## Supplemental Information (Three Tables and Eight Figures)

## Table S1. Sequences, subfamilies and accession numbers.

Subfamily Name (synonym) - Accession Number - Description - Species

Activin
11 Activin
BMP
BMP CeTIG-2 NP_504271.1 transforming growth factor beta family [C elegans]
BMP DmDPP NP_477311.1 decapentaplegic, isoform A [D melanogaster]
BMP DmGBB NP_477340.1 glass bottom boat, isoform A [D melanogaster]
BMP
22 BMP
CeTIG-3 NP_497318.2 transforming growth factor beta family [C elegans]
DmActivin-beta NP_651942.2 activin-beta [D melanogaster]
DmMyoglianin NP_726604.1 myoglianin, isoform A [D melanogaster]
MmBmp3 NP_0012 297606.1 bone morphogenetic protein 3 isoform 1 [M musculus]
MmGdf10 NP_665684.2 growth/differentiation factor 10 preproprotein [M musculus]
MmGdf11 NP_034402.1 growth/differentiation factor 11 preproprotein [M musculus] Synonym BMP11
MmInhba NP_032406.1 inhibin beta A chain preproprotein [M musculus]
MmInhbb NP_032407.1 inhibin beta B chain preproprotein [M musculus]
MmInhbc NP_034695.1 inhibin beta C chain preproprotein [M musculus]
MmInhbe NP_032408.2 inhibin beta E chain preproprotein [M musculus]
MmMstn NP_034964.1 growth/differentiation factor 8 preproprotein [M musculus] Synonym GDF8

DmSCW NP_524863.3 screw, isoform A [D melanogaster]
MmBmp2 NP_031579.2 bone morphogenetic protein 2 preproprotein [M musculus]
MmBmp4 NP_001303289.1 bone morphogenetic protein 4 preproprotein [M musculus]
MmBmp5 NP_031581.2 bone morphogenetic protein 5 preproprotein [M musculus]
MmBmp6 NP_031582.1 bone morphogenetic protein 6 preproprotein [M musculus]
MmBmp7 NP_031583.2 bone morphogenetic protein 7 preproprotein [M musculus]
MmBmp8a N $\overline{\mathrm{P}}$ _ 001242948.1 bone morphogenetic protein 8A isoform 1 [M musculus]
MmBmp8b NP_031585.2 bone morphogenetic protein 8B preproprotein [M musculus]
MmBmp10 NP_033886.2 bone morphogenetic protein 10 preproprotein [M musculus]
MmBmp15 NP_033887.1 bone morphogenetic protein 15 preproprotein [M musculus]
MmGdf1 NP_032133.2 embryonic growth/differentiation factor 1 [M musculus]
MmGdf2 NP_062379.3 growth/differentiation factor 2 preproprotein [ M musculus] Synonym BMP9
MmGdf3 NP_032134.2 growth/differentiation factor 3 preproprotein [M musculus] MmGdf5 NP_032135.2 growth/differentiation factor 5 preproprotein [M musculus]
MmGdf6 NP_038554.1 growth/differentiation factor 6 preproprotein [M musculus]
MmGdf7 NP_001299805.1 growth/differentiation factor 7 isoform 1 [M musculus]
MmGdf9 NP_032136.2 growth/differentiation factor 9 precursor [M musculus]
MmNodal NP_038639.2 nodal preproprotein [M musculus]

TGF- $\beta \quad$ CeDAF-7 NP_497265.1 dauer larva development growth factor daf-7 [C elegans]
TGF- $\beta$ CeUNC-129 NP_501566.1 uncharacterized protein CELE_C53D6.2 [C elegans]
TGF- $\beta$ DmDawdle NP_523461.1 dawdle, isoform A [D melanogaster]
TGF- $\beta$ DmMaverick NP_524626.1 maverick [D melanogaster]
TGF- $\beta \quad$ MmAmh NP_031471.2 muellerian-inhibiting factor precursor [M musculus]
Synonym MIS
TGF- $\beta \quad$ MmGdf15 NP_035949.2 growth/differentiation factor 15 preproprotein [M musculus]
TGF- $\beta$
TGF- $\beta$
TGF- $\beta$
TGF- $\beta$
TGF- $\beta$
TGF- $\beta$ 12 TGF- $\beta$
45 total TGF- $\beta$ family sequences
outgroup MmGdnf NP_034405.1 glial cell line-derived neurotrophic factor 1 [M musculus]

Table S2. Cleavage site identified computationally separating prodomain and ligand.

| Subfamily | Name | Residue | Prodomain | Cleavage sit | te Ligand |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Activin | CeTIG-3 | 125 | NVINALSVLR | // | NAPNFDVMVF |
| Activin | DmActivin-beta | 822 | TESSRTRRVR | // | RRAVDCGGAL |
| Activin | DmMyoglianin | 483 | GSQKKHRRKR | // | SVYMDCTEND |
| Activin | MmBmp3 | 276 | ALSVERRKKR | // | STGILLPLQN |
| Activin | MmGdf10 | 328 | LKPRTGRKDR | // | KKKDQDTFTA |
| Activin | MmGdf11 | 287 | VLENTKRSRR | // | NLGLDCDEHS |
| Activin | MmInhba | 298 | SEDHPHRRRR | // | RGLECDGKVN |
| Activin | MmInhbb | 285 | RLGDSRHRIR | // | KRGLECDGRT |
| Activin | MmInhbc | 226 | RVEGKHRVRR | // | RGIDCQGASR |
| Activin | MmInhbe | 227 | EPGAGRARRR | // | TPTCEPETPL |
| Activin | MmMstn | 258 | VTDTPKRSRR | // | DFGLDCDEHS |
| BMP | CeDBL-1 | 227 | SEPSSVRRKR | // | SAQTGNSERK |
| BMP | CeTIG-2 | 258 | KPNENERCQR | // | KGLYVDFDIL |
| BMP | DmDPP | 463 | GGGKGGRNKR | // | QPRRPTRRKN |
| BMP | DmGBB | 316 | AHSSHHRSKR | // | SASHPRKRKK |
| BMP | DmSCW | 262 | VKIQKLRFKR | // | DLEKRRAGGG |
| BMP | MmBmp2 | 271 | GHPLHKREKR | // | QAKHKQRKRL |
| BMP | MmBmp4 | 283 | HTLTRRRAKR | // | SPKHHPQRSR |
| BMP | MmBmp5 | 307 | ASEVLLRSVR | // | AASKRKNQNR |
| BMP | MmBmp6 | 362 | VSEVHVRTTR | // | SASSRRRQQS |
| BMP | MmBmp7 | 282 | ATEVHLRSIR | // | STGGKQRSQN |
| BMP | MmBmp8a | 251 | ASQSPVRAPR | // | AARPLKRRQP |
| BMP | MmBmp8b | 254 | SPVRAPRTAR | // | PLKKKQLNQI |
| BMP | MmBmp10 | 304 | IDDSSARIRR | // | NAKGNYCKKT |
| BMP | MmBmp15 | 258 | ESSFLMRSVR | // | QACSIESDAS |
| BMP | MmGdf1 | 246 | GPVGTCRTRR | // | LHVSFREVGW |
| BMP | MmGdf2 | 309 | VGPLLARRKR | // | STGASSHCQK |
| BMP | MmGdf3 | 243 | HCHPSSRKRR | // | AAISVPKGFC |
| BMP | MmGdf5 | 365 | EYLFSQRRKR | // | RAPLANRQGK |
| BMP | MmGdf6 | 346 | GKKSRLRCSR | // | KPLHVNFKEL |
| BMP | MmGdf7 | 348 | AGRGHGRRGR | // | SRCSRKSLHV |
| BMP | MmGdf9 | 297 | EVERSPRRRR | // | GQKAIRSEAK |
| BMP | MmNodal | 234 | ERGGWGRRQR | // | RHHLPDRSQL |
| TGF- $\beta$ | CeDAF-7 | 225 | TRPKGSRKRR | // | SHAKPVCNAE |
| TGF- $\beta$ | CeUNC-129 | 280 | FGEETSREER | // | ERIANEELAN |
| TGF- $\beta$ | DmDawdle | 457 | IVIDMQNRRR | // | KSRQKRSINC |
| TGF- $\beta$ | DmMaverick | 577 | HRSNHDSTWR | // | KDKWTNNCYK |
| TGF- $\beta$ | MmAmh | 437 | GREGRGRTGR | // | SAGTGTDGPC |
| TGF- $\beta$ | MmGdf15 | 179 | LRVAAGRGRR | // | SAHAHPRDSC |
| TGF- $\beta$ | MmInha | 224 | APSAGERARR | // | STPSVPWPWS |
| TGF- $\beta$ | MmLefty1 | 211 | GTWSSHKLVR | // | FAAQGTPDGK |
| TGF- $\beta$ | MmLefty 2 | 211 | GTWSAHKLVR | // | FAAQGTPDGK |
| TGF- $\beta$ | MmTgfb1 | 269 | QHLHSSRHRR | // | ALDTNYCFSS |
| TGF- $\beta$ | MmTgfb2 | 321 | SQQSSRRKKR | // | ALDAAYCFRN |
| TGF- $\beta$ | MmTgfb3 | 291 | PGQGSQRKKR | // | ALDTNYCFRN |
| outgroup | MmGdnf | 111 | QAAALPRRER | // | NRQAAAASPE |

Table S3. Spacer between cleavage site and first cysteine of the ligand is hypervariable.

| Subfamily | Name | Residues between cleavage site and first cysteine | Length |
| :---: | :---: | :---: | :---: |
| Activin | CeTIG-3 | NAPNFDVMVFQPNTVTAGTSD | 21 |
| Activin | DmActivin-beta | RRAVD | 5 |
| Activin | DmMyoglianin | SVYMD | 5 |
| Activin | MmBmp3 | STGILLPLQNNELPGAEYQYKEEGAWEERKPYKSLQTQPPEKSRN KKKORKGSHOKGOTLOFDEOTLKKARRKOWVEPRN | 80 |
| Activin | MmGdf 10 | KKKDQDTFTAASSQVLDFDEKTMQKARRRQWDEPRV | 36 |
| Activin | MmGdf11 | NLGLD | 5 |
| Activin | MmInhba | RGLE | 4 |
| Activin | MmInhbb | KRGLE | 5 |
| Activin | MmInhbe | RGID | 4 |
| Activin | MmInhbe | TPT | 3 |
| Activin | MmMstn | DFGLD | 5 |
| BMP | CeDBL-1 | SAQTGNSERKNRKKGRKHHNTEAESNL | 27 |
| BMP | CeTIG-2 | KGLYVDFDILGWKQWVIAPEGFSAFY | 26 |
| BMP | DmDPP | QPRRPTRRKNHDDT | 14 |
| BMP | DmGBB | SASHPRKRKKSVSPNNVPLLEPMESTRS | 28 |
| BMP | DmSCW | DLEKRRAGGGSPPPPPPPPVDLYRPPQS | 28 |
| BMP | MmBmp2 | QAKHKQRKRLKSS | 13 |
| BMP | MmBmp4 | SPKHHPQRSRKKNKN | 15 |
| BMP | MmBmp5 | AASKRKNQNRNKSNSHQDPSRMPSAGDYNTSEQKQA | 36 |
| BMP | MmBmp6 | SASSRRRQQSRNRSTQSQDVSRGSGSSDYNGSELKTA | 37 |
| BMP | MmBmp7 | STGGKQRSQNRSKTPKNQEALRMASVAENSSSDQRQA | 37 |
| BMP | MmBmp8a | AARPLKRRQPKKTNELPHPNKLPGIFDDGHGSRGREV | 37 |
| BMP | MmBmp8b | PLKKKQLNQINQLPHSNKHLGILDDGHGSHGREV | 34 |
| BMP | MmBmp10 | NAKGNY | 6 |
| BMP | MmBmp15 | QA | 2 |
| BMP | MmGdf1 | LHVSFREVGWHRWVIAPRGFLANF | 24 |
| BMP | MmGdf2 | STGASSH | 7 |
| BMP | MmGdf3 | AAISVPKGF | 9 |
| BMP | MmGdf5 | RAPLANRQGKRPSKNLKAR | 19 |
| BMP | MmGdf6 | KPLHVNFKELGWDDWIIAPLEYEAYH | 26 |
| BMP | MmGdf7 | SR | 2 |
| BMP | MmGdf9 | GQKAIRSEAKGPLLTASFNLSEYFKQFLFPQNE | 33 |
| BMP | MmNodal | RHHLPDRSQL | 10 |
|  |  | Unexpected conservation between MmNodal and CeDBL-1 in red |  |
| TGF- $\beta$ | CeDAF-7 | SHAKPV | 6 |
| TGF- $\beta$ | CeUNC-129 | ERIANEELANDVRVVLLQNKNR | 22 |
| TGF- $\beta$ | DmDawdle | KSRQKRSIN |  |
| TGF- $\beta$ | DmMaverick | KDKWTNN | 7 |
| TGF- $\beta$ | MmAmh | SAGTGTDGP | 9 |
| TGF- $\beta$ | MmGdf15 | SAHAHPRDS | 9 |
| TGF- $\beta$ | MmInha | STPSVPWPWSPAALRLLQRPPEEPAAHAF | 29 |
| TGF- $\beta$ | MmLefty1 | FAAQGTPDGKGQGEPQLELHTLDLKDYGAQGN | 32 |
| TGF- $\beta$ | MmLefty 2 | FAAQGTPDGKGQGEPQLELHTLDLKDYGAQGN | 32 |
| TGF- $\beta$ | MmTgfb1 | ALDTNY | 6 |
| TGF- $\beta$ | MmTgfb2 | ALDAAY | 6 |
| TGF- $\beta$ | MmTgfb3 | ALDTNY | 6 |
| outgroup | MmGdnf | NRQAAAASPENSRGKGRRGQRGKNRG | 26 |



Fig. S1. Prodomain trees. Trees for this domain are displayed as in Fig. 1. Red arrowheads indicate a cluster that may reflect common regulation. For every tree except Activin+TGF- $\beta$ nodes above 0.95 are significant. For Activin+TGF- $\beta$ nodes above 0.50 are significant. A) Activin. The significant cluster of Activin and Myoglianin
is unexpected. B) TGF- $\beta$. The significant cluster of Dawdle and Inhibin- $\alpha$ was unexpected. C) Activin+TGF- $\beta$. The significant cluster of Activin, Maverick and Myoglianin that is clustered with the four Inhibin- $\beta$ proteins and Dawdle's location near Inhibin- $\alpha$ were unexpected but consistent with cysteine conservation in the "Association region" and $\beta 8$. D) BMP. The significant cluster of Gbb/Screw in all trees was unexpected. The cluster of heterodimerizing Nodal and GDF1/GDF3 was expected. Red asterisk indicates node leading to two symmetric secondary clusters. E) All family members. The not quite significant cross-subfamily cluster of Activin, TIG-3, Gbb and Screw with Nodal was unexpected but three are known to heterodimerize and two have conserved cysteines. The absolute cluster of GDF3/GDF1 with GDF15/Inhibin- $\alpha$ and this group's not quite significant cluster with Myoglianin was unexpected. The not quite significant cluster of DAF-7 with the four Inhibin- $\beta$ proteins was unexpected but is consistent with "Association region" cysteine conservation. The cluster of BMP3/GDF10 with Myoglianin was unexpected.


Fig. S2. Ligand trees. Trees for this domain are displayed as in Fig. 1. Green arrowheads indicate a cluster that may reflect common function. For Activin, TGF- $\beta$ and Activin+TGF- $\beta$ nodes above 0.65 are significant. For BMP subfamily and All family members trees nodes above 0.85 are significant. A) Activin. The significant cluster of Activin and the four Inhibin- $\beta$ proteins was expected. B) TGF- $\beta$. The significant clusters of TGF- $\beta 1-3$ and Lefty 1,2 were expected. C) Activin+TGF- $\beta$. The significant cluster of Activin and the four Inhibin- $\beta$ proteins was expected. D) BMP. The significant cluster of BMP2-8a,b with Gbb/Screw was expected and consistent with functional heterodimers of BMP2-BMP6 and BMP2-BMP7 that have been reported. The significant cluster of Nodal and DBL-1 was unexpected. Green asterisk indicates node leading to two asymmetric secondary clusters. E) All family members. Several significant clusters are expected such as the four Inhibin $-\beta$ proteins and Dpp/BMP2/BMP4. A significant cluster of Nodal and DBL-1 was unexpected. F) Cystine knot nodes above 0.85 are significant. Several significant clusters are expected such as Activin with four Inhibin- $\beta$ proteins, Dpp/BMP2/BMP4 and Gbb/Screw/BMP5-8a,b. A significant cluster of Nodal and DBL-1 was unexpected.


Fig. S3. Full-length trees. Trees for this domain are displayed as in Fig.1. Green arrowheads indicate a cluster that may reflect common function. For every tree except Activin+TGF- $\beta$ nodes above 0.95 are significant. For Activin+TGF- $\beta$ nodes above 0.85 are significant. A) Activin. The significant cluster of Myoglianin and

Myostatin/GDF11 was expected. B) TGF- $\beta$. The significant clusters of TGF- $\beta 1-3$ and Lefty 1,2 were expected. C) Activin+TGF- $\beta$. The significant cluster of Myoglianin and Myostatin/GDF11 was expected. D) BMP. Clustering of GBB/Screw, BMP10-GDF9, BMP15-GDF9 and Nodal-GDF1/GDF3 are consistent with heterodimerization that has been reported. Green asterisk indicates node leading to two asymmetric secondary clusters. E) All family members. The not quite significant clustering of BMP3 and GDF1 with all of the BMP subfamily proteins was unexpected. The not quite significant cluster between Nodal and GDF1/GDF3 was expected.

|  |  | -- 1 1--------- -LatencyLasso- |
| :---: | :---: | :---: |
| MmBmp3 | 124 |  |
| MmGdf10 | 123 |  |
| CeTIG-3 | 1 |  |
| DmMyoglianin | 205 | DSTESTKMHITMRINTKKLPNITKPISVPQNIIDNFY-RDYNASSKTTVWNRMESIDESH |
| MmGdf11 | 72 | LRLESIKSQILSKLRLKEAPNISREVVKQLIP-KAPPLQQILDL----------HDFQGDA |
| MmMstn | 52 | SRIEATKIQILSKLRLETAPNISKDAIRQLLP-RAPPLRELIDQ---------YDVQRDD |
| DmActivin-beta | 369 |  |
| MmGdnf |  | DVMDFIQATIKR---LKRSPDKQ----AAAIP-RRER |
| MmInhba | 53 | EMVEAVKKHI INMLHLKKRPDVTQPVPKAALL-NAIR--------------------1/HVGK |
| MmInhbb | 77 | DFLEAVKRHILSRLQLRGRPNITHAVPKAAMV-TALR--------------------1/HAGK |
| MmInhbc | 42 |  |
| MmInhbe | 42 |  |
| MmBmp3 | 124 |  |
| MmGdf10 | 123 |  |
| CeTIG-3 | 1 |  |
| DmMyoglianin | 264 | ISINDTYGD---------------HIMTDFEDESSSSQM |
| MmGdf11 | 122 |  |
| MmMstn | 102 | S-SDGSLEDD----------DYHATTETIIMPT-------------------ESDFLMQAD |
| DmActivin-beta | 411 | MIPNNAFGS--------SGKNLDQKTIKLRAEASPGSHLFNGRGGRTDQRSERDPSHHKY |
| MmGdnf |  |  |
| MmInhba | 95 | VGENGYVEIEDDIGRRAEMNELMEQTSEIITFAESG--------------------------- |
| MmInhbb | 119 | VREDGRVEIPHLDGHASPGADGQERVSEI I FAETDGLA----------------------- |
| MmInhbc | 84 | RET----LLEH--------DQRQEEYEII FADTDLSS------------------------ |
| MmInhbe | 84 | पV-------P----------GN---REKVISEATIIDKS---------------------TSTY |
| MmBmp3 | 124 | -----NILSATIYFYVGELVNI---SLSC |
| MmGdf10 | 123 | --MILTAAFHFYSEPPRWPRAREVFC |
| CeTIG-3 | 17 | -ITLEPNRKSWTCITPES- |
| DmMyoglianin | 330 | SIYIFPEEIQPHVRHNRKVDVFRFQI-----DSSYSDLSY圌LHLYL--RGWDWISAHQP |
| MmGdf11 | 179 | WVY LRPVPR |
| MmMstn | 158 | WI YLRPVKT |
| DmActivin-beta | 643 | EIITFAEEGT----QYRQYRILEFSAQNRRVPSQKLSIRS A |
| MmGdnf |  |  |
| MmInhba | 153 | NLFLEVPKA |
| MmInhbb | 180 | ASL-------WLYLKLLPY |
| MmInhbc | 132 | MFEVQFPHN |
| MmInhbe | 125 | LhLIVPPS |
| MmBmp3 | 145 | P-E---PQGCSHHTQRQ-------------HIQIDISAWIILKSNQSQLLG---------- |
| MmGdf10 | 147 | KPRAK-NASCRLLTPGL-------------PARLHLIFRSLS-QNTATQG |
| CeTIG-3 | 34 | -----LVKDCFQYSINSINHEILSASLIIDPKDTNISIVVYEVDELF |
| DmMyoglianin | 383 | G----LLEEIKK----QPRK-------------DIVVTIHRAIRVA---------------- |
| MmGdf11 | 188 |  |
| MmMstn | 167 | -PTT----------------------------------------------1/ |
| DmActivin-beta | 699 | LPEKHLLNTKRKWGANKPHH--------------RIKIWVFQLSTSI--------NITEK |
| MmInhba | 165 | N---R------------TRT--------------KVTIRIFQQQKHPQGSLDTGDEAEEM |
| MmInhbb | 192 | VLEKG------------SRR--------------KVRVKVYFQE |
| MmInhbc | 144 | ATQT-------------------------------MNIRVLVLR |
| MmInhbe | 135 |  |
| MmBmp3 | 178 |  |
| MmGdf10 | 182 | -------LLRGAMALTPPPRGLWQAKDISSI IKAARRDG-----ELLISAQLDTGEKDPG |
| CeTIG-3 | 76 | ---GELQYV--DRFEIR-ETLDKYHFDISHLFHKWMKOKSSDK-IKIEITNSNT----- |
| DmMyoglianin | 410 | TSFNPKVKMFEFRHS IPSGLGQWVAVDIKSLIGNLGSNMTQ---EILIK--GAET----- |
| MmGdf11 | 211 | GGGRRHIRIRSLKIELHSRSGHWQSIDFKQVIHSWFReP-QSNWGIEINAFDPSG----- |
| MmMstn | 184 | --GTRYTGIRSLKLDMSPGTGIWQSIDVKTVI QNWLKQP-ESNIGIEIKALDENG----- |
| DmActivin-beta | 737 | G--IDKAIIFRASFQVDPKNLGWQKFDLTDTIREWYGHTSHEKLRLIIDCTGCGG----- |
| MmGdnf <br> MmInhba | 196 |  |
| MmInhbb | 210 | --QGHGDRWNVVEKKVDLKRSGWHTFPITEAIQALFER-GERRLNIDVQCDSCQE----- |
| MmInhbc | 158 | ---YDTNLTLTSQYVVQVNASGWYQLLGPEAQAACS-GHLTLEL--VPESQVA----- |
| MmInhbe | 149 | ---TRCRGFRTFLAEHQTTSSGWHALTLPSSGLRSEDS-GVVKLQLEFRPLDLNS----no bowtie - $\beta 9$--- no- $\beta 9^{\prime \prime}$ - $-\quad-\beta 10-$ no- $\alpha$ |
| MmBmp3 | 226 | KRMLFFPEPY |
| MmGdf10 | 230 | VPRPSSHMPYILVYANDL-------------AISEPNSVAVSLQRYDPEPAGDFEPGAAP |
| CeTIG-3 | 124 |  |
| DmMyoglianin | 460 | ---WM---------------------KSLVVTTDNTSNPITVHIEIGS-- |
| MmGdf11 | 265 | --------TDIAVTS----------------------- |
| MmMstn | 236 | --------HDLAVTF-------------------------- |
| DmActivin-beta MmGdnf | 790 | --------RYSLHLFQTSKLR----G---------NSSDYLSTNPNRPELVLHTESSR-- |
| MmInhba | 250 | --------SGASLVLLGKKKKKEVDGDGKKKDGSDGGLEEEKEQSHRPFIMIUARQSE-- |
| MmInhbb | 262 | --LA |
| MmInhbc | 207 | ------HSSL-ILGWFSHRPFVAAQVRVE--- |
| MmInhbe | 200 | -TAAG---------------------LPRLLLDTAGQQRPELELKIRANE-- |

Fig. S4. Expanded Activin subfamily prodomain alignment indicating structural conservation. Sequences from Fig. 2 with no omissions, similar underlining and accurate numbering. Ungainly leaders and trailers were trimmed for brevity.


Fig. S5. Expanded TGF- $\boldsymbol{\beta}$ subfamily prodomain alignment indicating structural conservation. Sequences
from Fig. 4 including underlining and presented as in Fig. S4.

|  |  | -- 1 1-------------- --LatencyLasso- ---- 22 |
| :---: | :---: | :---: |
| DmMaverick | 245 | SKRVDETR-LKHLVLKGIGIKKL-PDMRKVNISQA----EYSSKYIEYLSRLRS |
| DmMyoglianin | 202 | AKVDS TES-IKMHILMRLNLKKL-PNITKPI--------SVPQNIIDNFYRDYNASS-KT |
| MmGdf11 | 69 | SRELRLES-IKSQILSKLRLKEA-PNISREVVKQLLPKAPPLQQILDLHDFQGDALQ-P- |
| MmMstn | 49 | TRYSRIEA-IKIQILSKLRLETA-ENISKDAIRQLLPRAPPLRELIDQYDVQRDDS--S- |
| CeTIG-3 | 1 | MSTSR-------------------------------------------------------------- |
| MmTg fb 1 | 41 | VKRKRIEA-IRGQIISKLRLASP-PSQGEVPPG------PLPEAVLALYNSTRDRVA-G- |
| MmTg fb 2 | 32 | FMRKRIEA-IRGQILSKLKLTSP-PEDY-PEPD------EVPPEVISIYNSTRDLLQ-E- |
| MmTgfb3 | 35 | IKKKRVEA-IRGQILSKLRLTSP-PEPS-V-MT------HVPYQVLALYNSTRELLE-E- |
| CeUNC-129 | 25 | -------L-INETIRDLLHFKSSDPNVI----------TSFHRS---------------------- |
| CeDAF-7 | 34 | MKQHRT ${ }^{\text {d }}$-YLKNEILDQLNMKEA-PKGLKPMDPEMKSVYLE-M-YRDLLEK-D-----EQ |
| MmBmp3 | 56 |  |
| MmGdf10 | 71 |  |
| MmInhba | 50 | SQPEMVEA-VKKHILNMLHLKKR-PDVTQPVPKAALLNAIRKL-------H-------VG |
| MmInhbb | 74 | VDGDFLEA-VKRHILSRLQLRGR-PNITHAVPKAAMVTALRKL-------H-------AG |
| MmInhbc | 39 | QRELLLDL-AKKS ILDKLHLSQR-PILSRPVSRGALKTALQRL-------R------GP |
| MmInhbe | 39 | ERALVLEL-AKQQILEGLHLTSR-PRITRPLPQAALTRALRRL-------Q-------PK |
| DmActivin-beta | 546 | MNE-----------------------------NALKKSTYPIDINHSIDNKTHTG |
| MmLeftyl | 27 | -ILGS IQQLILDQP-PVIDKADVEGMVIPSHVRTQYVALLQHSHAS----R |
| MmLefty2 | 27 | -VLSSLLELELSQA-PTLDSADVEEMAIPTHVRSQYVALLQGSHAD----R |
| MmInha | 213 |  |
| DmDawdle | 247 | LTHLRTEF-VKQQIIEKLRLKES-PKVSA---VELPKPIFDGM----TLSHPDDS----T |
| MmGdf15 | 132 |  |
| MmGdnf |  |  |
| MmAmh | 365 | ```SAPWAAGL-QR-RVAVE[QAAAS-ELRDLPGLPPTAPPLLARL----LALCPNDS----R end straitjacket - }\beta1-- TGF-``` |
| DmMaverick | 293 | -----------NQEKGNSYFNNFMGASFTRDLHFLSITTNGFNDISNKRLRHRRSLKKIN |
| DmMyoglianin | 251 | TVWNRMESIDESHLSINDTYGDHIMTDFFDESSSSQMQGDDANTVNEFLIDLNKNQAKKS |
| MmGdf11 | 125 | EDF----------LEEDEYHAT----------------------TETVISMAQETDPAV |
| MmMstn | 104 | DGS---------LEDDDYAT-------------------------------1TITMPTESDFLM |
| CeTIG-3 | 6 | KHDLYGG-----------------------VLDKITLEPNRK--- |
| MmTg fb 1 | 91 | ESAD------PEPEPEADYYAK-----------------------EVTRVLMVDRNNAIY |
| MmTg fb 2 | 81 | KASRRAAA-CERERSDEEYYAK----------------------EVYKIDMPSHLPSET |
| $\mathrm{MmTg} \mathrm{mb}^{\text {3 }}$ | 83 | MHGEREEG-CTQETSESEYYAK-----------------------------1HKFDMIQGLAEHN |
| CeUNC-129 | 50 |  |
| CeDAF-7 | 84 |  |
| MmBmp3 | 90 |  |
| MmGdf10 | 90 | GGG-------------------------------------NTVRSFRARLE----------- |
| MmInhba | 94 | KVG-----------------------------------------EN------G------ |
| MmInhbb | 118 | KVR-----------------------------------------EDD-----G------R |
| MmInhbc | 83 | RRE |
| MmInhbe | 83 | SMV |
| DmActivin-beta | 572 | KNG-E------MSHNDYEYFNDYSVQ-----------THDKNRYHEGRSSIGYQPAIHN |
| MmLeftyl | 73 | SRGKR------FSQNLREVAGRFLVS------------ET-------------------------- |
| MmLefty2 | 73 |  |
| MmInha | 213 |  |
| DmDawdle | 294 | KNK-E------LDDYYARTSKKFILL------------NR--EEVECNRARDGKSNP--- |
| MmGdf15 | 171 | -GGTQ------LELR---------------------------LRVAAGRGRR |
| MmGdnf |  |  |
| MmAmh | 414 | SSGDP-------LRALLL---LKALQG-------------LRAEWHGREGRGRTGR------- end straitjacket - $\beta 1--$ Activin |
| DmMaverick | 342 | RLNQNPKKHQNYGD-----------LLRGEQD-----TMNILLHFPLTN---------AQ |
| DmMyoglianin | 311 | DIPINTNDE-EYES-----------ILSHISS------IY---I旦PEEIQPHVRHNRKVD |
| MmGdf11 | 152 | Q------TD--------------------GS-----PLC------------------------------- |
| MmMstn | 131 |  |
| CeTIG-3 | 25 | -SWTCLTPE--------------------------------------------------SLVKD |
| MmTgfb1 | 122 | EK-----TK----------------------------------------SI-SH---SIY-- |
| MmTg fb 2 | 117 | VCPVVTTPSGSLGS-----------FCSRQSQ-----VLC---GY゙LDAI-PPTFYRPYFR |
| MmTgfb3 | 119 |  |
| CeC53D6.2 | 53 | -LTE--HMKNLYENFIDEDSNEDGNLVRAIEPAVGKFEGQEVLVFDVEG-FDSHESIMRA |
| CedAF-7 | 103 | -----------PSQLVAKEDVTN-DLERSDILQA |
| MmBmp3 | 104 |  |
| MmGdf10 | 104 |  |
| MmInhba | 101 | VEIE--DDIGRRA-----------------EMNELMEQTSEIITEAESG----T---ARK |
| MmInhbb | 125 | VEIP--HLDGHAS-----------------PGADGQERVSEIISEAETD-GLAS---SRV |
| MmInhbc | 87 | -LLE--H-------------------------DQRQEEYEIISEADTD-LSSI---NQT |
| MmInhbe | 86 | ---P-------------------------GN---REKVISEATII-DKST-STYRS |
| DmActivin-beta | 613 | IEYE--NQKGHHESFADDHEN--------IDHEDFFGNTQEIITEAEEG-TQYR---QYR |
| MmLefty1 | 96 |  |
| MmLefty2 | 96 | -TH------------------- |
| DmDawdle | 330 |  |
| MmGdf15 |  |  |
| MmGdnf |  |  |
| MmAmh |  |  |

Fig. S6. Page 1

|  |  |
| :---: | :---: |
| DmMaverick | 377 DANFHHDKIDEANVRLMLTY－－－－－－－－－－－－SSSLATNFRRGPGSRKNKISQISGNDNI |
| DmMyoglianin | 350 VFREQIDS－－－－－－SYSDIS－－－－－－－－－－－－Y TLHIYLRGWDWIS |
| MmGdf11 | 160 －CHEHFSPKV－－－－MFTKVL－－－－－－－－－－－－KA QLWVYLRPVPRP |
| MmMstn |  |
| CeTIG－3 | 38 CFQYSINSINHEILSASL |
| MmTg fb 1 |  |
| MmTgfb 2 | 157 IVREDVST－－－MEKNASNLV－－－－－－－－－－－－KAEFRVFRLQNPKA |
| MmTgfb3 | 131 VFRENVSS－－－VEKNGTNLF－－－－－－－－－－－－RAEFRVLRVPNPSS |
| CeUNC－129 | 109 EHHEYLRR－－RDSFARR－RS |
| CeDAF－7 | 125 TLTVSIEI－－PAKDS |
| MmBmp3 | 129 TLYFYVGE－－LVNI－－－Sİ |
| MmGdf10 | 128 AFHEYSEP－－PRWPRAREVFC－－－－－－－－－－－－－－－－－－－－－－－－－－10 |
| MmInhba | 135 THHEEISK－－EGSDL－SVVE－－－－－－－－－－－－RAEVWIFLKVPKAN |
| MmInhbb | 162 RIYFFVSN－－EGNQN－LFVV－－－－－－－－－－－－QA SLWLYLKLLPYV |
| MmInhbc | 114 RLEEHFSG－－RMASG－MEVR－－－－－－－－－－－－QTRFMFFVQFPHNA |
| MmInhbe |  |
| DmActivin－beta | 659 ILEESAQN－－RRVPS－QKISIRSAQIHIRIDKPHSLWIEKAKSLPE |
| MmLefty1 | 98 LIVFGMEQ－－RLPPN－SEIV－－－－－－－－－－－－QAVLVIFQEPVP－ |
| MmLefty2 | 98 LIVGGMEQ－－RLPPN－SELV－－－－－－－－－－－－Q ${ }_{\text {A }}$ VLRLFQEPVP－R |
| MmInha | 213 |
| DmDawdle |  |
| MmGdf15 |  |
| MmGdnf |  |
| MmAmh |  |
|  | Activin－$\alpha 3$－－－$\beta 4$－ |
| DmMaverick |  |
| DmMyoglianin | 379 －AHQ－－－PGLLEEI－－－－KKQPRKDIVVTIHRAIRVANTT－－－－－－SFNPK－－－VKMFE－ |
| MmGdf11 | 189 －－－－－－－－－－－－－－－－－－－－－－ATVYLQILRLKPLTGEGTAGGGGGGRRHIRIRS－ |
| MmMstn | 168 －－－－－－－－－－－－－－－－－－－－－－－－TTVFVQILRLIKPMKD－－－－－－－－GTRYTGIRS－ |
| CeTIG－3 | 62 －－－－－－－－－－－－－－－－－－－－－－TNISTVVYE－－－VDEL－－－－－－－－－FGELQYVDR－－－ |
| $\mathrm{MmTg} \mathrm{fb}^{\text {1 }}$ | 163 －－－－－－－－－－－－－－－－－－－－SVEQHVEL YQKYS－－－－－－－－－－－－－－－NNSWRYLGNRL－ |
| $\mathrm{MmTg} \mathrm{fb}^{2}$ | 188 －－－－－－－－－－－－－－－－－－－RVAEQRIELYQILKSKDLT－－－－－－－－－SPTQRYIDSKV－ |
| MmTgfb3 | 162 －－－－－－－－－－－－－－－－－－－KRTEQRIELFQILRPDEH－－－－－－－－－－－IAKQRYIGGKN－ |
| CeUNC－129 | 132 －－－－－－－SVCVNEYCRQ－－－－－－－－QTLK－－－－－－－－KIRVGGDENL－－－－－－－－－－－－－－－－－ |
| CeDAF－7 | 138 －－－－－－－－－－－－－－－－－－－GMLQDVQVQVYEKNE－－－－－－DGS－－MGEMVTSGIFATKG |
| MmBmp3 | 147 －－－－－－－－－－－PQGCSH－－HTQRQHIQIDISAWILKSN－－－－－－－－－－QSQLLGHLS－－－ |
| MmGdf10 | 150 －－－－－－－－－AKNASCRL－－LTPGLPARLHLIFRSLS－Q－－－－－－－－－－－NTATQGLLR－－－ |
| MmInhba | 166 －－－－－－－－－－－－－－－－－－－－RTRTKVTIRLFQQQKHPQGSLDTGDEAEEMGLKGERSE－－ |
| MmInhbb |  |
| MmInhbc | 145 －－－－－－－TQ－－－－－－－－－－T－－－－－MNIRVLVLRP－－－－－－－－－－－－－－－－－－－－${ }^{\text {－}}$ |
| MmInhbe |  |
| DmActivin－beta | 702 －－－－－－－KHLLNTKRKWGANKPHHRIKIWVFQLSTSINITEKGIDKA－－－－－－IIFR－－－ |
| MmLefty1 | 128 －－－－－－－TALRRQ－KRLSPHSARARVTIEWLR－－－－－－FRDDGSNRT－－－－－－A－LID－－ |
| MmLefty2 | 128 －－－－－－－TALRRF－ERLSPHSARARVTIEWLR－－－－－－VREDGSNRT－－－－－－A－LID－－ |
| MmInha | 213 |
| DmDawdle | 362 －－－－－－－TDTASV－NS－－－－－TSAQQTIVVISE－－－－－－VEVDQQKDS－－－－－－KYLSA－－ |
| MmGdf15－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－ |  |
| MmGdnf |  |
| MmAmh |  |
|  |  |
| DmMaverick | 467 －IEFGNVGFQETRTQIEFD－VIKAVRSWLKS－HENIGIETQ－－CDKCKSIG－－ARILS |
| DmMyoglianin | 421 －－－－FRHSIPSGLGQWVAVD－【KSLIGNLGS－－－－－NYTQEILIKGAE－TWMK－－－－－－－ |
| MmGdf11 | 222 －－－－LKIELHSRSGHWQSID－FKQVIHSWFRQP－QSNWGIE INAFDPSGTDLA－－－－－－－ |
| MmMstn | 193 －－－－LKLDMSPGTGIWQSID－VKTVLQNWLKQP－ESNIGIEIKALDENGHDLA－－－－－－－ |
| CeTIG－3 | 84 －－－－FE－－－IRETLDKYHFD－ISHLFHKWMKQK－SSDKMIKIEITNSNTQNVINALSVLR |
| MmTg fb 1 | 187 －－－－LT－－－PTDTPE可LSFD－VIGVVRQWLNQG－DGIQGFRESAHCSCDSKDNK－－－－－－ |
| MmTg fb 2 | 218 －－－－VK－－－TRAEGE冈LSFD－VIDAVQEWLHHK－DRNIGFKISLHCPCCTFVPSNNYIIP |
| MmTg fb 3 | 191 －－－－LP－－－TRGTAEWLSED－VIDTVREWLLRR－ESNLGLEISIHCPCHTFQPNGD－ILE |
| CeUNC－129 | 156 －－－－EE－－－－－YKVIWDATKSVFDSY－－－HLDA－－KQAVFRITREHSK－－－M－－－－－－－－ |
| CedAF－7 | 170 SERISIQLPIDTVKSWFTISPIQGIFVKAMLDGRNVAIHPQQTTAD－－－－－－－－－－－－－－ |
| MmBmp3 | 181 －－－VDVVRPYRDSVSWLSKD－ITQLIRKAKQNEE－FLIGFNTTSRAHELPKRM－－－－－－－ |
| MmGdf10 | 185 －－－GAMALTPPPRGLWQAKD－ISSIIKAARRDGE－LLISAQIDTGEKDPGVPR－－－－－－－ |
| MmInhba | 204 －LLLSEKVVDARKSTWHIFP－VSSSIQRLLDQG－KSSIDVRIA－－CEQCQESGAS－－－－－ |
| MmInhbb | 216 －WNVVEKKVDLKRSGWHTFP－ITEAIQALFERG－ERRINLDVQ－－CDSCQELAVV－－－－－ |
| MmInhbc | 163 －TLTSQYVVQVNASGWYQLL－LGPEAQAACSQG－HLTLEL－－V－－PESQVA－－－－－－－－－ |
| MmInhbe | 154 －FRTFLAEHQTTSSGWHALT－IPSSGLRSEDSG－VVKLQLEFR－－PLDLNSTAAG－－－－－ |
| DmActivin－beta | 746 －－－－ASFQVDPKNLGWQKFD－LTDTIREWYGHTSHEKIRLITD－－CTGCGGRYSL－－－－－ |
| MmLefty1 |  |
| MmLefty2 | 165 －SRLV－－－－SIHESGWKAFD－VTEANNFWQQLSRPR |
| MmInha | 213 |
| DmDawdle |  |
|  |  |
| MmGdnf |  |
| MmAmh |  |

Fig．S6 Page 2


Fig. S6. Expanded Activin+TGF- $\beta$ subfamily prodomain alignment indicating structural conservation. Sequences from Fig. 6 including underlining and presented as in Fig. S4.

| DmSCW | 30 | --IYQKRPLSEQMEMIDILDGDRRRQAEP |
| :---: | :---: | :---: |
| DmGBB | 56 | -LSEDDKLDVSYEIIEFLGIAERPTHLSSHQL |
| MmBmp8a | 35 | ---LGARERRDMQREILAVLGLPGRPRPRAQPAAA |
| MmBmp8b | 35 | --LGVREPRDMQREIREVLGL PGRPRSRAPVGA |
| MmBmp6 | 68 | ----LKTHEKREMQKEIISVLGLPHRERPLHGLQQPQPPVLPPQQQQQQQQQQ |
| MmBmp5 | 43 |  |
| MmBmp7 | 46 | --LRSQERREMQREIISILGIPHRPRPHLQG |
| CeDBL-1 | 42 | --ADQHASHATRRGLIRKLGLEHVP--V- |
| MmBmp10 | 50 | -DFNTLLQSMKNEFLKTLNLSDIP--V- |
| MmGdf2 | 53 | --DLQMFLENMKVDFLRSLNLSGIP--S--QD |
| CeTIG-2 | 38 | -G--QATDK---IGEQ RELFNIDINP--NGPAV |
| MmGdnf | 61 | -PAED----------HSLGHRRVP--F- |
| DmDPP | 213 | -KD---KLK--PDPSTLVEIEKSLISLFNMKRPP--K--I |
| MmBmp2 | 41 | ------LSR--PSEDVLSEFELRLISMFGLKQRE--T--P |
| MmBmp4 |  | GGR---RSG--QSHELLRDFEATLIQMFGLRRRE--Q--PS |
| MmBmp15 | 35 | ----LADDPTLPSILDLAKEA----PG--------KEMKQ |
| MmGdf9 | 55 | ---GTDRSGLLPPLFKVLSDR----RG---------ETPKL |
| MmGdf1 | 25 | PAPASMG----PAAALLQV--------LGLPEAPRSVPT |
| MmGDF3 | 20 | -GQTSEF----QDSDLLQF--------LGLEKAPSP-HRF |
| MmNodal | 13 | ---ACWALLHPR----APTAALPL--WTRGQ |
| MmGdf5 | 124 | GGKASSKAGSAPSSFLLKKTR----EP-GTPREP--KEPFR |
| MmGdf 6 | 81 | G------------------------QH-QGQEPE--G- |
| MmGdf7 | 65 | ------PR-AVRRAA--GSGFR |
| DmSCW | 59 | -NLHNSASK FILEVYNEISEDQEPKEVLHQ |
| DmGBB | 87 | -----SLRKSAPKELLDVY/RITAEEGLSDQDEDDDYERGHR |
| MmBmp8a | 67 | -RQPASAPL MLDLYAMMDDDDGGP |
| MmBmp8b | 67 | QQPASAPLEMLDLEAMTDDSGGGTP |
| MmBmp6 | 117 | TAREEPPPGRLKSAPLEMLDLYNALSNDDEEDGASEGVGQEPGSHGGASSSQLRQPSPGA |
| MmBmp5 | 72 | -KQASSAPL MMLDLYNAMASEDNPEESEYLVRVSLAGEAKETRKGYPASPNGY |
| MmBmp7 | 75 | -KH-NSAPMEMLDLYAMAVEESGPD |
| CeDBL-1 | 68 | --GPSIDVPQHMWDIYDDDNDVD |
| MmBmp10 | 76 | -TGRVDPPEYML LYNKFATDR |
| MmGdf2 | 79 | -------KTRAEPPQYMIDLYNRYTTDKS |
| CeTIG-2 | 64 | ------KANNYVSTYMKRLYKQ ENYEHGENHNEE-E |
| MmGdnf | 77 | --TSDSNMPEDYPDQ DD M ${ }^{\text {a }}$ |
| DmDPP | 244 | -------RSKI I IPEPMKKLYAE!MGHELD |
| MmBmp2 | 70 | --KD-VVVPPYMLDLYRRHSGQPGA |
| MmBmp4 | 75 |  |
| MmBmp15 | 59 | -----WPQGYPLRYMLKLY R R ${ }^{\text {ad-PHGH }}$ |
| MmGdf9 | 80 | ------QPDSRALYYMKKLYKTYAT-KEGVPK |
| MmGdf1 | 54 | -------PVPP----VMWRLERRRDPQEARVGR |
| MmGDF3 | 47 | ------PVPR----VIRKII AREA-AAASGASQ |
| MmNodal | 36 | ------PSSPSPLAYMLSLYRDPLP-RA |
| MmGdf5 | 158 | -------PPPITPHEYMLSLYRTITSD-ADRKGGNS |
| MmGdf6 | 92 | -----GLRVVPHEYMLSIYKTYSI-AEKLGIN |
| MmGdf7 | 79 | ------NGSVVPHHEMMSLYSSAG-RAPVAAA |
|  |  | end straitjacket-- $\beta 1---\quad-\beta 1^{\prime}-$ |
| DmSCW |  | -H-------KRSLDDDILISNEDRQEIASCNSILTSSRLKP嗢---QL----DNELD |
| DmGBB | 125 | ---RRSADLEEDEGEQQKNFITDLDKRAIDESDIIMMENKRHHNVDEL-----RHEHG |
| MmBmp8a | 93 | -----QAHLGRADIVMSFVNMVERDRTLGY----QEPHW |
| MmBmp8b | 93 | --QPHLDRADLIMSFVNIVER RTLGY----QEPHW |
| MmBmp6 |  | AHSLNRKSLLAPGPGGGASPLTSAQDSAFLNDADMVMSFVNLVEY KEFSP----HQRHH |
| MmBmp5 |  | AHRLHLP--PRTPLTTQSPPLASLHDTNFLNDADMVMSFVNLVERDKDFSH----QRRHY |
| MmBmp7 | 100 | -QGFSYP--YKAVFSTQGPPLASLQDSHFLTDADMVMSFVNLVEHDKEFFH----PRYHH |
| CeDBL-1 | 89 | ----------WVRHYYPKEII ${ }^{\text {d }}$ DNEG---F |
| MmBmp10 | 98 | --SMPSANIIRSFKNEDLFSQPVT---F-NGLRK |
| MmGdf2 | 101 | ----STPASNIVRSESVEDAISTAAT---EDFPFQK |
| CeTIG-2 | 96 | ---------------------------AWLSAMRIVSHMAQEVS----H---R-LDDGS |
| MmGdnf | 112 | AAALPRR-------------------EER |
| DmDPP | 271 | -PKP----------------GLLTKS ${ }_{\text {A }}$ NTVRSETHKDSKID-DR---F-PHHHR |
| MmBmp2 | 96 | ----HRL-----------------ERAASRANTVRS FHHEEAV昰ELPE---M-SGKTA |
| MmBmp4 | 102 | GTGLEYP----------------ERPASRANTVRSEHHEEHL®NIPG---T-SESSA |
| MmBmp15 | 85 | ----NRTIGAKMVRLVKPSANTVRPPR-GSW----HV |
| MmGdf9 | 106 |  |
| MmGdf1 | 78 | --RPCHV------------------EELGVACNTVRHIPDSGLSSRPAQPARTSGLCPE |
| MmGDF3 | 70 | --DLCYV-----------------KELGVRGNLIQLLPDQGFFLNTQKPF-QDGSCLQ |
| MmNodal | 57 | DII IRSLQAQDVD----------VTGQN |
| MmGdf5 | 185 | -SV------------------KLEAGLANTITSEI DKGQDDRG-------PAVRK |
| MmGdf6 | 119 | --SF------------------FQSSKSANTITS ${ }^{\text {a }}$ SVRGLDDLSH------TPLRR |
| MmGdf7 | 105 | ----SGHGRVDTITGTDQATQDETA------AAEPG |

Fig. S7 Page 1


Fig. S7 Page 2

|  |  | $\beta 10-$ no- ${ }^{\text {a }}$ - |
| :---: | :---: | :---: |
| DmSCW | 251 | IVGYENGPELLVKIQKLRFKR |
| DmGBB | 302 |  |
| MmBmp8a | 245 | MVTFERASQSPVRAPR- |
| MmBmp8b | 245 |  |
| MmBmp6 | 356 | MVAFEKVSEVHVRTTR |
| MmBmp5 | 301 | MVIAFEKASEVLLRSVR |
| MmBmp 7 | 276 |  |
| CeDBL-1 | 219 |  |
| MmBmp10 | 252 | LLVVESDDQSNDK--EQ-KEELNELITHEQDLDLDSDA---FF-SGPD--EEALLQMRS- |
| MmGdf2 | 252 | FFVVESNDRSNGTK-ET-RLELKEMIGHEQETMLVKTAKNAYQVAGESQEEEGLDGY--- |
| CeTIG-2 | 214 | LVIALKDEDAGPPKKRSRRSASTTPISAPPMRQKVKRSESAYFEK-PNENERCQ------ |
| MmGdnf |  |  |
| DmDPP | 440 |  |
| MmBmp2 | 261 |  |
| MmBmp4 | 272 |  |
| MmBmp15 | 231 |  |
| MmGdf9 | 253 | LIIYLNDTSTQAYHS----------W---------QSLQSTW----RPLQHPGQAGVAAR |
| MmGdf1 | 220 |  |
| MmGDF3 | 234 |  |
| MmNodal | 198 | LMIYSNRPQEQRQL---------------GGATLLWEAESSW----RAQE--GQL----- |
| MmGdf5 | 335 |  |
| MmGdf6 | 280 | LLVVGTRSQRKN-LFTE-------MHEQLGSAEAAGAEGSW----PAPS--GSP----- |
| MmGdf7 | 263 | LLVISSRTQRKESLFRE--------IRAQARALRAA----AE----PPPD--PGP----- |

Fig. S7. Expanded BMP subfamily prodomain alignment indicating structural conservation.
Sequences from Fig. 8 including underlining presented as in Fig. S4.

|  |  | Association ----------- 1 1----------------- - ${ }^{\text {- }}$ |
| :---: | :---: | :---: |
| MmBmp 15 | 35 | P |
| MmGdf9 | 55 | RSG |
| MmNodal | 1 | SAHSRILILR------------- |
| MmGdf5 | 92 | PPRSGGPETKPGPSSQTR--QAAAR---TVTPKGQL GGKASSKAG |
| MmGdf7 | 50 | ARAPGP-----------SARQA----AAV |
| MmGdf6 | 53 | -QRTPQESAEGR--TPPEHGLRQKDIRRR |
| DmActivin-beta | 314 |  |
| CeTIG-3 | 1 |  |
| Dmscw | 17 | TYYTT--N---NHIE------M---PIYQKRPLSEQME MIDIIDIGD-RER---RQAEP |
| DmGBB | 40 | GIYIDN--GKDQTIMH------R---VLSEDDKLD ${ }^{\text {SYE I }}$ IEFIGIAE-RET---HLSSH |
| MmBmp8a | 19 | GGGHGP--RPPHTCPQ------R---RLGARERRD QRE LAVLGIPG-RER---PRAQP |
| MmBmp8b | 19 | GGGHLS--HPPHVFPQ------R---RLGVREPRD QREIREVIGLPG-RER---SRAPV |
| MmBmp6 | 52 | EQPPPQ--SSSSGFLY------R---RLKTHEKRE QKE ISVLGLPH-RER---PLHGL |
| MmBmp 7 | 30 | DFSLDN--EVHSSEIH------R---RLRSQERRE QREIISILGLPH-RER---PHLQG |
| MmBmp5 | 27 | GGLGDN--HVHSSEIY------R---RLRNHERREIQREISILGLPH-RER---PFSPG |
| MmBmp 3 | 4 | ---ARGLLCLWLGYFCLNLAQGQR-PNLHLPGLRETEES---DRATG |
| MmGdf10 | 17 | -MVPLLLLLRGAGCGHRGPSWSSLPSAAAGLQGDRDS---QQSPG |
| DmMyoglianin | 175 | SRVQSVSLYRNTLINIESMLQRQLREKAKVDSIES ${ }^{\text {IKMH }}$ HMRINUKKL-PN---ITKP- |
| MmMstn | 35 | KEGLCNACAWRQ-------------NTRYSRIEAIKIQ ISKIRIETA-EN---ISKD- |
| MmGdf11 | 56 | EPDGCPVCVWRQ--------------HSRELRLES IKSQ LSKLRLKEA-PN---ISRE- |
| MmTgfbl | 29 | GLSTCKTID---------------MELVKRKRIEAIRGQISKLRLASP-PS---QG-E- |
| MmTgfb2 | 20 | SLSTCSTLD---------------MDQFMRKRIEAIRGQISKLKLTSP-RE---DY--- |
| MmTgfb3 | 23 | SLSTCTTLD---------------FGHIKKKRVEAIRGQISKLRLTSP-PE---PS--- |
| MmInha | 21 | CQG------------PELV-R----ELVLAK KALFIDALGPPAM-DG---EGGD- |
| MmGdf15 | 33 | ----SQG--DALA-MP---EQRPSGPESQ ${ }^{\text {INA }}$--------DE---LR--- |
| MmGdf1 | 22 | -TLA--PAP---------ASMGPAAA HlVIGIPEA-PR---SV--- |
| MmGDF3 | 20 | --GQ--------TSEFQDSD LQRHGEKA-ES---P---- |
| CeUnc-129 | 2 | RRLPIVLLLSV---------F--SIANCAKVDVDLINETIRDLHHFKSSDPN---VTSE- |
| CeDAF-7 | 30 | CIEKMKQHR------------------TEY KNE IDDIN \#KE-AEK---GLKP- |
| DmMaverick | 249 | -DETR KHL LKGIGIKK-LPD---MRKV- |
| MmInhba | 44 | --PDCPSCALATL--------PKDGPNSQPEMVEA KKH LNMLHIKK-RED---VTQP- |
| MmInhbb | 68 | --DTCTSCGGGGG--------PEELGRVDGDFLEA KRH LSRLQLRG-REN---ITHA- |
| MmInhbe | 39 | --GPCPACWGAIF-------------QRELLLDLAKKS LDKLHLSQ-REI---LSRP- |
| MmInhbe | 39 | --SACPSCGGPTL-------------ERALVLELAKQQ LEGLHLTS-RER---ITRP- |
| CeDBL-1 | 24 | SAILHLFLLIS---------FTPMSAAADQHASHATRRGHRKLGHEH-VRV------Q- |
| MmGdf2 | 56 | M----------------------FLENV1KVDFLRSUNLSG-IRS------Q- |
| MmBmp 10 | 53 | -LLQS KNEFLKTLNLSD-IPV------Q- |
| CeTIG-2 | 42 | -DK GEQ RELFNIDI-NEN-----GP- |
| DmDawdle | 226 | SAGGCPKCESNRQ-VEHITE----EQLTH-LRIEF VQQ IEKIRTKE-SRK-------- |
| MmLeftyl | 27 | -IU-GS LeSTILIDQ-PPV---LDKA- |
| MmLefty 2 | 27 |  |
| MmAmh | 191 | -TVDFP-AGAWSGSGILIL-TLQ------P- |
| MmGdnf | 65 | RR-VRF------A- |
| DmDPP | 223 |  |
| MmBmp2 | 49 | LSEFE-LR LSMFGIKQ-RPT------P- |
| MmBmp 4 | 54 | LRDFE-ATHLMFGRR-RER------P- |
| MmBmp15 | 53 | -GKEMKQWPQGYPLRY $\mathbf{I}$ K Y ${ }_{\text {HRSADPHGHPRE- }}$ |
| MmGdf9 | 74 | -GETPKLQPDSRALYY KK YKTYATKEGVPKP- |
| MmNodal | 30 | -LWTRGQPSSPSPLAY MS YRDPLPRA------ |
| MmGdf5 | 152 | --PKEPFRPPPITPHEY İS YRTLSDADRKGGNS |
| MmGdf7 | 73 | -AGSGFRNGSVVPHHFY SIMRSLAGRAPVAAA- |
| MmGdf6 | 89 | --PG---RGLRVVPHEYMSIYKTYSIAEKLGINA |
| DmActivin-beta | 515 | MPIELKSHHNSSPKELKSGAVRKVNGINGTQMNENALKKSTYPIIDINHSIDNKTHTGKNG |
| CeTIG-3 | 3 | -TSRKHD ${ }^{\text {FGGV }}$ |
| DmScW | 65 | --SKF TE YNEISEDQEPKEV- |
| DmGBB | 93 | --PKF LD YHRITAEEGLSDQ- |
| MmBmp8a | 73 | -PLF LID YHAMTDDDDGGPP- |
| MmBmp8b | 73 | -PLF LID YRAMTDDSGGGTP- |
| MmBmp6 | 131 | -PLF LDI YNALSNDDEEDGA- |
| MmBmp 7 | 80 | -PMF HDI YNAMAVEESGPDG- |
| MmBmp5 | 78 | -PLF LD |
| MmBmp3 | 56 | -VSEH LWWYD-RYSGSSRVQAT |
| MmGdf10 | 71 | -VAIH LR YE-KYNRRG----- |
| DmMyoglianin | 235 | ---NIIDNGYRDYNASSKTTVW |
| MmMstn | 87 |  |
| MmGdf11 | 107 | -PLQQ IIIHDFQGDALQP-EDF |
| MmTgfb1 | 76 | AVLA YNSTRDRVAG-ESA |
| MmTgfb2 | 66 | EVISITYNSTRDLLQE-KAS |
| MmTgfb3 | 68 | -Q LA YNSTRELLEE-MHG |
| MmInha | 63 | RHA GGFMHRTSEPEEE-DVS |
| MmGdf15 | 65 | ISRLHANQSREDS-NSE |
| MmGdf1 | 58 | MWRLFRRRDPQEA-RVG |
| MmGDF3 | 51 | - IRRIIRAREA-AA-ASG |
| CeUNC-129 | 53 | -LTEH KNI Yenfidedsn-EDG |
| CeDAF-7 | 66 | --MKSVYE Y YRDLLEKDEQ-DMG |
| DmMaverick | 279 | ---YSSKYIEYLSRLRSNQEK-GNS |
| MmInhba | 79 | ---PKAAMNAIRKLHVGKVG-ENG |
| MmInhbb | 103 | ---PKAAMVTALRKLHAGKVR-EDG |
| MmInhbe | 68 | ---SRGA KTALQRLRGPRRE-T-- |
| MmInhbe | 68 | ---PQAAI TRALRRLQPKSMV- |
| CeDBL-1 | 73 |  |
| MmGdf2 | 84 | -PPQYMİDIMNRYTTDK------ |
| MmBmp10 | 81 | -PPEY IEE YNKFATDR------ |
| CeTIG-2 | 65 | --ANN |
| DmDawdle | 276 | --LPKPIFDGMTLSHPDDST-KNK |
| MmLefty1 | 53 | --IPSHVRTCYVALLQHSHA---- |
| MmLefty 2 | 53 | -IPTHVRSQYVALLQGSHA---- |
| MmAmh | 222 | -LSIDQ10--AFLFGSDSR---- |
| MmGdnf | 82 | -MPEDYPDQ DDVMDFIQA |
| DmDPP | 249 | IPEP KK YAEIMGHELD---- |
| MmBmp2 | 74 | VPPY Ild YRRHSGQPG |
| MmBmp 4 | 79 | IPDYMRD YRLQSGEEEE---- |

Fig. S8 Page 1

|  |  |  |
| :---: | :---: | :---: |
| MmBmp15 | 85 |  |
| MmGdf9 | 106 |  |
| MmNodal | 57 |  |
| MmGdf5 | 185 | Sv |
| MmGdf7 | 105 |  |
| MmGdf6 | 119 |  |
| DmActivin－beta | 575 | EMSHN－D－－－－－YEYFNDYSVQTHDKNR－YHEGRSSIGYQPAIHNI－EYENQ－KG－－－－－ |
| CetIG－3 | 15 |  |
| DmSCW | 85 | LHQR－－－－－－－－－－－－－－－－－－－－－－－－－－－H－－－－－－－KRSL－－－－－ |
| DmGBB | 113 | DEDDDYERGHRS－－－－－－－－－－－－－－－－－－－RRSADLEEDEGE－－－－－ |
| MmBmp8a | 93 |  |
| MmBmp8b | 93 |  |
| MmBmp6 | 151 | SEGVGQEPGSHGGASSSQLRQPSPGAAHSLNRKSLLAPGPGG |
| MmBmp 7 | 100 | －QGFSYP－－YKAVFST－－－－－ |
| MmBmp5 | 98 | －EYLVRVSLAGEAKETRKGYPASPNGYAHRLHLP－－PRTPLTT－－－－－ |
| MmBmp 3 | 77 | －TPGSQL－－－－－－－PGP－－QPLRGG－－－－NTVRSFRAAAAGTP－－－ |
| MmGdf10 | 87 | －－APPGGG－－－－NTVRSFRARLEMI－－－－ |
| DmMyoglianin | 254 | NRMESIDESHLSINDTYGDHIMTDFFDESSSSQMQGDDA－－－－NTVNEFLIDLNKNQ－－－ |
| MmMstn | 107 | －－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－LEDDDY－－－－HATTETIITMPT－－－－－ |
| MmGdf11 | 128 | －－LEEDEY－－－－HATTETVISMAQ－－－－－ |
| MmTgfbl | 94 | D－－－－－－－－－－－－－－－－－－－－－－－－－－－－－PEPEPEADY－－－－YAKEVTRVLMVDRN－－－ |
| MmTgfb2 | 84 | －RA－－－－－－AACERERSDE Y－－－－YAKEVYKI DMPSHL－－－ |
| MmTgfb 3 | 86 | E－－－－－－－－－－－－－－－－－－RE－－－－－－EGCTQETSESEY－－－－YAKEIHKFDMIQGL－－－ |
| MmInha | 83 | －－AILFPATGATCEDQP－AA－－－－－－－－－－－－RG－－LAQE－－－ |
| MmGdf15 | 81 | －－PSPDPAVRILSPEVRLGS－－－－－－－－－－－－HGQLLLRV－－－ |
| MmGdf1 | 75 | －RPLR－－－－－PCHVEELGV－－－－－－－－－－－－AGNIVRHI－－－ |
| MmgdF3 | 67 | －ASQD－－－－－LCYVKELGV－－－－－－－－－－－－RGNLLQLL－－－ |
| CeUNC－129 | 74 |  |
| CeDAF－7 | 87 | VEM－－－－－－－－－－－SFY－－－－－－－－－－－－－－－TAKDP－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－ |
| DmMaverick | 300 | YFN－－－－－－－－－－－NFMGASFTRDLH－－－－FLSITTNGF－－－－NDISNKRLRHRRSLKKI |
| MmInhba | 100 | YV－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－EIEDDIGRRA－－－－－－－ |
| MmInhbb | 124 | －－－EIPHLDGHAS－－－－－－ |
| MmInhbc | 87 | －－LLEH－－－－－－－－－－－－ |
| MmInhbe | 86 | －－P－－－－－－－－－－－－－ |
| CeDBL－1 | 90 | －RHYY－－－－－－－－－－ |
| MmGdf2 | 100 |  |
| MmBmp10 | 97 |  |
| CeTIG－2 | 68 | －－－－STYMKRLYKQLENY |
| DmDawdle | 297 | －－－－－DDYYARTSKKFILL |
| MmLefty1 | 71 | －－－SRSRG－－－－－－－ |
| MmLefty 2 | 71 | －－－DRSRG－－－－－－－ |
| MmAmh | 238 | －－－－－－CFTRMTPTLVVL |
| MmGdnf | 100 | －－－－TIKRLKRSPDKQ |
| DmDPP | 267 | －－－－－－－－－SVNI－ |
| MmBmp 2 | 92 | －－－PAPD－ |
| MmBmp 4 | 97 | －－－EEQSQ |
|  |  | end straitjacket Activin＋BMP－－ $\mathrm{\beta}^{\text {a }}$（－－－ |
| MmBmp15 | 85 | －－NRTIGAKM ${ }^{\text {VRLVKPSANTVRPPRG－－－－－S－－－－W－－－－H }}$ |
| MmGdf9 | 106 |  |
| MmNodal | 57 | －DI IRSLQAQDVD－－－－－－－－－－－－－－－－－－VTGQ |
| MmGdf5 | 188 | －LEAGLANTITS ${ }^{\text {II }}$ IDGQDDR－－－－－－－－－－－－－－G－PAVR |
| MmGdf 7 | 105 | －SGHGRVDTITG月TDQATQDE－－－－－－－－－－－－－－TAAAEP |
| MmGdf6 | 122 |  |
| DmActivin－beta | 621 | －－－HHESFADDHENI－－DHEDFFGNTQE［ITAAEEGTQ－－－－－－－－－YRQYR－－－－－－－－－ |
| Cetig－3 | 15 | －－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－KI－－TLEPNRKSWTCLTPESLV |
| DmSCW |  | －－－DDDILIS－－－－N－－EDRQEIASCNS ILT $^{\text {I SSRLKPE－－－－－QLDNELD－－－－－－－－－}}$ |
| DmGBB | 137 | －－QQKNFIT－－－－D－－LDKRAIDESDIMMT LNKRHHNV－－DEL－RHEHG－－－－－－－－－ |
| MmBmp8a | 93 | QAHLGRADL MS ${ }^{\text {aVNMVERDR－－TLGYQEPHW－－－－－－－－－}}$ |
| MmBmp8b | 93 |  |
| MmBmp6 | 193 | －－－GASPLTS－－－－A－－QDSAFLNDADM MS ${ }^{\text {l }}$ VNLVEYDK－－EFSPHQRHH－－－－－－－－－－ |
| MmBmp 7 | 113 | －－－QGPPLAS－－－－L－－QDSHFLTDADM MS ${ }^{\text {l }}$ VNLVEHDK－－EFFHPRYHH－－－－－－－－－－ |
| MmBmp5 | 138 | －－－QSPPLAS－－－－L－－HDTNFLNDADMMS目VNLVERDK－－DFSHQRRHY－－－－－－－－－－ |
| MmBmp3 | 107 |  |
| MmGdf10 | 106 | D－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－Q－－－－－－－－－－－－－－－－－－ |
| DmMyoglianin | 307 | AKKSDIPINTNDEEYESILS－－－－HISS ${ }^{\text {IVI }}$ PEEIQPH－－V－－－RHNRK－－－－－－－－－－－ |
| MmMstn | 125 | －－ESDFLMQADGKP－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－ |
| MmGdf11 | 146 | －－ETDPAVQTDGSP－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－ |
| MmTgfbl | 118 | NAIYEK－－－－－T－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－ |
| MmTgfb2 | 113 | PSETVCPVVTTP－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－ |
| MmTgfb 3 | 115 | AEHNELAVC－－P－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－ |
| MmInha | 107 | AEEGLF－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－ |
| MmGdf15 | 107 |  |
| MmGdf1 | 96 | PDSGLS |
| MmGDF3 | 88 |  |
| CeUnC－129 | 76 | －VRAIEPAV－－－－－GK－－FE－－G－－－－－－－－－－－ |
| CeDAF－7 | 98 | －－－－－－－－－－－－－SYGE－－－－－－NPSQL AK月DVTNDLER－－－－－－－－－－－－－－－－－－－－－－－－－－－ |
| DmMaverick | 341 | NRLNQNPKK－－HQNYGDLLRGEQDTMNI LH PRLTNAQD－－A－－－－－－－－－－－－－－－－－－－－－－－ |
| MmInhba | 112 | －－－－－－－－－－－－－－－－E－MNELMEQTSE IIT AES－－－－－－G－－－－T－－A－－－－－－－－－－－－－－ |
| MmInhbb | 136 | －－P－GADGQERVSE IIS ${ }^{\text {I }}$ AET－－－－－－DG－LAS－－S－－－－－－－－－－ |
| MmInhbc | 91 | －－DQRQEEYEIIS ${ }^{\text {a }}$ ADT－－－－－－DL－SSI－－N－－－－－－－－－－－ |
| MmInhbe | 87 | －GN－－－REKUISATI－－－－－－ID－KSTSTY－－－－－－－－－－ |
| CeDBL－1 | 95 | －－－PKEIIEDNEGFLLS－－－－－－－－－－－－－－ |
| MmGdf2 | 100 | －－SSTPAS－－NIVRS易SVEDAISTAATE－DFPFQ－－－－－－－－－－ |
| MmBmp10 | 97 |  |
| CeTIG－2 | 84 | EHGE－－－N－－－－－－－－－－－－－－－－－－－－－－－－H－－NEEEVNAW－－－－LS－－－－－－－－－－－－－ |
| DmDawdle | 313 | NREE－－－V－－－－－ECNR－ARDGKS－－NPSMC ${ }_{\text {T }}$ TFKIDDADAEG－－FD－－－－－－－－－－－－－－ |
| MmLefty1 | 76 | －－－－KR ${ }^{\text {S S SNLREVA－GRFLVSETS－－－－－－－－－－}}$ |
| MmLefty ${ }^{2}$ | 76 | －－－－－－－－－－－－－－－－－－－－－－－－－－－－KR ${ }^{\text {S S SNREVA－GRFLMSETS－－－－－－－－－－－}}$ |
| MmAmh | 250 | PP－A－－－E－－－－－PSPQ－PAHGQL－－DT－MP目PQPGLSLE－PE－－ALPHS－－－－－－－－－－－－ |
| MmGdnf | 112 |  |
| DmDPP | 271 | －－－－－－－－－－－－－PKPG－LLTKSA－－NT何S國THKDSKID－DR－－FPHHH－－－－－－－－－－－ |
| MmBmp2 | 96 | －－－－－－－－－－－－－HRLE－RAASRA－－NTVRS ${ }^{\text {HHEEAVEELPE－－MSGKT－－－－－－－－－－－}}$ |
| MmBmp 4 | 102 | GT－G－－－L－－－－－EYPE－RPASRA－－NTURS目HEEHLENIPG－－TSESS－－－－－－－－－－－ |

Fig．S8 Page 2


Fig. S8 Page 3

| MmBmp15 | 173 | －－－－－－－－$-15-----\quad--\beta 6--\quad--\alpha 4-----$ |  |
| :---: | :---: | :---: | :---: |
| NmGdf9 | 192 | －RAP－－－YSFTLKKHR ${ }^{\text {a }}$ I－EID ${ }^{\text {a }}$ SLI－QPLV | VTSSERSIH S ${ }_{\text {S／NFT－－－－－çTK }}$ |
| NmNodal | 132 | RIWETETVI－－－PSQVTFASGST－VL | SKWLKDPRA EKQVSSRAEKC̄WH |
| MmGdf5 | 274 |  | －－KNSACMCPEL－－－－EANE－ |
| NmGdf7 | 190 |  | RRWPRASRKFC ${ }^{\text {VL－－－－RAVT－}}$ |
| MmGdf6 | 202 | A－－－－－－RTL－－－DPQGPTQAG E－V EWQG－RP | －－QPWKC ${ }^{\text {IC }}$ EL－－－－RAAWG |
| DmActivin－beta | 744 |  | YGH－TSHEKMR L－－IDCTGCGG |
| Cetig－3 | 80 | －－Y VRF－－－－－－EI－RETLDKY－H DISHLF－HK $^{\text {a }}$ | UKQ－－KSSDKMEKI－－－－EITNS |
| Dmscw | 184 | －－1 GSV－－－－－－NTTSSQRG $\mathrm{L}-\mathrm{E}^{(1) N}$ | LHN－－KGLQRRNEL－－－－RIS－－ |
| DmGBB | 233 | －－P SSV－－－－－－NTTGDYVG $\mathrm{L}-\mathrm{ELN}$ 國GG－HED | LVK－－SKDNHGIYI－－－－GAHAV |
| MmBmp8a | 178 | DLQ－－－－－－－TLRSGDEG L－VIB HaAS－DR | LN－－HHKDIG ${ }^{\text {R }}$ RL－－－－YVET－ |
| NmBmp8b | 178 | F DLQ－－－－－－－TLRSGDEG L－VIP ERAS－DR | LLN－－HHKDG RL－－－－YVET－ |
| NmBmp6 | 289 | L DTR－－－－－－VVWASEEG L－E D HATS－NI | VVT－－PQHN GMQL－－－－SVVT－ |
| NmBmp7 | 209 | DSR－－－－－－－TIWASEEG L－V D－ATS－NH | VVN－－PRHN G Q QL－－－－SVET－ |
| NmBmp5 | 234 |  | VIN－－PQNM GIDL－－－－CAET－ |
| MmBmp 3 | 178 | H SVDV－－－－－VRPYRDSVS L－SKP［2IM－RKAK | KQN－－EEFL GFNIT－－－SRAHE |
| MmGdfio | 182 | －－L RGAM－－－－－ALTPPPRGL 2 －AKPISSI－KAAR | RRD－－GELL SAQLD－－－TGEKD $^{\text {del }}$ |
| DmMyoglianin | 420 | －EFR－－－－－HSIPSGLGC ${ }^{\text {V－AVP }}$ KSL－GNLC | GSN－－－－－－TQEIL－－－IKGAE |
| MmMstn | 189 |  | LKQ－－PESNGMEIK－－－ALDEN |
| NmGdf11 | 218 |  | RQ－－PQSNWGIEIN－－－AFDPS |
| $\mathrm{MmTg} \mathrm{fb1}$ | 183 | －－G－－－NR－－－－－LLTPTDTPE $\mathrm{L}-\mathrm{S}$ BVGGV－RG | LNQ－－GDGIGGFRFSAHCSCDSK |
| MmTg fb 2 | 214 |  | HH－－KDRN GFKI SLHCPCCTE |
| MmTg fb 3 | 187 |  | LR－－RESNM馬EISIHCPCHTE |
| MmInha | 189 |  |  |
| MmGdf15 |  |  |  |
| MmGdf 1 | 170 | PPAPPGVLL－RA遃 |  |
| Nmgdr 3 | 169 |  | SSN－－RLKNM ${ }^{\text {d }}$ HLE－－－ILVKE |
| CeUNC－129 | 141 |  | HLDA－KQAVFR T －－－－－－－R－－ |
| CeDAF－7 | 173 | －－ISIQLPI－－－－－－－－DTVKS ${ }^{\text {P }}$ FTISPRIOGIEVKAM1 | LDG－－RN－－${ }_{\text {PA }}$ H－－－－－PQQTT |
| DmMaverick | 461 | －－KitSRKIEFGNVGFOETRTQ I－E E FKA－RS | LNK－－SHEN GHE－－IQCDKCKS |
| MmInhba | 205 | －－L SEKVVD－－－A－－－－RKST ${ }^{\text {H }}$－ 1 P PVSSSI－QRLI | LDQ－－GKSS D P－－IACEQCOE |
| MmInhbb | 217 |  | FER－－GERR ${ }^{\text {N }}$ D－－VQCDSCOE |
| MmInhbe | 164 | －－LTSQYVVQ－－－V－－－－NASCMY－QLL GPEA－QAAC | CSQ－－GHLT ER－－－－－－－VPES |
| MmInhbe | 155 | －－RTFLAEHQ－－－T－－－TSSG ${ }_{\text {H－ALT }}$ PSSG－LRSE | EDS－－GVVK O E－－－－－FRPLD $^{\text {E－}}$ |
| CeDBL－1 | 159 | －－Q \＃ESRSV－－－－－－－DNLTE I－D［8V | TNR－－ISFFHD ${ }_{\text {den PED－－－VEIEE }}$ |
| MmGdf2 | 190 | VS－－－QDI－－RDEGE－TLEVSSA ${ }^{\text {a }}$－KR | VRA－－DSTTNKNK－－－－－LEVTV |
| MmBmp10 | 185 |  | QKS－－GPSTH0 ${ }^{\text {IEP－－－－－IHIES }}$ |
| Cetig－2 | 163 | －－PGDTVLVS－－－－－－－－SDDPTVVTD GTM $^{\text {a }}$－DR | SHL－－QLSTIP ${ }^{\text {P }}$ V－－－－－TAR－A |
| DmDawdle | 392 | －－LSAAKTIA－－－IQSVNVQDE ${ }^{\text {F }}$ N－KIB EWP－KH\％ | ISG－－HELSHL O－－ITGGGCDV $^{\text {a }}$ |
| MmLeftyl | 162 |  | QQL－－SRPRQP L L $_{\text {L－－－－－LQVSV }}$ |
| MmLefty ${ }^{\text {2 }}$ | 162 | －－L DSRLVS－－－I－－－H－ESGK－A DVEAM－NPG | QQL－－SRPRQP ${ }_{\text {L }}^{\text {L－－－－－LQVSV }}$ |
| $\begin{array}{ll}\mathrm{MmAmh} & 346--L / S P A A----------A T E R E P M P L H G P A S-A P A M G--L Q R R\end{array}$ |  |  |  |
|  |  |  |  |
| DmDPP | 368 |  | AS－－PQRNYG［1．－－－－VEV－－ |
| MmBmp 2 | 189 |  | TTQ－－GHTNHGFV－－－－－VEV－－ |
| NmBmp4 | 200 |  | E－－KQPNYG边－－－－IEV－－ |
| only TGfß－－ $38----$ bowtie－－only TGF $\beta$－－－$\beta 9----$ |  |  | BMP only－89＇－ |
| MmBmp15 | 210 | QKG－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－N | －REFRWH－－－－G－－－－ |
| MmGdf9 | 235 | D 2 | GVFSMP－－－－－－－－－ |
| NmNodal | 184 | PYT | PPVPV－－－－－－－－－－－－－－－－－ |
| MmGdf5 | 312 | RGR | GRavDLRGLGFERT－－－－A－－－－ |
| NmGdf 7 | 232 | －－－－ASES | SSPLALRRLGFGWP－－－－GGGDG |
| MmGdf6 | 242 | ELDAGD－－－－TGAR－－－－－－－－－－－－－－－－－ARGPQQP | PPPPLDLRSLGFGRR－－－－V－－－－ |
| Dmactivin－beta | 787 | R | HLFQTS－KLRGN－－－－－SSDY |
| Cetig－3 | 122 | －TQNV－－－－－－－－－－－－－－－－－－－－ | IN－ALS－VL－R－－－－－－－－－－ |
| Dmscw | 225 | DS | STFAAG－LVTP－－－－－－－－－Q |
| DmGBB | 276 | DRE | －KLDDIG－LIHR－－－－－－－－－K |
| MmBmp8a | 220 | －－－AD－－－－－－GHS | DPGLAG－LLGR－－－－－－－－－Q |
| NmBmp8b | 220 |  | DPGLAG－LLGR－－－－－－－－－－ |
| MmBmp6 | 331 |  | NPRAAG－LVGR－－－－－－－－－D |
| MmBmp 7 | 251 |  | NPKLAG－LIGR－－－－－－－－－ |
| NmBmp5 | 276 | GD－－－－－－－GRSI | NVKSAG－LVGR－－－－－－－－－ |
| NmBmp 3 | 224 | －－－LPKRMLFFPEPYILVYANDAAISEPESVVSSLQRH | H－RDFTAG－TG－－－－－－－－－－PR |
| MmGdf10 | 228 | －－－PGVPRPSSHMPYILVYANDLAISEPNSVAVSLQRY | Y－DPFPAG－DEEPGA－－－－－APN |
| DmMyoglianin | 459 |  |  |
| MmMstn | 235 |  |  |
| NmGdf11 | 264 | GTD－－－－－－－－－－－－－－－－－－－LAVTSLGP |  |
| $\mathrm{MmTg} \mathrm{mbl}^{\text {d }}$ | 226 | DNK－－－－－－－－－－－－－－－LHVEING－－－1 | I－SPKRRG－DLGTIH－－－－－－－－ |
| MmTg fb 2 | 257 | －VPSNNYIIPNKS－－－－EELEARFAGIDGT | T－STYASG－DQKTIK－－－－－STR |
| MmTg fb 3 | 230 | －QPNGD－ILENVH－－－－EVMEIKFKGVDNE | E－DDHGRG－DLGRLK－－－－－－－－ |
| MmInha | 191 |  |  |
| MmGdf15 |  |  |  |
| MmGdf1 | 203 |  |  |
| MmGDF3 | 210 |  |  |
| CeUNC－129 | 186 |  |  |
| Cedaf－7 | 214 | N． |  |
| DmMaverick | 510 | IGARIL－－－－－－－－－－－－－SDFSPST－P | P－PRST－－－－－－－－－－－－－－ASS |
| MmInhba | 247 | SGASLV－－－－－－－－－－－－－－－LLGKK | －KKEVDG－DGKKKDGSDGGLEE |
| MmInhbb | 259 |  |  |
| NmInhbe | 204 |  | －HSSL－1 |
| NmInhbe | 197 |  | LPRLLL |
| CeDBL－1 | 202 | SSS |  |
| MmGdf2 | 230 |  | LDISV |
| MmBmp10 | 227 | RON－－－－OAED | LEIDM |
| Cetig－2 | 203 |  | T |
| DmDawdle | 438 | －SDME | I |
| NmLeftyl | 204 | QRE－－－－HLG | LVR－－－－－－－－－－ |
| MmLefty ${ }^{\text {2 }}$ | 204 | －QRE－－－－HLGPGT－－－－－－－－－－－－－－－WSA－－－ | －－HK－－－－－－LVR－－－－－－－－－－－ |
| MmAmh | 385 | －SEL－－－－RDLPGL－－－－－－－－－－－－－－－－PPTA－P | P－PL－－－－－－LARLLALCPNDSR |
| MmGdnf |  |  |  |
| DmDPP | 408 | －RTV－－－－RSLKPA－－－－－－－－－－－－－－－－－PH | －－HVRLRRSADEA－H |
| MmBmp2 | 229 | AHL－－－－EENPGV－－－－－－－－－－－－－－－－－－SK | －HVRISRSLHQD－E |
| NmBmp4 | 240 |  | HVRISRSLPQG－S |

Fig．S8 Page 4


Fig. S8. Expanded All family members prodomain alignment indicating structural conservation. Sequences from Fig. 10 including underlining from Figs. 2, 4, 6, 8 and 10 are presented as in Fig. S4. Note that on the top half of Fig. S8 Page 1 there is an exception to the presentation of accurate numbering (shown by a double backslash). We removed a completely nonconserved stretch of 25 residues from Activin for efficiency of presentation. This allowed the unexpectedly conserved cysteines in the Association-region of ten proteins to be displayed near the structural features of the straightjacket. In the Association region unexpected cysteines conservation is underlined in red with known cysteines in TGF- $\beta 1-3$ underlined in black. Accurate numbering for Activin resumes with the next alignment set below. All other numbering is accurate throughout. Also note that in the top half of Fig. S8 Page 4, the dimerization region $\beta 8$ displays unexpectedly conserved cysteines in eight proteins underlined in red. Known $\beta 8$ region cysteines in TGF- $\beta 1-3$ are underlined in black. The features of TGF- $\beta 1$ not conserved are $\alpha 3, \beta 5, \beta 9$ and $\alpha 5$. Features of BMP9 that are not conserved are $\beta 5$ and $\beta 9$ '.

