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Supplementary Materials and Methods 
 
In-house Sequel empirical data 
In-house empirical data were produced with the aim to generate challenging DNA sequences to 
be analysed by LongQC. We define those challenging sequences as DNA reads generated by 
produced poor quality single-molecule real-time (SMRT) libraries. These are libraries carrying 
insert DNA not properly repaired and carrying not well purified library template hampering 
therefore the action of the sequencing DNA polymerase. 
  
DNA Extraction 
Escherichia coli cultures were grown overnight on LB liquid medium at 37°C, and genomic 
DNA was extracted using a modified phenol-chloroform based extraction protocol (Syn and 
Swarup 2000). Briefly 3 ml of culture of E. coli grown were pellet to cells and resuspended in 
0.75 mL 1% NaCl following by a further precipitation and resuspension in 0.75mL TES (10 mM 
Tris-HCl, 10 mM EDTA, pH 8.0, 2% SDS). After incubation at 75 °C for 15 minutes genomic 
DNA was extracted sequentially by using equal volumes of phenol:chloroform (3:1 v/r) and 
chloroform. Aqueous phase was recovered from which the DNA fraction was precipitated by 
centrifugation after the addition of 110 µL of 3 M sodium acetate (pH 5.2) and 1 mL of 
Isopropanol. Pellet was first washed with absolute ethanol (500 µL) and extracted genomics 
DNA was resuspended in 150 µL TE (10 mM Tris-HCl, 2 mM EDTA, pH 8.0) with 1μL 50 
µg/mL RNase. Genomics DNA was stored at 4 °C and processed the following day for SMRT 
library preparation. 
 
SMRT library preparation and sequencing 
Genomic DNA (7.5 µg for each library) was sheared to 10 kb using Covaris g-Tube according to 
the manufacturer’s protocol and libraries were further size selected using BluePippin (Sage 
Scientific, Beverly, MA). The SMRTbell libraries were produced following the standard library 
protocols of the Pacific Biosciences DNA template preparation kit (Pacific Biosciences, Menlo 
Park, CA) with few modifications in order to generate poor quality SMRT libraries.  
Only one 70% ethanol wash step was carried out for each purification step and suboptimal 
conditions for DNA pol ExoIII (Rogers and Weiss 1980) and ExoVII (Chase and Richardson 
1974) activities (incubation at 45 °C for 30 minutes) were used during the DNA repairing step. 
Libraries were sequenced with Sequel platform in two SMRT cells with version 2 sequencing 
chemistry. Movie time was 10 hours. 
 



Simulated Dataset 
For PacBio data simulation, PBSIM was applied (Ono et al. 2013). The genome of E. coli strain 
K12 was used as a template. To generate non-sense reads, low accuracy reads were sampled 
from the reversed reference at higher error rate (--accuracy-mean 0.45 –accuracy-sd 0.02). For 
normal reads, moderate accuracy reads were generated from the reference genome (--accuracy-
mean 0.85 –accuracy-sd 0.02). Simulated data for ONT reads was generated by NanoSim (Yang 
et al. 2017). The error profile trained on 1D reads from R9 flowcell using E. coli genome was 
applied. To get the certain fraction of non-sense reads, “Aligned / Unaligned ratio” parameter 
was adjusted. The other parameters were kept the default. 
 
Quantification of actual fraction of non-sense reads 
We mapped actual reads from PacBio RS-II, PacBio Sequel, and ONT MinION using minimap2 
ver. 2.6. For PacBio data, we applied homopolymer-compression for k-mer which has 15bp and 
base-level alignment was conducted ‘-Hk15 –c’. For ONT reads, k-mer size was 12bp and base-
level alignment was also conducted ‘-k12 –c’. Other parameters were set to default. The criterion 
previously used for mappable reads (https://github.com/rrwick/Basecalling-comparison) was 
applied to quantify the non-sense fraction: reads covered at 50% or more by the reference 
genome are classified as mappable reads, and the others were marked as non-sense reads. In 
addition, all datasets were also evaluated by blastn version 2.7.1+ (Altschul et al. 1990). Blast 
hits were first collected using a slightly relaxed E-value (‘-evalue 0.0001 -task blastn -
perc_identity 50’), and then further filtered with more stringent E-values using slightly modified 
script for blast (available at figshare). The more stringent E-value threshold was adjusted to 
match the false positive rate for minimap2 result (1E-8 for E. coli genome, 2.5E-21 for C. 
elegans genome, 1E-7 for D. melanogaster genome, 1E-21 for A. thaliana genome). Reads 
mapped to the reversed reference were treated as spurious false positive hits (Schwartz et al. 
2003). Comparison with minimap2 results is summarized in Table S9. For Iso-Seq mapping, we 
mapped reads from PacBio Sequel using minimap2 ver. 2.11 with ‘-x splice -uf -C5 -c’. The 
unmapped reads of Iso-Seq dataset were further mapped to the same reference using ‘-Hk15 –c’. 
 
Additional analysis of non-sense reads for in-house empirical datasets 
Among the unmapped reads of the Sequel challenging datasets 1 and 2 to E. coli genome, we 
noticed numerous unmapped reads could be mapped to the PacBio spike-in control DNA. Of 
note spike-in reads are by default automatically removed by the Sequel platform and in these 
particular cases some reads seem to be leaked due to unknown reasons. Spike-in control-like 
reads were marked by minimap2 with the same parameter mentioned above (‘-Hk15 -c’). 
Fraction of non-sense reads was quantified by unmarked reads to avoid overestimation of the 
fraction. Lists of such marked reads are available at figshare. 

To exclude any contamination within our in-house datasets, we blasted non-sense reads 
of in our in-house E. coli datasets against the nt database. For Sequel in-house E. coli 1, Sequel 
in-house E. coli 2, and MinION E. coli 1D datasets, 10% of reads were randomly sampled 
because of computational time. Seqtk toolkit (https://github.com/lh3/seqtk) commit d210c57 was 
used for random sampling. The same parameters of blastn mentioned above were applied. 
MEGAN6 was used to screen species in the blast hits (Arumugam et al. 2019). “Max Expected”, 
“Min Percent Identity”, and “Min Support Percent” of LCA parameters in MEGAN6 were set to 
1E-8, 50.0, and 0.1, respectively 

 



Q-value estimation by DASCRUBBER suite 
DASCRUBBER commit 8b737e4 (https://github.com/thegenemyers/DASCRUBBER) was 
applied to compute q-values for Sequel in-house E. coli datasets and Sequel in-house challenging 
E. coli datasets. DASCRUBBER depends on programs in DAZZ_DB 
(https://github.com/thegenemyers/DAZZ_DB) and DALINER2 
(https://github.com/thegenemyers/DALIGNER), and we used implementations in commit 
number 034f1ab and efb48c3, respectively. Masking before overlap computation is done by 
DBdust in DAZZ_DB, and we omit repeat and tandem repeat masking parts. Because E. coli 
genome is not very repetitive, and computational time is greatly reduced when those steps are 
omitted. 

Briefly, a database is generated by fasta2DB and DBsplit command with ‘-s1000 -x16’ 
followed by DBdust command. Overlaps were computed by HPC.daligner with ‘-mdust -M60 -
T40 -l1’. Coverage track was added to the database by Catrack program after coverage 
computation done by DAScover. Finally, DASqv was applied for the database to compute q-
values with ‘-v -c {coverage}’. For -c {coverage} option, the numbers that total bases in each 
dataset divided by 5M bp were given. 
 
Overlap finding and estimation of non-sense read fraction 
To determine fraction of non-sense reads, which are randomly generated or highly erroneous 
reads, LongQC first subsamples sequences at random (10,000 as default). Next, overlapping 
region for each subsampled read are thoroughly searched against the entire dataset. LongQC 
employs minimap2 for this calculation and computes a rough coverage for each read after 
filtering. Filters used here were presented in a previous study with a slight modification (Li 
2016): Maximum length of over-hanged region, minimum overlap ratio of read, and minimum 
overlap length are set to 2000, 0.4 and 0, respectively. 

In addition, two different chaining score thresholds of minimap2 are applied for overlap 
region filtering. Colinear and shared k-mers between two sequences are searched with allowing 
certain gap lengths, and here a chain refers to a region having consecutive and shared k-mers 
(‘chained’ colinear k-mers) between two reads (Li 2018). Intuitively, higher score chains have 
more shared k-mers and smaller gap lengths. One threshold, t1, is the minimum threshold for 
chains, and this value is set to 40 and is universal for all platforms. The other threshold, t2, must 
be higher than t1 and is important for screening of non-sense reads. Coverage is computed for 
each read using both t1 and t2, and regardless of t1 coverage a read is marked as non-sense if no 
position is covered by at least n chains having higher scores than t2. In default, n is set to 3, and 
t2 is platform specific: 80 for PacBio (Table S1) and 160 for ONT reads (Table S2). 

 
Per-read coverage calculation 
The modified version of minimap2 implementation is used in LongQC. LongQC filters out long 
and moderately masked reads from minimap2 targets because of long computational time 
required for such reads. Fraction of masked bases on a read is computed by the DUST algorithm 
(Morgulis et al. 2006). The implementation in minimap2 (Li 2018) ver. 2.6 was used. Reads 
having more than 0.5Mbp long in length and at least 20% of masked bases or reads having 
0.02Mbp long in length and at least 40% of masked bases are excluded from the targets.  
 
 
 



Estimating per-read sequence error 
Alignment-free error (divergence) estimation model using k-mer has been suggested and applied 
because of lower computational cost than base-level alignment (Ondov et al. 2016; Li 2018). 
Error rate e can be modeled by the total number of k-mer n and the number of error-free k-mer m 
in a query  
 

�̂� = 	 1 𝑘' log 𝑛 𝑚⁄  
 
This model requires a reference sequence and therefore is not suitable for any reference free 
statistics. However, if errors occur independently and randomly throughout the DNA template 
and coverage is homogeneous (Carneiro et al. 2012), the number of matches between erroneous 
k-mers and between error-free k-mers should be different. Erroneous k-mers indeed are expected 
to show fewer matches. Consequently, the above model can be updated computing m (here after 
mc) by the number of times a k-mer appears in the data without the need of a reference. In order 
to compute mc we first define a threshold level for all n k-mers, as follow: 
 

	𝑡̅ =
∑ 𝑐2345
267

𝑛 		 
where  

n: the total number of k-mers on a query read 
c: number of counts a query k-mer full (100%) matches with k-mers of other reads (full 
set)  

 
we can then estimate mc as follow: 
 

𝑚8 = 9𝛿2

345

267

	;	𝛿2 = 1; 	𝑖𝑓	𝑐2 > 𝑡̅
𝛿2 = 0																					 

 
In other words, if a k-mer is observed more than the average, that k-mer is simply treated as 
error-free k-mer 
 
The error rate e can be then estimated without the need of a reference as follow 
 

�̂� = 	 1 𝑘' log 𝑛 𝑚8'  
 
 
Estimation of coverage distribution and calculated genome/transcriptome size 
From distribution of per-read coverage, LongQC then estimates sequencing depth for the sample 
dataset. The default statistical model for genome is a two-component Gaussian mixture model 
(GMM): one for true distribution and the other is for the background noise coming from highly 
sensitive setting of overlap finding. The top 15% of reads with highest per-read coverage is 
currently ignored as outliers. GMM is estimated from the rest of the data, and estimated multiple 
components are sorted by pi/si, where pi is the mixing coefficient and si is the standard deviation 
of the i-th component, respectively. The top component in the sorted list is chosen (Stauffer and 
Grimson 1999). For transcriptome data, mixture of a lognormal distribution and a Gaussian 



distribution is applied: lognormal distribution is used to cope with higher dispersion in this case.  
The implementation in scikit-learn is used (Pedregosa et al. 2011). Once the coverage is 
estimated, the calculated genome or transcriptome size can be computed from the throughput and 
the estimated coverage. 
 If the fraction of non-sense reads is unusually high (> 40%) or per-read coverage 
distribution has its peak around zero, GMM hardly discriminate between true distribution and 
background noise and LongQC also computes genome or transcriptome size using the Poisson 
model (Lander and Waterman 1988). Two scenarios can be considered in this case: 1) good 
quality but insufficient amount of data, namely zero-inflation (See Figure S3. 3x coverage is 
minimum requirement) or 2) problematic data where non-sense reads exist at a high percentage. 
Estimated size can be used to discriminate two scenarios. Let �̂� be an observed non-sense read 
rate and 𝜖 be a true non-sense read rate. The coverage is computed from the fraction of gap 
region which has zero coverage under Poisson model as 
 

𝜆 = 	− log(�̂� − 𝜖) 
 
Crude genome or transcriptome size is then computed 
 

𝐺H = 	
𝑁(1 − 𝜖)

𝜆  
 
, where N is the total size of the given data. Although the true non-sense read rate 𝜖 is unknown, 
we can empirically determine a certain range of this value for a normal case. 
Zero-inflation is considered for computing 𝜆. If �̂� 	≅ 	𝜖, this estimation does not work, hence, the 
estimated size shall be smaller than the actual size. 
 
Parameterization of length distribution 
Length distribution of long reads generally shows skewed distribution with long tail if size 
selection is not conducted at all or is performed moderately. LongQC fits a gamma distribution 
to read length data because its shape parameter summarizes the observed distribution well. The 
distribution fitting step uses the implementation in SciPy. 
 
GC content and sequence complexity calculation 
GC content of a genome has long been used as a standard statistic, and the distribution of per-
read GC fraction is widely used for short read QC. In order to deal with the read length 
variability of TGS LongQC employs two different approaches to calculate the GC fraction. The 
first procedure computes the GC fraction on the whole read, independently from the read length 
and plots the distribution of per-chunk GC content. The second one instead standardizes per read 
length calculating the GC fraction on short fixed-length substrings (150bp as default). 
In the latter case, because of the huge number of resulting short reads, randomly selected (20% 
as default) substrings are used to reduce computational time. The probability density function of 
both per-whole read and per-substring distributions are further estimated by kernel density 
estimation using Gaussian kernel implemented in SciPy. The bandwidth was determined by 
Scott’s rule (Scott 1992). 



 The DUST algorithm(Morgulis et al. 2006) is applied to detect low-complexity region 
and compute low-complex fraction within a read. The implementation in minimap2 (Li 2018) 
ver. 2.6 was used. 
 
 
 
Supplementary Figures 
 

Supplementary Figure S1: Estimated per-read error rate versus per-read QV (base-level quality 
scores assigned by a sequencer on a read were averaged). Purple dots represent HQNR (Mojarro 
et al. 2018), high quality noisy reads, and light blue dots represent the other normal reads from 
the same dataset (1000 reads were randomly subsampled for comparison). HQNR reads show 
high divergence regardless of high predicted quality score. 
 
 



 
Supplementary Figure S2: An example of flanking region analysis using single cell data on 
Sequel (Gupta et al. 2018). Characteristic two peaks for each read are observed in histograms. 
Symmetric distribution is expected from the nature of sequencing protocol. The length of 
adapters having poly-T varies because of diverse poly-A length; as a result, the peak at the 3’ 
terminal is expected to be shallower, and such trend is indeed observed. 
 
 
 

 
Supplementary Figure S3: Effect of zero inflation on low coverage datasets. X-axis shows 
dataset depth and y-axis describes the estimated non-sense read fraction. Simulated 1x to 10x 

PCR primer PCR primer

10x adapterPoly(dT)VN

cell barcodes + UMI

insert



depth datasets were generated by PBSIM. Lack of coverage (<4x) wrongly classifies reads as 
non-sense reads. 
 
 
 
Supplementary Tables 
Supplementary Table S1: Search of good empirical threshold for PacBio datasets. Sum of 
squared difference was minimum at t2 = 80. Here, non-sense read fraction quantified by 
minimap2 were assumed to be true rate. See ‘Overlap finding’ in Supplementary Materials and 
Methods for further details of t2. 
 t2 = 60 t2 = 80 t2 = 100 TRUE 

Sequel in-house E. coli 1 0.0478 0.0575 0.0669 0.06713023 
Sequel in-house E. coli 2 0.1004 0.1161 0.1304 0.12029256 

RS-II in-house E. coli 0.0191 0.0291 0.0363 0.03447949 
RS-II PB E. coli 0.0399 0.0509 0.0627 0.04862082 

Sum of squared difference 0.001081953 0.00014445 0.00030375  
 
 
Supplementary Table S2: Search of good empirical threshold for Nanopore datasets. Sum of 
squared difference was minimum at t2 = 160. Here, non-sense read fraction quantified by 
minimap2 were assumed to be true rate. See ‘Overlap finding’ in Supplementary Materials and 
Methods for further details of t2. 

 t2 = 120 t2 = 140 t2 = 160 t2 = 180 TRUE 

MinION E. coli 1D 0.1432 0.1518 0.1579 0.162 0.157 

MinION E. coli 1D^2 0.0651 0.0672 0.0695 0.0716 0.071628 

Sum of squared difference 0.000233055 4.6647E-05 5.3384E-06 2.5001E-05  
 
 
Supplementary Table S3: The performance of the non-sense read fraction estimation using the 
real datasets. The value in parenthesis for A. thaliana shows the unmapped fraction against the 
reference genome before E. coli read filtering. 

 PB C.elegans PB D.melanogaster  ONT A.thaliana 

True fraction 0.0440 0.0412 0.0995 (0.1760)  
Estimated fraction 0.0413 0.0276 0.1050 

 
 
Supplementary Table S4: Detected species in non-sense reads of our in-house E.coli datasets 
using blastn and nt.  

  
The number 
of reads 

Zero hit at 
1E-4 >=1% species 

Sequel in-house E. coli 1a 4747 1851 E. coli (15.6%) 

Sequel in-house E. coli 2a 13039 6082 E. coli (18.9%) 



RS-II E. coli data1 2184 276 E. coli (45.8%) 

MinION E. coli 1Da 8377 5402 E. coli (1.0%) 

MinION E. coli 1D^2 2078 1508 E. coli (7.8%) 

Sequel in-house challenging data 1  24686 17174 E. coli (2.1%), pb synthetic read 
(1.6%) 

Sequel in-house challenging data 1 39933 30826 E. coli (1.7%), pb synthetic read 
(1.1%) 

a: 10% random sampling was conducted because of computational time. 
 
Supplementary Table S5: The estimation performance of the non-sense read fraction against the 
simulated datasets using NanoSim and PBSIM. For NanoSim sets, 80000 reads were generated 
after specifying noisy read rate. For PBSIM, 30x depth reads were mixed with 20x or 7.5x depth 
noisy reads to fit them 40% or 20% non-sense read rate. 

 NanoSim40 NanoSim20 PBSIM40 PBSIM20 

True fraction 0.4000 0.2000 0.4000 0.2000 
Estimated fraction 0.4180 0.2190 0.4050 0.2120 

 
 
Supplementary Table S6: QV thresholds for data quality estimated by DASqv, the fractions of 
the worst quality (q=50) segment, and the fractions of poor-quality reads defined by that 
segment.  

 Thresholdsb Proportion of 
q=50 segment  

Proportion of poor-
quality readsc 

Normal in-house E. coli dataset 1 19, 24 0.047 0.072 

Normal in-house E. coli dataset 2 21, 28 0.080 0.143 

Challenging in-house E. coli dataset 1a 20, 25 0.066 0.226 

Challenging in-house E. coli dataset 2a 21, 27 0.094 0.384 

a: Contaminated spiked-in control reads were removed from these datasets.  
b: QV thresholds computed by DASqv. The two values refer to thresholds for good (80th 
percentile) and bad (93rd percentile) segments, respectively.  
c: If more than 50% of segments have q=50 on a read, that read is defined as a poor-quality read 
here. 
 
 
Supplementary Table S7: The performance of the non-sense read fraction estimation using the 
Iso-Seq datasets. The values in parenthesis show unmapped rate without consideration of mis-
assignment of samples. 

 Sequel Humming bird Sequel Zebra Finch 

True fraction 0.0456 (0.0569) 0.0377 (0.0530) 

Estimated fraction 0.0407 0.0485 
 
 



Supplementary Table S8: Spearman’s rank correlation between estimated divergence and read 
identity. In all cases, correlations were statistically significant (p-value < 2.2e-16). 

    Spearman's rank correlation 

PacBio 

RS-II in-house E. coli -0.9499143 
RS-II PB E. coli -0.9416994 
Sequel in-house E. coli 1 -0.8537211 
Sequel in-house E. coli 2  -0.8998917 
RS-II PB C. elegans -0.8603884 
RS-II PB D. melanogaster -0.7414686 

ONT 
MinION in-house E. coli 1D -0.9116604 
MinION in-house E. coli 1Dsq -0.9084482 
A. thaliana -0.833329 

 
 
 
Supplementary Table S9: Quantification of the non-sense read fraction for genome sequencing 
datasets by blastn. 

 minimap2 blastn 

Sequel in-house E. coli 1 0.0671 0.0609 
Sequel in-house E. coli 2 0.1220 0.1080 

RS-II in-house E. coli data1 0.0345 0.0323 
RS-II E. coli data2 0.0486 0.0496 

MinION in-house E. coli 1D 0.1570 0.1610 

MinION in-house E. coli 1D^2 0.0716 0.0749 

PB C. elegans 0.0440 0.0394 

PB D. melanogaster 0.0412 0.0507 
 ONT A. thaliana 0.0995 0.1060 

 
 
Supplementary Table S10: Runtime summary for LongQC and DASCRUBBER on normal and 
challenging datasets. Mean and standard deviation from three iterations are shown below. For 
DASCRUBBER, runtime is summation of multiple steps: from header conversion to adding 
coverage track to the DAZZLER database.  
  LongQC DASCRUBBER 

Normal in-house E. coli dataset 1 10m30s ± 26s 347m 41sb 
Normal in-house E. coli dataset 2 14m58s ± 19s 517m 0sb 

Challenging in-house E. coli dataset 1a 1m29s ± 6s 3m34s ± 24s 
Challenging in-house E. coli dataset 2a 1m22s ± 7s 2m11s ± 15s 

a: Contaminated spiked-in control reads were removed from these datasets.  
b: One iteration was applied. 



 
Outline of LongQC output 
 
LongQC generates various statistics and plots for quality assessment purposes. The main output 
is a single HTML summary file containing plots and statistics. In addition, text-based statistics 
are also written in a json file. Per-read statistics are written into other text files and users can 
check further in details by reading or parsing those text files if needed. Explanations for each 
subsection in the HTML output file are given below. For illustration purpose, example plots for 
the Arabidopsis dataset (Michael et al. 2018) are also shown (contaminated reads were filtered. 
See the main text result for details). 
 
General statistics 
This subsection in the HTML and json files summarizes and shows general statistics of a dataset: 
throughput, number of reads, and estimated non-sense read fraction.  
 
Adapter statistics 
LongQC provides a rapid adapter sequence removal functionality using Edlib, which is one of 
the fastest algorithms for alignment (Sosic and Sikic 2017). This subsection shows results of 
adapter sequence search. Adapter sequence can be provided to the program, otherwise pre-
defined representative adapter sequence for ONT 1d, ONT 1d^2, PacBio Sequel or PacBio RS-II 
is applied to the dataset according to the platform chosen. The number of reads having adapter-
like (75% or higher identity) sequences in terminals is shown. The average length of adapter-like 
sequences is computed if such sequences are observed. The average length should be consistent 
with the actual adapter used in the sequencing kit and the mode of the frequency distribution 
shown in the flanking region analysis plots would be at a non-zero value (see subsection 
“Flanking region analysis”).  
 
Read length 
This panel shows the length distribution for all reads in a given dataset. Typical genome 
sequencing data from ONT show unimodal exponential distribution, therefore, alpha parameter 
of Gamma distribution is smaller than 2. Transcripts, size selected libraries (such as PacBio data) 
or highly fragmented samples will show a higher alpha value because of the skewness to the left. 
 



 
 
Per-read quality 
This panel shows boxplots for per-read QV if QV is available in the file. The x-axis is not the 
position of reads but binned read length. QV threshold is set to 7, which is equivalent to 20% 
error rate. High quality library dataset should show high QV values regardless of read length and 
the median is expected to be higher than 7.  
 

 
 
Per-read coverage 
Per-read coverage subsection presents coverage statistics computed from the overlapping 
information between subsampled reads and the entire dataset. 
 
1) Per read coverage distribution 

The first plot is an overview of per-read coverage. A single peak is expected except for 
metagenomic samples. LongQC automatically fits a curve using Gaussian mixture model (for 
genome) or a mixture of Gaussian and lognormal distribution (for transcriptome) to discriminate 
the true peak from the background. Mean/Median is then used for rough genome/transcriptome 
size estimation. Multiple peaks, when the library is not metagenomic, indicate that the dataset 
has an overdispersion of coverage distribution. 



 

 
 

2) Read coverage over different length reads 
This plot shows fluctuations of per-read coverage over different read lengths. In genome 

sequencing data, per-read coverage is expected to follow normal distribution and therefore 
fluctuation of medians for per-read coverage should be within a certain range (e.g. 3 standard 
deviations) regardless of read length. A significant deviation can highlight potential issues 
(Figure 2). Our experience suggested that such deviation could indicate contamination of 
different scale genomes/low quality library (i.e. overloading in PacBio). 

 

 
 

3) QV for normal and non-sense reads 
Normal reads should show higher per-read QV value than that of non-sense reads. Ideally, 

median of normal reads should be higher than 7. This panel can be interpreted into 3 scenarios: 
I. Possible low coverage. If medians of per-read QV for both normal and non-sense reads 

are placed in green area, this could indicate low coverage. When the dataset has low 



coverage, some good reads will appear to be unmappable simply due to insufficient depth 
achieved in the dataset and therefore are falsely classified as non-sense reads despite of 
their high QV.  

II. Noisy dataset. When the medians for both normal and non-sense reads are smaller than 7 
the dataset is particularly noisy. Further downstream analysis can be adversely affected.  

III. Good dataset. When the median for non-sense reads is lower than 7 and the median for 
normal reads is higher than 7 the dataset is considered canonical. 
 

             
 
It is worth mentioning that mean/median coverage shown in this section can be lower than 
coverage obtained by mapping reads to a reference. Mapping to uncorrected error-prone 
sequences in the case of LongQC is less sensitive and coverage could be affected. Similarly, 
estimated genome/transcriptome size could be larger than the actual size because of this effect. 
 
GC contents 
GC content is shown in this subsection by two different distributions, computed from the same 
dataset. The first distribution is calculated using end-to-end full length reads, and the second one 
is computed from chunked subsequences. The first one should show sharper distribution, because 
of a smaller deviation reflecting the use of longer sequences.  

Of note the full length read GC content distribution can look slightly different if the same 
sample is sequenced with different run/platforms (e.g. E. coli sequenced on Sequel and 
MinION). Each platform, and even different version of chemistry on the same platform, has 
different characteristic read length, and different modes in read length can affect the full length 
read GC content distribution. The chunked approach instead is more insensitive to sequencing or 
platform differences and does not show this bias since the length is standardized. When using a 
mixed dataset of different samples/organism, either or both the full length and the chunked 
approach can be used as a proxy for inferring sample contaminations showing a divergent GC 
distribution. 
 



 
 
Flanking region analysis 
These plots can be used to interrogate the presence of specific sequences like adapters. If there 
are no artificial sequences such as adapter sequences, the mode of the frequency distribution 
should be at 0 for both terminals and frequency should steeply decline from 0. Otherwise, 
specific patterns should reflect the characteristics of terminal sequences present for each 
application. If adapter-like sequences are observed by sequence search using Edlib (see above), 
average length of such sequences is plotted as a dashed vertical red line. 
 

 
 
Sequence complexity 
This panel shows distribution of per-read sequence complexity score computed by DUST 
algorithm (Morgulis et al. 2006). 
 
Per-read sequence error 
This is given as a part of text summary file for subsampled genomics DNA sequences. 
Empirically estimated error rate is computed for randomly sampled sequences (See 
computational details in the materials and methods below). 
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