Table S1. Regression analysis for predictors of scaffold NG50.

Predictor Variables	Model 1	Model 2
Intercept	0.822	0.850
	(0.768)	(0.745)
COVERAGE	1.63e-03 (4.90e-03)	
HETEROZYGOSITY	-0.420 ***	-0.413 ***
	(8.69e-02)	(8.17e-02)
REPEAT CONTENT	-0.747 ** (0.242)	-0.763 ** (0.231)
Multiple R ²	0.76	0.76
Adjusted R ²	0.72	0.73

N=21 for all models. Standard errors in parentheses.

. $p \le 0.10$, * $p \le 0.05$, ** $p \le 0.01$, *** $p \le 0.001$

Scaffold NG50 = log_{10} (Scaffold NG50)

COVERAGE = total sequenced bases (after decontamination) / estimated genome size HETEROZYGOSITY = \log_{10} (frequency of variant branches in de Bruijn graph, k=41) REPEAT CONTENT = \log_{10} (frequency of repeat branches in de Bruijn graph, k=41)

Estimated genome sizes and the frequency of variant / repeat branches were calculated by SGA Preqc (Simpson 2014).

Table S2. Regression analysis for predictors of the percentage of the estimated genome size that was assembled.

Predictor Variables	Model 1	Model 2
Intercept	5.77	4.65
	(25.5)	(24.8)
COVERAGE	-6.50e-02 (0.163)	
HETEROZYGOSITY	5.43 . (2.89)	5.13 . (2.72)
REPEAT CONTENT	-30.1 ** (8.04)	-29.4 ** (7.69)
Multiple R ²	0.46	0.45
Adjusted R ²	0.36	0.39

N=21 for all models. Standard errors in parentheses.

% of est. genome size assembled = (assembly length / estimated genome size) * 100 COVERAGE = total sequenced bases (after decontamination) / estimated genome size HETEROZYGOSITY = \log_{10} (frequency of variant branches in de Bruijn graph, k=41) REPEAT CONTENT = \log_{10} (frequency of repeat branches in de Bruijn graph, k=41)

Estimated genome sizes and the frequency of variant / repeat branches were calculated by SGA Preqc (Simpson 2014).

 $p \le 0.10, *p \le 0.05, **p \le 0.01, ***p \le 0.001$

NG(X) %

NG(X) %

Figure S1. NG graphs showing the distribution of scaffold lengths for 23 *montium* assemblies.

To calculate the scaffold NG50 (Earl *et al.* 2011; Bradnam *et al.* 2013), scaffold lengths are ordered from longest to shortest and then summed, starting with the longest scaffold. The NG50 is the scaffold length that brings the sum above 50 % of the estimated genome size. When this calculation is repeated for all integers from 1 to 100, the result is an NG graph (Bradnam *et al.* 2013). NG graphs were constructed for each *montium* species using the corresponding genome size estimates from SGA Preqc (Simpson 2014). When a series intersects the x-axis, it means the total scaffold length is shorter than the estimated genome size. Similarly, if the series never touches the x-axis, then the assembly is longer than the estimated genome size. Due to filtering, the shortest scaffold present in any assembly is 1 kb.

Figure S2. Additional dotplots.

A) The alignment of the fifth longest scaffold (scf7180000629414) from our Illumina *D. serrata* assembly (strain 14028-0681.02) to the orthologous scaffold from the previously published *D. kikkawai* assembly (Chen *et al.* 2014). The alignment is highly collinear, and our scaffold aligns end-to-end within the longer *D. kikkawai* scaffold. B) The alignment of scf7180000629414 to itself. C) and D) The alignment of contigs MTTC0100041.1 and MTTC01001171.1 from the previously published *D. serrata* assembly (strain Fors4) (Allen *et al.* 2017) to themselves. Portions of these contigs aligned to scf7180000629414. E) The alignment of scaffold KB459611.1 from the *D. kikkawai* assembly (Chen *et al.* 2014) to itself. This is the same *D. kikkawai* scaffold from Part A). All pairwise alignments were generated by LASTZ (Harris 2007).

References

- Allen, S. L., E. K. Delaney, A. Kopp, and S. F. Chenoweth, 2017 Single-Molecule Sequencing of the Drosophila serrata Genome. G3 7: 781–788.
- Bradnam, K. R., J. N. Fass, A. Alexandrov, P. Baranay, M. Bechner *et al.*, 2013

 Assemblathon 2: evaluating de novo methods of genome assembly in three vertebrate species. Gigascience 2: 10.
- Chen, Z. X., D. Sturgill, J. Qu, H. Jiang, S. Park *et al.*, 2014 Comparative validation of the D. melanogaster modENCODE transcriptome annotation. Genome Res. 24: 1209–1223.
- Earl, D., K. Bradnam, J. St John, A. Darling, D. Lin *et al.*, 2011 Assemblathon 1: a competitive assessment of de novo short read assembly methods. Genome Res. 21: 2224–2241.
- Harris, R. S., 2007 Improved pairwise alignment of genomic DNA [Ph.D.]: The Pennsylvania State University.
- Simpson, J. T., 2014 Exploring genome characteristics and sequence quality without a reference. Bioinformatics 30: 1228–1235.