eigenvalues bounded away from zero, 

that is,  

,  

where  denotes the smallest eigenvalue of a matrix. This implies 

 .  

Therefore, according to Theorem 2.3 in (Dembo et al. 1982), the algorithm is locally convergent 

at least linearly in the norm  with asymptotic rate constant no greater than . 

When a higher-order (e.g., Kth-order) approximation is used in COXMEG-sparse, the difference 

is to replace  in e.q. (S6) by the positive semidefinite matrix (𝑉22
−1 −

∑ 𝑆−1(𝑄𝑄𝑇𝑆−1)𝑘∞
𝑘=𝐾+1 )

−1
− 𝑉22 with a smaller matrix norm. Therefore, the proof of the local 

convergence still follows.  

 

The convergence rate is controlled by . If  is equal to 1, in which case no approximation of 

 is used, the convergence rate becomes quadratic. Therefore, the convergence rate 

depends on how close the approximation  is to . We then assess which factors 

affect the convergence rate practically. Note that  in e.q. (S4) can be written as 



, (S7) 

where the inverses are valid because of SPD of ,  and  after removing all censored 

samples before the first occurrence of the event of interest. In COXMEG-sparse, we use a 

Neumann series to approximate the first inverse in (S7), so a lower-order approximation would 

have worse performance, at least in some direction, if the spectral norm of  

 (S8) 

is close to one. To investigate the spectral norm of (S8), we substitute e.q. (S1), (S2) and (S3) 

into  in (S8), which gives  

  

It is clear that  and  are recognized as two rectangular row stochastic (also called Markov) 

matrices. We show that  (i.e., the spectral norm of  is one), and all its 

eigenvalues are between zero and one. First, we can easily verify that  is an eigenvector of 

 with eigenvalue one. Then, suppose that  is an eigenvector of , and  is the 

element that has the largest absolute value of the non-zero elements in , we have 

, 



from which we obtain  (i.e., all eigenvalues have its absolute value no larger than one). 

Because  is positive definite,  is similar to , which implies that 

all eigenvalues of  are non-negative. Summarizing all evidence above implies that the 

eigenvalues of  are between zero and one. Next, we show that all eigenvalues of 

 are less than one. In fact, because  and  are SPD,  

 is similar to , which is a quadratic form and has all 

positive eigenvalues denoted by . Therefore, the eigenvalues of 

 are , which are strictly less than one.  

 

In summary, we have  

, 

which suggests that the spectral norm of (S8) is bounded by . From this bound, we 

can see that a larger  would generally drop the convergence rate. This is also confirmed by our 

simulation study (Figure S4), which shows that a higher-order approximation has much better 

performance (in terms of steps of convergence) for a larger  (e.g., >0.2). In addition, the 

spectral density of  also affects the convergence rate through . A large condition number 

of  would slow down the convergence, which is also corroborated by the results of our 

simulation study (Figure S4). Higher-order approximation converged much faster under larger 

block sizes and stronger correlation, in which cases the condition number of the relatedness 

matrix is larger. This simulation study (Figure S4) also suggests that the first-order 

approximation is near-optimal for a common family-based design in which the average family 

size is 5 and most correlation coefficients are below 0.5.  

3. Proof of the validity of the NR method for positive semidefinite 

covariance matrices  

Here, we prove that using the GPPL , the NR method is still valid for  being SPSD except 

that the sum of elements in each row of  is zero (i.e.,  has eigenvector  with eigenvalue 0). 

We first show that when  is SPSD and has eigenvector  with eigenvalue 0, , and thus   



become always non-invertible, which violates the regularity condition of the NR method. It is 

shown in A.2 that  is always positive semidefinite and has eigenvector  with 

eigenvalue 0. Combined with the fact that  if , we have 

   , 

suggesting that in such a case,  has a zero eigenvalue, and thus is non-invertible.  

Next, we show that  is always invertible when  is SPSD and  is not one of its eigenvectors 

corresponding to the eigenvalue 0. We have shown in A.1 that   

  , 

and  is the product of two rectangular row stochastic matrices, and always has the largest 

eigenvalue one with eigenvector . Because  and  are diagonal matrices with only positive 

elements, and  is similar through permutation to a lower-triangular matrix when assuming no 

ties, it is easy to verify that the elements of   are all positive. Using Breslow’s approximation 

for ties does not change this conclusion. According to the Perron–Frobenius theorem,  has 

a unique largest eigenvalue, which is one. This means that all the other vectors have its 

eigenvalue strictly less than one. Suppose that  is an eigenvector of . Consider its 

eigenvalue 

. 

If  is , then the second term must be positive, and otherwise, the first term must be positive. 

Thus, the eigenvalues of  are all positive, which suggests that the NR method is still valid.  

4. Approximation of the log-determinant using the SLQ method 

We describe the details of estimating the variance component  when the relatedness matrix  

is large and fully dense. We estimate  using the marginal likelihood  

, (S8) 

where  is obtained by optimizing the PPL. Once  is optimized, the addition step for estimating 

 is the evaluation of the log-determinant in e.q. (S8), the time complexity of which is cubic when 

using a standard Cholesky decomposition. When  is dense and very large, this evaluation is 

computationally intensive. Therefore, we resort to a randomized method based on SLQ to 



reduce the time complexity to quadratic. We selected the SLQ method for approximating a log-

determinant because our preliminary results suggested that it is more accurate than other 

randomized methods such as Chebyshev orthogonal polynomials (Pace and LeSage 2004; Han 

et al. 2016), and Martin’s Taylor expansion (Martin 1992; Barry and Kelley Pace 1999) under 

the same computational burden. The log-determinant to be approximated is  

. (S9) 

If 𝜮 is sparse and 𝜮−1 is dense, 𝜮 might never be inverted when the sample size is large. In this 

case, we instead approximate the log-determinant 
1

2
log|�̃��̃�𝑇| using SLQ, where 

�̃� = 𝜮 (𝑾(�̂�)𝑩(�̂�) − diag (𝑸(�̂�)𝑸(�̂�)
𝑇
)) + 𝜏−1𝑰. 

The SLQ method works as follows. Given a certain matrix , we first approximate its log-

determinant using a Monte Carlo trace estimator 

, 

where  is the number of Monte Carlo samples, and  is an i.i.d sample from the Rademacher 

distribution as proposed in (Hutchinson 1990). Since direct evaluation of  is difficult, we 

rewrite it as 

, 

where , and  is the jth element in . The second summation in the last line is 

recognized as a Riemann-Stieltjes integral, which can then be approximated using the Gauss 

quadrature rule 

, 

where  is the number of points in the Gauss quadrature rule, and  and  are the weights 

and nodes in the Gauss quadrature rule to be determined. It is nicely shown in e.g., Theorem 

4.1 in (Golub and Meurant 2009), that the nodes  are the zeros in the Lanczos orthogonal 

polynomial of , which are the eigenvalues of the tridiagonal matrix  corresponding to 

the orthogonal polynomial (as shown in Theorem 6.2 in (Golub and Meurant 2009)), which is the 

output of the Lanczos algorithm. The weights  are the square of the first element of the 



eigenvector  of . One potential issue is that the Lanczos algorithm is numerically 

unstable due to round-off errors. Even for a modest , it is possible that the vectors produced 

by the algorithm become dependent. To prevent this issue, we stopped the algorithm once an 

off-diagonal element in  was smaller than a small number (e.g., 1e-10).  

 

The accuracy of the SLQ approximation highly depends on  and . Although theoretical 

error bounds of the approximation of the log-determinant are given in (Ubaru et al. 2017), we 

investigated its empirical performance in COXMEG. Our results showed that  and 

 yielded highly accurate estimate of the variance component  when the condition 

number of the relatedness matrix is not too large (Figure S7). We observed that the 

approximation was poor only in the scenario where the block size was large (500) and also the 

correlations were high (0.9) (Figure S7), which is relatively rarely encountered in a real data 

analysis.  

5. Simulation study for statistical power and empirical size 

We investigated FPR and statistical power of the four methods, COXMEG-score, COXMEG-

sparse, coxph with a shared frailty and coxme. Because dense matrices are too time consuming 

for coxme, we investigated the statistical power using block-diagonal relatedness matrices, and 

expected that the conclusion should be generalized to dense relatedness matrices. We first 

assessed the FPR under settings of different variance components, and correlation structures. 

We found that overall all methods except coxph controlled the type I error rate well. We found 

that COXMEG-score, COXMEG-sparse, and coxme had almost the same FPR as expected 

(Figure S2). In contrast, our results showed that coxph with a shared frailty had inflated FPR 

when the correlation coefficients were 0.5, while the power was slightly diminished when the 

correlation coefficients were 0.1 (Figure S2). When the correlation coefficients were 0.9, coxph 

with a shared frailty controlled the FPR as well as the other methods (Figure S2), which makes 

sense because under this correlation, subjects within a block had almost the same random 

effect.      

 

We next evaluated the statistical power for detecting the effect of a predictor using a simulation 

study. We considered multiple settings of different sample sizes, proportion of censoring, 

variance components, and correlation structure. More than 5000 subjects were needed to detect 

a log(HR) of 0.1. We observed that COXMEG-sparse shared almost the same statistical power 

as coxme, and COXMEG-score in all settings (Figure S3). We also noted that coxph with a 

shared frailty had very similar power compared to the other methods (Figure S3). 
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B. Supplementary Tables 
 

CHR POS SNP Gene P-value 

1 161155392 rs4575098 ADAMTS4 9.420E-01 

1 207786828 rs2093760 CR1 8.568E-03 

2 127891427 rs4663105 BIN1 2.961E-04 

2 233981912 rs10933431 INPP5D 1.154E-01 

4 11026028 rs6448453 CLNK 2.367E-02 

6 32583357 rs6931277 HLA-DRB1 4.983E-02 

6 47432637 rs9381563 CD2AP 9.214E-01 

7 99971834 rs1859788 ZCWPW1 3.128E-01 

7 143108158 rs7810606 EPHA1 6.735E-01 



8 27464929 rs4236673 CLU 5.996E-02 

10 11717397 rs11257238 ECHDC3 6.853E-01 

11 59958380 rs2081545 MS4A6A 3.141E-02 

11 85776544 rs867611 PICALM 2.537E-03 

14 92938855 rs12590654 SLC24A4 1.468E-01 

15 59022615 rs442495 ADAM10 3.412E-01 

15 63569902 rs117618017 APH1B 6.624E-01 

16 31133100 rs59735493 KAT8 6.414E-01 

17 5138980 rs113260531 SCIMP 7.153E-02 

17 47450775 rs28394864 ABI3 1.861E-02 

19 1039323 rs111278892 ABCA7 3.925E-01 

19 51727962 rs3865444 CD33 8.028E-01 



20 54998544 rs6014724 CASS4 2.500E-02 

 
Table S1. Results of 23 common significant SNPs identified by a recent meta-analysis of AD. 
The p-values of HRs were obtained from COXMEG-score. The positions of the SNPs are based 
on hg19. 

C. Supplementary Figures 
 

Figure S1: Comparison of computational time of estimating the variance component for a block-

diagonal relatedness matrix under different sample sizes between coxme, COXMEG-sparse, 

and coxph with a shared frailty. The family (block) size is 5. The evaluation was performed on a 

Windows Core i5-6300HQ machine. 
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Figure S2. Comparison of empirical FPR of coxme, COXMEG-sparse, COXMEG-score, and 

coxph with a shared frailty. The relatedness matrices are block-diagonal correlation matrices 

with the block size ranging between 5-100. We evaluated the FPR for the correlation ρ in each 

block being 0.1, 0.5, and 0.9, and the variance component  between 0.02 and 0.5. The red dots 

are the mean FPR.   
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Figure S3. Comparison of empirical statistical power of coxme, COXMEG-sparse, COXMEG-

score, and coxph with a shared frailty. The relatedness matrices are block-diagonal correlation 

matrices with the block size ranging between 5-100 and the correlation ρ ranging between 0.1 

and 0.9. We evaluated the power for the HRs being 0.01, 0.05, and 0.1, and the sample size 

between 1000 and 5000. We also assess the power under no censoring, moderate censoring 

and heavy censoring. 
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Figure S4. Evaluation of the convergence rate of higher-order approximations in COXMEG-

sparse. The relatedness matrix used in the simulation is a block-diagonal correlation matrix with 

the block size ranging between 5-100 and the correlation ρ ranging between 0.1 and 0.9. For 

each setting, the convergence rate was measured by the time for estimating the HRs of one 

predictor given a variance component  ranging from 0.02 to 0.5.  





 

Figure S5. Evaluation of the computational performance of three methods (RcppEigen::LDLT, 

Matrix::solve using the Cholesky decomposition, and RcppEigen::CG with diagonal 

preconditioned) for solving the sparse linear system in COXMEG-sparse. The relatedness 

matrix used in the simulation is a block-diagonal correlation matrix with the block size varying 

between 5-500 and the correlation ρ being 0.5. For each setting, the convergence rate was 

measured by the time for estimating the HRs of one predictor given a variance component  

ranging from 0.02 to 0.5. 

 





 

Figure S6. Comparison of estimated variance components by coxme, COXMEG-sparse with the 
exact log-determinant, and COXMEG-sparse with a diagonal approximated log-determinant. (A) 
COXMEG-sparse with a diagonal approximated log-determinant vs. coxme; (B) COXMEG-
sparse with the exact log-determinant vs. coxme; (C) COXMEG-sparse with a diagonal 
approximated log-determinant vs. the exact log-determinant. 
 





 

Figure S7. Comparison of estimated variance components by COXMEG-score with the exact 
log-determinant, and COXMEG-score with the SLQ approximation under sample sizes of 5000 
and 10,000. The relatedness matrix used in the simulation is a block-diagonal correlation matrix 
with the block size varying between 5-500 and the correlation ρ between 0.1 and 0.9.  
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Figure S8. Relative error between the variance of log(HR) estimated using an approximated 

 in COXMEG-sparse and using an exact Hessian matrix. Four approximations of  
(Zero-order to Third-order) were evaluated under settings of different sample sizes, and 
variance components. The red dots are the mean values.    
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