Supplemental File:

The PacBio reads of Longicalyx and Sturtianum were assembled using canu.
The read files is here:
	/fslgroup/cotton_seq/compute/Sturtianum/FastQ2/m54120_170712_171555.subreads.fastq.gz

	/fslgroup/cotton_seq/compute/Sturtianum/FastQ2/m54120_170713_031438.subreads.fastq.gz

	/fslgroup/cotton_seq/compute/Sturtianum/FastQ2/m54120_170713_132421.subreads.fastq.gz

	/fslgroup/cotton_seq/compute/Sturtianum/FastQ2/m54120_170713_233351.subreads.fastq.gz

	/fslgroup/cotton_seq/compute/Sturtianum/FastQ2/m54120_170714_094334.subreads.fastq.gz

	/fslgroup/cotton_seq/compute/Sturtianum/FastQ2/m54120_170714_232344.subreads.fastq.gz

	/fslgroup/cotton_seq/compute/Sturtianum/FastQ2/m54120_170715_092231.subreads.fastq.gz

	/fslgroup/cotton_seq/compute/Sturtianum/FastQ2/m54120_170715_193202.subreads.fastq.gz

	/fslgroup/cotton_seq/compute/Sturtianum/FastQ2/m54120_170716_054132.subreads.fastq.gz

	/fslgroup/cotton_seq/compute/Sturtianum/FastQ2/m54120_170716_155103.subreads.fastq.gz

	/fslgroup/cotton_seq/compute/Sturtianum/FastQ2/m54120_170717_020048.subreads.fastq.gz

	/fslgroup/cotton_seq/compute/Sturtianum/FastQ2/m54120_170717_121012.subreads.fastq.gz

	/fslgroup/cotton_seq/compute/Sturtianum/FastQ2/m54120_170717_221948.subreads.fastq.gz

	/fslgroup/cotton_seq/compute/Sturtianum/FastQ2/m54120_170718_223608.subreads.fastq.gz

	/fslgroup/cotton_seq/compute/Sturtianum/FastQ2/m54120_170719_083451.subreads.fastq.gz

	/fslgroup/cotton_seq/compute/Sturtianum/FastQ2/m54120_170719_184426.subreads.fastq.gz

	/fslgroup/cotton_seq/compute/Sturtianum/FastQ2/m54120_170720_045354.subreads.fastq.gz

	/fslgroup/cotton_seq/compute/Sturtianum/FastQ2/m54120_170720_150319.subreads.fastq.gz

	/fslgroup/cotton_seq/compute/Sturtianum/FastQ2/m54120_170721_011240.subreads.fastq.gz

The assembly command used is here:
/fslhome/mengqiao/fsl_groups/cotton_seq/compute/Sturtianum/Sturtianum2.sh

The output file stats are these:
/fslhome/mengqiao/fsl_groups/cotton_seq/compute/Sturtianum/Sturtianum2/

num_scaffolds = 229
num_contigs = 229
total genome length incl. gaps = 1196169312
total genome length w/o gaps = 1196169312
avg_scaffold_size incl. gaps = 5223446.77729258
avg_scaffold_size w/o gaps = 5223446.77729258
avg_contig_size = 5223446.77729258
Contig N50 = 28878872
[bookmark: _heading=h.gjdgxs]Scaffold N50 = 28878872
Max scaffold size = 67922812
Min scaffold size = 1881

============================

Hi-C
Sturtianum2.contigs.fasta.gz was uploaded to Dovetail for Hi-C scaffolding.
The result file:
gossypium_longicalyx_08Aug2017_LTNsK.fasta

was provided by Dovetail.

We also created a bed file called:
gossypium_longicalyx_08Aug2017_LTNsK.bed

using the following command:
awk '{print $1,$6,$7,$2,25,$5}' gossypium_longicalyx_08Aug2017_LTNsK.table.txt > hic.bed
then vi hic.bed
change the name consistent with the assemble:
exp.
:%s/*/1/g
and change the space to tab:
:%s/\s/\t/g

============================
Using PBJelly on FSL

First divide your genomes into chunks.

You will need to make Fastq and Fasta files of your raw reads.
Fasta and fastq files of the raw reads can be made using the following command:
./MyTaskSubmit.sh bam2fastq 1 1 30 12 s "./Bam2Fastq.sh" jaudall cotton_seq

./MyTaskSubmit.sh bam2fasta 1 1 30 12 s "./Bam2Fasta.sh" jaudall cotton_seq

Here are the steps I run to get the chunks ready for PBJELLY2 mapping,
1. Make sure the FASTA file that is going to chunked is in a single line FASTA format rather than a multiple line FASTA and there shouldn't be any blank lines. If you have a multi line FASTA fiel use the following one-liner to convert it to a single line FASTA file,
cat Wagad_NCGR_NOVOGENE_PacBio_Subreads_All_SMRTCells_Combined.FINAL.fasta | awk '/^>/ {printf("\n%s\n",$0);next;} {printf("%s",$0);} END {printf("\n");}' > Wagad_NCGR_NOVOGENE_PacBio_Subreads_All_SMRTCells_Combined.FINAL.SingleLine.fasta
2. Then use the split command to chunk the files,
split --help
Example:
split --suffix-length=5 --numeric-suffixes --lines=100000 --verbose ../../Wagad_NCGR_NOVOGENE_PacBio_Subreads_All_SMRTCells_Combined.FINAL.SingleLine.fasta Wagad_NCGR_NOVOGENE_PacBio_Subreads_All_SMRTCells_Combined.FINAL.SingleLine.Chunk.
I have mentioned number of lines to 100000, this means each chunk will have 50,000 sequences. Hope that makes sense.
3. Once you have the chunks, add .fasta extension to it
Example:
for file in *.Chunk.*; do mv ${file} ${file}.fasta; done
4. Also you should generate a fake .qual file for each of the FASTA chunks. PBJELLY2 expects a .qual file if the reads used is a FASTA instead of a FASTQ.
Example:
module load pbsuite/15.8.24
for file in *.fasta; do /apps/pbsuite/15.8.24/pbsuite/utils/fakeQuals.py ${file} ${file}.qual; done
rename .fasta.qual .qual *.fasta.qual
After this you should be ready to submit the mapping and tghe following steps in PBJELLY2.

======================

Do the following steps (brief version)

Modify Protocol.xml to fit your assembly

module load pbsuite/15.8.24

Jelly.py setup Protocol.xml
Jelly.py mapping Protocol.xml
Jelly.py support Protocol.xml
Jelly.py extraction Protocol.xml
Jelly.py assembly Protocol.xml
Jelly.py output Protocol.xml

Do the following steps (long version):

Setup

Jelly.py setup Protocol.xml

This sets up the chunks in the input directory?
It also analyzes the fasta file and creates the gapinfo.bed file

Mapping
Jelly.py mapping Protocol.xml

Except on FSL this doesn’t work. It creates a bunch of scripts in the output directory, but it doesn’t actually run them with the SLURM scheduler. I created a job-script that can be prepended to all of the sh files, then the sh files can be submitted with a for loop. A 50K sequences in a chunk, this step seemed to take about 1 hr per chunk on average. A wall time of 3 hrs would have been best for the outlier file or two.

Jelly.py mapping Protocol.xml
for i in `ls *.sh`; do cat prepend.txt $i > $i.2 ; done
for i in `ls *.sh`; do mv $i.2 $i ; done
chmod 777 *.sh
for i in `ls *.sh`; do sbatch $i ; done

Support
Jelly.py support Protocol.xml

This is similar to the mapping step. The command creates .sh files, but doesn’t submit them. Do the above steps to run them. These only take a minute to complete each chunk.

Extraction
Jelly.py extraction Protocol.xml

This created the assembly directory with only one file. Run it. It only takes a minute. It’s optional (I think) if you want to submit it as a job. You’ll probably need to up the wall time from 1-2 hrs.

PBJelly Assembly
Jelly.py assembly Protocol.xml

This creates a bunch of .sh files, just like mapping and support steps. Prepend the text to them. Some of these may take while. I had 200 files take < 4 hours. 15 files < 5 hours. 1 file was > 10 hrs. I wish I knew how to identify which will take the longest, but I don’t know. Probably best simply to put a wall time of 120 hrs or so and run them all.

Bionano Hybrid scaffold

The Bionano assembly was originally run in this directory:
/fslgroup/fslg_bionano/compute/refined_assemblies/refined_assemblies/Longicalyx/Long_5_16/

To compare the bionano assembly to the sequence assembly, hybrid scaffold was run in this directory using this command:
/fslhome/mengqiao/fsl_groups/cotton_seq/compute/G.longicalyx/Dovetail_assembly/HyBridScaffold.sh

The result of hybrid_scaffold was:
Total_SeqNum:	17
Total_len:	1190664465
Avg_Len:	70039086.2
With_N_Seq:	13
Total_N_len:	18000
N_Percent:	0.000
Num_More500:	16
TotalLen_M500:	1120058223
Percent_M500:	0.941
Num_More1000:	16
TotalLen_M1000:	1120058223
Percent_M1000:	0.941
Total length of N50: 606890622
N50 value is: 95877898
L50 is :6
Total length of N90: 1043007669
N90 value is: 76482639
L90 is :11

The run_characterize script was run to generate all of the output summary numbers (some numbers not included in the hybrid_scaffold output). The script was run in this directory using this command:
/fslhome/mengqiao/fsl_groups/cotton_seq/compute/G.longicalyx/long_camp/bng_long/comparision_submission_bng.sh

PBJelly is running one more time to fill the bionano joins (DNA sequence scaffolds joined by N’s).

The directory for this second round of PBJelly is here:

The results are here:

No need

Use Gapfiller to fill the gaps

Command：/fslhome/mengqiao/fsl_groups/cotton_seq/compute/G.longicalyx/gapfiller/gapfiller.sh

This is the final assembly file (include full path):
/fslhome/mengqiao/fsl_groups/cotton_seq/compute/G.longicalyx/gapfiller/gapfiller_longicalyx2

Then runCharacterize of assemble.

Here is the cmap file directory:
/fslhome/mengqiao/fsl_groups/cotton_seq/compute/G.longicalyx/gapfiller/gapfiller_longicalyx2/runcharacter/

Number Genome Maps: 1111
Total Genome Map Length (Mbp): 1185.006
Mean Genome Map Length (Mbp): 1.067
Median Genome Map Length (Mbp): 0.738
Genome Map N50 (Mbp): 1.623
Total Reference Length (Mbp): 1190.668
Total Genome Map Length / Reference Length : 0.995
Total number of aligned Genome Maps : 1104 (0.99)
Total Aligned Length (Mbp) : 1185.503
Total Aligned Length / Reference Length: 0.996
Total Unique Aligned Length (Mbp) : 1159.613
Total Unique Aligned Length / Reference Length: 0.974

It will be used for Maker and GenSAS.

Maker on the fasta file was run in this directory:

Using this repeat database and config file:

