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1 The Likelihood Function

Equation (4b) in the main text generalizes the expectations for the neutral site-frequency spectrum when population

sizes potentially vary among all coalescence events. For estimation procedures, however, it will generally be nec-

essary to reduce the parameter space to a manageable number of epochs (each spanning more than one coalescent

period), with the adjacent periods within each epoch being treated as having a constant Ne.
Assuming that population-size changes only occur at breakpoints k2, ..., km, and letting the population size be

N2 before k2, this means that,

N2 = ... = Nk2−1, Nk2
= ... = Nk3−1, ..., ..., Nkm

= ... = Nn.

Letting E[Gr] = L · E[fr] be the expected number of observed sites of order r, where L is the total number of

observed sites, and m − 1 denote the number of breakpoints, using k1 = 2 and km+1 = n + 1, it follows from

Equation (4b) that
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Thus, the expected frequency distribution remains a linear function of the epoch-specific effective population sizes.

The composite likelihood approach. The goal is to combine the use of Equation (S1) with the observed SFS to

estimate the series of population sizes that best fits the model, using a criterion to avoid over-fitting. To this end,

we follow Liu and Fu (2015) use of a composite likelihood approach that assumes all sites to be independent. The

assumption here is that the elements of the observed SFS G0, ..., Gn−1 are independent and Poisson-distributed

with parameters E[G0], ..., E[Gn−1], with E[G0] being the expected number of monomorphic sites in the sample

(L minus the sum of the nonzero elements in the SFS).

Given an observed site frequency spectrum, conditional on a specific set of breakpoints, k1, ..., km, the maximum-

likelihood estimators for the elements of the vector of population sizes Nk1
, ..., Nkm

are given by the solution of
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where the E[Gr] terms are defined by Equation (S1) as functions of the population sizes to be estimated. The

proof of this relationship starts with use of the composite likelihood of the SFS observations based on the Poisson

distribution,

L(G,N) =

n−1∏

r=0

e
−E[Gr]

E[Gr]
Ĝr

Ĝr!
,

where G is the n-element vector of observed numbers of sites of order r, and N is the m-element vector of epoch-

specific Ne to be estimated, and the expectations of the elements of G are explicit functions of the elements of N.
The log-likelihood is then

logL(G,N) =

n−1∑

r=0

(Ĝr logE[Gr]−E[Gr]) + c,

where c does not depend on N. Using Equation (S1), the derivative of the log-likelihood with respect to Nki
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which when set equal to zero provides the composite maximum-likelihood estimators of N.

This set of equations can be solved by a straight-forward Newton iterative method (as, for example, imple-

mented in the GNU scientific library). Using such an approach usually requires an initial value to start the iteration.

Here, we note that for m = 1, i.e., if all population sizes are the same, and if Equation (4b) is used,

n−1∑

r=1

1

r

( rĜr

4uNe

− 1
)
=

s

4uLNe

− hn−1,

where s is the total number of SNPs and hi = 1 + 1
2 + · · ·+ 1

i
is the ith harmonic number. Setting the right-hand

side to 0, and solving for Ne gives Watterson’s estimator, which can be used as the initial value for the case in

which population constancy (no breakpoints) is assumed.

Two other points should be made with respect to the basic estimation Equation (S2). First, there may be

cases where it is undesirable to use certain classes of the site-frequency spectrum in the estimation of population

sizes. Such classes can simply be excluded from the sum in Equation (S2). For example, if singletons are deemed

unreliable owing to uncertainties involving sequencing errors, Equation (S2) is simply altered by writing
∑

n−1
r=2 .

Second, although the previous formulae are set up for the case of an unfolded SFS, as discussed in the text, the

theory is readily extended to folded site-frequency spectra (where the status of ancestral alleles is unknown). The

necessary modifications in the composite likelihood equations for this situation are provided in the program epos,

for both even and odd sample sizes (n).
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Table S1: Four example haplotypes

haplotype s1 s2 s3 s4 s5 s6 s7 s8
h1 1 0 0 0 0 0 0 0

h2 0 1 0 0 1 0 0 1

h3 0 1 0 1 0 1 0 0

h4 0 1 1 0 0 0 1 0

Table S2: Folded (A) and unfolded (B) site frequency spectrum corresponding to the haplotype sample shown in

Table S1

A B

r f(r)
1 7

2 0

3 1

r f(r)
1 8

2 0

2 The epos Software

The software package epos contains two programs, epos itself and the auxiliary program epos2ages. Epos

estimates historical population sizes and epos2ages transforms them into allele ages. In this document epos is

explained, and how to build the programs of the package. Then their usage is demonstrated in a Tutorial.

Epos takes site frequency spectra as input. A site frequency spectrum is computed from a haplotype sample.

For example, Table S1 shows a sample of n = 4 haplotypes, h1, h2, ..., h4, with S = 8 segregating (polymorphic)

sites, s1, s2, ..., s8. Each segregating site consists of a column of four zeros and ones, where zero indicates the

ancestral state and one a mutation. We can count the number of sites where one, two, or three haplotypes are

mutated. This is called the site frequency spectrum (SFS) of the sample, and Table S2A shows the spectrum for

our example data. There are seven mutations affecting a single haplotype (singletons), zero mutations affecting two

haplotypes (doubletons), and one mutation affecting three haplotypes (tripleton). In many empirical data sets it is

not possible to distinguish between segregating sites with r mutant alleles and those with n− r mutant alleles. In

this case the spectrum is called folded and consists of the number of sites affecting r haplotypes plus the number of

sites affecting n− r haplotypes. Table S1B shows the folded version of the spectrum in Table S1A: The singleton

category now consists of the sum of unfolded singletons and tripletons, while the number of doubletons remains

unchanged.

Epos implements theory by Lynch et al. (2019), which is briefly summarized here. Consider the coalescent for

n haplotypes, Figure S1 shows an example for n = 4 haplotypes. Any such coalescent can be divided into levels

2, 3, ..., n, where a level, ℓ, is marked by the coalescence event that reduces the number of lineages from ℓ + 1 to

ℓ. The time intervals Ti, 2 ≤ i ≤ n− 1, denote the segments of the coalescent with i lineages. For each Ti epos

can calculate a corresponding number of diploid individuals making up the population, Ni. Unfortunately, for

larger samples the computation of all Ni invariably returns negative population sizes. So instead of allowing the

population size to change at every coalescence event, we pick a subset of levels encapsulating the most important

size changes.

Each combination of levels must contain level 2, the root. If no further level is added, N2 is computed, the

population size for the whole coalescent. Similarly, breakpoints at levels 2 and 4 would mean that there is one

population size for T2 and T3, and another for T4.

So, given a combination of levels, the population sizes are computed with the proviso that negative values are

set to the smallest possible population size, N = 1. For each combination of levels and population sizes, the

log-likelihood of observing the input site frequency spectrum is calculated (Lynch et al., 2019). We now need an

efficient a method for maximizing this likelihood.

The starting point is always a single level, m = 1, the root at level 2. Then all level pairs (2, 3), (2, 4), ..., (2, n)
are examined and the most likely combination picked. If this improves the likelihood by at least 2 units, the
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Figure S1: A coalescent for n = 4 haplotypes to illustrate the time intervals, Ti, the corresponding population

sizes, Ni, and the levels in the tree.

number of levels is increased to m = 3 and the search repeats. Algorithm 1 summarizes this strategy. The function

nextConfig in line 7 hides the details of how the next configuration is picked. I have implemented a greedy

and an exhaustive strategy. Under the greedy strategy, the best configuration of breakpoints found in round m is

retained in round m + 1 and a single new breakpoint is added. Under the exhaustive strategy, all
(
n−1
m−2

)
possible

combinations of breakpoints are investigated in each round. Unfortunately, for large samples, this number quickly

leads to unacceptable run times and hence greedy is the default. The greedy and exhaustive search strategies are

explained further in the Tutorial in Section 2.2, where I also apply epos to real site frequency spectra before also

explaining epos2ages.

Algorithm 1 Searching for break points in the coalescent

Require: n {Sample size}
Require: f {Array of n− 1 or n/2 site frequencies, the unfolded or folded site frequency spectrum, SFS}
Ensure: m {Number of estimated population sizes}
Ensure: k {Array of m population size change points}
Ensure: N {Array of m population sizes at change points k[i], i = 1, 2, ...,m}

1: m← 1 {Initialize to one population size...}
2: k[m]← 2 {...which starts at the root}
3: N← popSizes(m, k, f) {Size of constant population}
4: l← logLik(N,m, k, f) {Log-likelihood of population size given the SFS}
5: la ← l {The initial log-likelihood is also the maximum}
6: for m← 2 to n do

7: while (k′ ← nextConfig(m,n)) 6= null do

8: N′ ← popSizes(m, k′, f)
9: l′ ← logLik(N′,m, k′, f)

10: if l′ > la then

11: ka ← k′

12: Na ← N′

13: la ← l′

14: end if

15: end while

16: if la < l + 2 then

17: report(N, k,m− 1)
18: break

19: end if

20: k← ka
21: N← Na

22: l← la
23: end for
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2.1 Getting Started

The epos package was written in C and Go on a computer running Linux. It depends on two libraries, the Gnu Sci-

entific Library (lgsl), and the Basic Linear Algebra Subprograms (lblas). Please contact haubold@evolbio.mpg.de

if there are any problems with the program.

• Obtain the package

git clone https://www.github.com/evolbioinf/epos

• Change into the directory just downloaded

cd epos

and make the programs

make

• Test the programs

make test

which takes approximately one minute.

• The executables are located in the directory build. Place them in your PATH.

• Make the documentation

make doc

This calls the typesetting program latex, so please make sure it is installed before entering this command.

The typeset documentation is located in

doc/epos.pdf

2.2 Tutorial

2.2.1 Epos

I first explain how to test epos using simulated data, and then analyze real data.

Simulated Data Epos was developed for estimating variable population sizes. Nevertheless, we begin with

simulated constant-size scenarios before generating samples under models with varying population sizes.

Constant Population Size

• First, take a look at one of the simulated data sets supplied with epos:

cat data/testF.dat

#r f(r)

1 5166

2 2030

3 1383

4 1116

5 981

6 874

7 702
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8 654

9 593

10 573

11 532

12 494

13 463

14 593

15 236

It is a folded data set, so the sample size n = 30.

• Let’s analyze it using the command

epos -l 1e7 -u 1.2e-8 data/testF.dat

where -l 1e7 indicates that 10 Mb of sequence were surveyed and µ = 1.2 × 10−8 is the mutation rate

per site per generation. The result of this command is

#InputFile: data/testF.dat

#Polymorphic sites surveyed: 24384

#Monomorphic sites surveyed: 9975616

#m = 1; maximum Log(Likelihood): -1719.151896 {2}

#m = 2; maximum Log(Likelihood): -106.137405 {2,11}

#m = 3; maximum Log(Likelihood): -104.753557 {2,4,11}

#Final Log(Likelihood): -106.137405

#dˆ2: 0.00262777

#Level T[Level] N[Level]

11 6.69e+03 2.51e+04

2 3.45e+04 7.73e+03

Epos prints intermediate configurations of m breakpoints: As already described in Algorithm 1, it starts

with a single breakpoint, m = 1, the root at at level 2. The root level must always be present and the

population size starting there extends to the next breakpoint printed, or, if there is none as in this case,

the leaves of the coalescent. The log-likelihood of the input site frequency spectrum given the best-fitting

constant population size is -1719.15. In the next round, m = 2, one new breakpoint is added at level 11.

The log-likelihood increases to -106.14, which is 1613 log-units greater than the previous log-likelihood. As

the minimum improvement is 2 log-units, the search is continued in round m = 3. The breakpoint at level

11 from the previous round is retained and the next best breakpoint, level 4, is added. The log-likelihood

grows by roughly one units, so the search is abandoned and the population sizes for the levels 2 and 11 are

printed, N[Level]. This search strategy is greedy, because it cannot revise the level configurations found

in previous rounds.

• Instead of searching for the optimal set of breakpoints, these can be supplied in the same notation as used

for the intermediate results using the -L option.

epos -l 1e7 -u 1.2e-8 -L 2,4,11 data/testF.dat

#InputFile: data/testF.dat

#Polymorphic sites surveyed: 24384

#Monomorphic sites surveyed: 9975616

#Final Log(Likelihood): -104.753557

#dˆ2: 0.00249224

#Level T[Level] N[Level]

11 6.80e+03 2.55e+04

4 1.32e+04 6.84e+03

2 3.51e+04 8.23e+03
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• In addition to the population size at each level added to the model, epos prints the time of the levels in

generations, T[Level]. If we call Tk the time the coalescent spends with k lines, then

T[Level] =
n∑

k=Level

E[Tk],

where Nk is the population size during Tk, allows the computation of T[Level] as a simple function of

the population size.

• In addition to the log-likelihood, a goodness-of-fit measure is printed, d2, as suggested by Lapierre et al.

(2017). This is the sum of squared differences between the observed site frequency spectrum and the spec-

trum implied by the estimated population sizes. The observed and expected site frequency spectra can be

printed using the -o option

epos -l 1e7 -u 1.2e-8 -o data/testF.dat

...

#mark r o e nor(o) nor(e)

#sfs 1 9526 9589.046040 0.390666 0.393057

#sfs 2 3998 3939.189168 0.163960 0.161468

...

#sfs 15 472 495.190548 0.019357 0.020298

where o and e are the observed and expected values, and nor(.) their normalized versions.

• d2 is computed from the normalized observed and expected spectra

epos -l 1e7 -u 1.2e-8 -o data/testF.dat |

grep 'ˆ#sfs' |

awk '{d=$5-$6;d2+=d*d/$6}END{print d2}'

0.002628

• Under the exhaustive search all possible combinations of levels are tested in each round. This mode is

switched on using -E n, meaning up to n rounds of exhaustive search are conducted before the program

reverts to the greedy strategy, or quits. Apply the exhaustive strategy to the data set just analyzed:

epos -l 1e7 -u 1.2e-8 -E 30 data/testF.dat

#InputFile: data/testF.dat

#Polymorphic sites surveyed: 24384

#Monomorphic sites surveyed: 9975616

#m = 1; maximum Log(Likelihood): -1719.151896 {2}

#m = 2; maximum Log(Likelihood): -106.137405 {2,11}

#m = 3; maximum Log(Likelihood): -99.505349 {2,4,9}

#m = 4; maximum Log(Likelihood): -97.138964 {2,5,12,13}

#m = 5; maximum Log(Likelihood): -96.360180 {2,6,14,15,24}

#Final Log(Likelihood): -97.138964

#dˆ2: 0.00185004

#Level T[Level] N[Level]

13 4.51e+03 2.26e+04

12 8.35e+03 1.27e+05

5 8.80e+03 7.01e+02

2 3.62e+04 9.15e+03

The option -E 30 indicates that up to 30 levels, that is all possible levels in the coalescent, can be added by

exhaustive search. The first two rounds are always the same as under the greedy regime. However, at m = 3
level 11 from the previous round is dropped and levels 4 and 9 are added. The increase is roughly 6.7 units,
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which is more than the 2 units required for the acceptance of a new level, the search continues to m = 4.

Here levels 4 and 9 from the previous round are replaced by levels 5, 12, and 13 leading to a likelihood

increase by 2.3 a fifth and final round of, m = 5. Here levels 5, 12, and 13 are replaced by 6, 14, 15, and 24,

but the likelihood increase is less than one and, the search is stopped, and we get the result for m = 4.

• You will have noticed the markedly longer run time of the exhaustive search compared to its greedy version.

The likelihood increase purchased by this increased effort is roughly 9 units, which we deem significant. So

exhaustive searching can lead to better results, but in practice this strategy is so time consuming that we only

use the greedy search for the remainder of this Tutorial.

• So far, we do not know what the true result of our analysis should be, so we cannot assess its quality. To

do this, we need to simulate haplotypes under a given scenario. First, we simulate one sample with n = 30
haplotypes and constant population size using the coalescent simulator ms (Hudson, 2002):

ms 30 1 -t 10

This can automatically be converted to a site frequency spectrum using my program ms2sfs1:

ms 30 1 -t 10 | ms2sfs

Finally, epos reads the spectrum and estimates population sizes from it:

ms 30 1 -t 10 | ms2sfs | epos -U -l 1000

#InputFile: stdin

#Polymorphic sites surveyed: 55

#Monomorphic sites surveyed: 945

#m = 1; maximum Log(Likelihood): -52.219407 {2}

#m = 2; maximum Log(Likelihood): -43.733126 {2,9}

#m = 3; maximum Log(Likelihood): -42.565671 {2,3,9}

#Final Log(Likelihood): -43.733126

#dˆ2: 2.15424

#Level T[Level] N[Level]

9 5.66e+05 1.54e+06

2 1.43e+06 2.47e+05

where -U indicates an unfolded site frequency spectrum. Since this is a simulation, your results from now

on are bound to differ from mine in numerical detail, though not in the general trend.

• Epos interprets the population mutation parameter, θ = 4Neµ, as per-site, which means that under constant

population size the expected effective size is

E[Ne] =
θ

4µl
.

Since epos uses by default µ = 5× 10−9, the expected population size for our simulation data is 500,000.

We can test this by simulating 1000 samples, calculating a site frequency spectrum for each, and averaging

over the estimated population sizes:

ms 30 1000 -t 10 | # generate 1000 samples of 30 haplotypes

ms2sfs | # compute one spectrum per sample

epos -U -l 1000 | # estimate population sizes for each spectrum

grep -v 'ˆ#' | # remove hashed lines

awk '{s+=$3;c++}END{print s/c}' # compute average population size

1.2362e+06

1https://www.github.com/evolbioinf/sfs
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This is more than twice as large as the expected 500,000 and illustrates that the average is not a good

statistic for monitoring the “majority” behavior of epos estimates. What about the median? We repeat the

simulation, but this time save the population sizes to the file tmp.txt:

ms 30 1000 -t 10 | # generate 1000 samples of 30 haplotypes

ms2sfs | # compute one spectrum per sample

epos -U -l 1000 | # estimate population sizes for each spectrum

grep -v 'ˆ#' | # remove hashed lines

cut -f 3 > tmp.txt # extract the third column and save it

Now we count the results:

wc -l tmp.txt

1598 tmp.txt

and look up the middle of the sorted estimates, the median:

sort -g tmp.txt | head -n 799 | tail -n 1

4.67e+05

which is reasonably close to the expected value of 5 × 105. Let’s see if folding the spectrum changes this

result:

ms 30 1000 -t 10 |

ms2sfs -f | # fold the spectra

epos -l 1000 | # eliminate the -U option

grep -v 'ˆ#' |

cut -f 3 |

sort -g > tmp.txt

Again, count the results

wc -l tmp.txt

1563 tmp.txt

and look up the median

head -n 781 tmp.txt | tail -n 1

4.42e+05

As before, this is similar to the expected 500,000.

Variable Population Size

• For estimating variable population sizes, we need to plot size as a function of time. This is implemented in

the program epos2plot2. Begin again by simulating samples under constant size, but this time add more

polymorphisms and include, for increased realism, recombination. Since recombination slows down ms, we

replace it by its faster re-implementation, mspms (Kelleher et al., 2016). The parameters for this mspms

run are taken from (Liu and Fu, 2015, Figure 2a).

mspms 30 1000 -t 4800 -r 3800 10000000 |

ms2sfs |

epos -l 1e7 -U -u 1.2e-8 |

epos2plot > epos1.dat # generate data ready for plotting

2https://www.github.com/evolbioinf/epos2plot
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Figure S2: Estimating constant population size. For details see text.

This takes a few minutes. Draw the graph by applying the program gnuplot3 to the file fig1.gp, which

is part of the epos package:

gnuplot -p scripts/fig1.gp

to get Figure S2. The fit between the estimated median size and the true size is good for most of the plot,

except for the very recent past.

• Next, we simulate under the scenario used in Figure 2b of Liu and Fu (2015) with a single, approximately

threefold change in population size from 7778 to 25636, which occurred 6809 generations ago:

mspms 30 1000 -t 12310 -r 9750 1e7 -eN 0.066 0.3 |

ms2sfs |

epos -u 1.2e-8 -l 1e7 -U |

epos2plot > epos2.dat

This again takes a few minutes.

• Plot the result

gnuplot -p scripts/fig2.gp

to get Figure S3. The fit between the median estimated population size and its true value remains excellent.

However, the variation in estimates is again large, particularly toward the present.

• As a last example, simulate haplotypes under the exponential growth scenario Liu and Fu (2015) used in
their Figure 2e:

mspms 30 1000 -t 432000 -r 340000 1e7 -G 46368 -eN 0.0001027 0.008889 |

ms2sfs |

epos -u 1.2e-8 -l 1e7 -U |

epos2plot > epos3.dat

Plot this

3http://www.gnuplot.info/
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Figure S3: Estimating population sizes under a model with one instantaneous size change. See text for details.

gnuplot -p fig3.gp

to get Figure S4, where the estimation is precise until very close to the present, when it starts to diverge.

This illustrates the difficulty of accurately calculating population size changes in the recent past.

Real Data I analyze the two site frequency spectra distributed with epos. One is from a population of water flea,

Daphnia pulex, the other from a human population, the Yoruba, who live in south-western Nigeria. The Daphnia

data is provided by Mike Lynch (Arizona State University), the Yoruba spectrum was computed by Lapierre et al.

(2017) from the 1000 human genomes project data.

Daphnia pulex

• As an example for real data, we use a site frequency spectrum obtained from the Kap population of Daphnia

pulex:

head data/kap144i.dat

0 185297

1 1987

2 1138

3 851

4 729

5 672

6 542

7 509

8 459

9 430

Notice the “zero-class”, which does not appear in the example spectra in Tables S2A and B. The zero-class

gives the number of monomorphic sites. If a spectrum contains a zero-class, the sequence length is the sum

of all allele counts, and epos does not require the sequence length to be passed via the -l option. Moreover,

the site frequency spectrum of Kap is folded, hence no -U:

epos data/kap144i.dat
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Figure S4: Estimating population sizes under an exponential growth model. See text for details.

#InputFile: data/kap144i.dat

#Polymorphic sites surveyed: 18098

#Monomorphic sites surveyed: 185297

#m = 1; maximum Log(Likelihood): -973.298394 {2}

#m = 2; maximum Log(Likelihood): -306.995057 {2,24}

#m = 3; maximum Log(Likelihood): -304.105038 {2,3,24}

#m = 4; maximum Log(Likelihood): -297.264486 {2,3,8,24}

#m = 5; maximum Log(Likelihood): -297.158028 {2,3,8,24,55}

#Final Log(Likelihood): -297.264486

#dˆ2: 0.0039003

#Level T[Level] N[Level]

24 5.75e+04 3.93e+05

8 3.73e+05 7.94e+05

3 2.98e+06 1.82e+06

2 3.13e+06 7.89e+04

• A classical problem when estimating model parameters is “over-fitting”. This refers to the fact that random

quirks of a data set can strongly influence the estimation and hence generate a result specific to the particular

data set but misleading with respect to the underlying population. We avoid over-fitting by requiring that a

new level improves the log-likelihood of the model by at least 2 units (Algorithm 1). A popular alternative

is k-fold cross-validation (Goodfellow et al., 2016, p. 118f). We can invoke this procedure with k = 5, a

typical value, using

epos -k 5 data/kap144i.dat

...

#Final Log(Likelihood): -297.30

#dˆ2: 0.003906

#Level T[Level] N[Level]

26 4.97e+04 3.76e+05

24 8.78e+04 2.74e+06

6 4.40e+05 5.63e+05

4 2.64e+06 4.12e+06

2 3.05e+06 1.55e+05

12



which is very similar to the result with the log-likelihood threshold.

• In many empirical data sets singletons are regarded as unreliable. To ignore singletons,

epos -x 1 data/kap144i.dat

...

#Final Log(Likelihood): -309.175057

#dˆ2: 0.00546917

#Level T[Level] N[Level]

29 3.37e+04 2.93e+05

2 3.94e+06 1.01e+06

To ignore singletons and doubletons,

epos -x 1,2 data/kap144i.dat

#InputFile: data/kap144i.dat

#Polymorphic sites surveyed: 14973

#Monomorphic sites surveyed: 185297

#m = 1; maximum Log(Likelihood): -543.807666 {2}

#m = 2; maximum Log(Likelihood): -310.507644 {2,39}

#m = 3; no improvement

#Final Log(Likelihood): -310.507644

#dˆ2: 0.00634133

#Level T[Level] N[Level]

39 7.75e-02 1.00e+00

2 3.92e+06 1.01e+06

which does not look like a very convincing result.

• A run of epos only gives a single point estimate, and in the absence of further samples it is hard to judge its

reliability. However, the program bootSfs, which is also part of the sfs package bootstraps site frequency

spectra to assess the robustness of results based on single samples. To run 1000 bootstrap replicates, enter

bootSfs -i 1000 kap144i.dat | epos | epos2plot > epos4.dat

which takes about five minutes. Plot the result

gnuplot -p fig4.gp

to get Figure S5.

The Yoruba Population

• Analyze the full spectrum:

epos -u 1.2e-8 -l 2.9e9 data/FoldSFS_YRI.txt

#InputFile: data/FoldSFS_YRI.txt

#Polymorphic sites surveyed: 20440078

#Monomorphic sites surveyed: 2879559922

...

#Final Log(Likelihood): -1177.60

#dˆ2: 4.38702e-05

#Level T[Level] N[Level]

216 8.76e+01 1.02e+06

142 4.21e+02 3.41e+04

121 4.24e+02 6.75e+02

13
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Figure S5: Estimating the population size of the D. pulex Kap population.

13 9.13e+03 2.90e+04

10 1.18e+04 2.43e+04

3 4.94e+04 2.42e+04

2 7.07e+04 1.06e+04

where µ = 1.2 × 10−8 is the mutation rate used by Lapierre et al. (2017) and 2.9 × 109 the number of

sequenced nucleotides in the human genome.

• Lapierre et al. (2017) excluded the singletons in their analysis. To do this in epos, we rerun the analysis

with -x 1

epos -x 1 -u 1.2e-8 -l 2.9e9 data/FoldSFS_YRI.txt

#InputFile: data/FoldSFS_YRI.txt

#Polymorphic sites surveyed: 15937781

#Monomorphic sites surveyed: 2879559922

...

#Final Log(Likelihood): -3132.160271

#dˆ2: 8.04994e-05

#Level T[Level] N[Level]

181 3.70e-03 1.00e+00

28 3.51e+03 2.79e+04

6 2.23e+04 2.88e+04

5 2.30e+04 3.59e+03

2 7.61e+04 1.77e+04

• As with the Daphnia data, we can bootstrap the Youruba mutation spectrum. Figure S6A shows the demog-

raphy based on 104 bootstrap samples including all allele classes and assuming 24 years per generation. The

apparent jump from 3× 104 to 106 approximately 2000 years ago is abolished by excluding singletons (Fig-

ure S6B). In contrast, the baseline size of approximately 3×104 remains unchanged. The bootstrap analysis

including all mutation classes takes approximately 15 CPU hours, a bit less if singletons are excluded. Such

massive run times are best managed by starting, say, 50 jobs with 200 resamplings on a multi-core machine.

Epos lends itself to this kind of pseudo-parallelization, as its memory consumption is only 4.3 MB per run

on the Yoruba sample, which is negligible on current computers.
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Figure S6: Analysis of the Yoruba site frequency spectrum including the singletons (A) and excluding them (B).

2.2.2 Epos2ages

The program epos2ages converts population sizes computed by epos to average ages of alleles (Lynch et al.,

2019).

• To start with a simple example, simulate a site frequency spectrum with n = 2,

ms 2 1 -t 10 | ms2sfs > test.sfs

estimate the population size,

epos -U -l 1000 test.sfs

#InputFile: test.sfs

#Polymorphic sites surveyed: 36

#Monomorphic sites surveyed: 964

#m = 1; maximum Log(Likelihood): -7.07 {2}

#m = 2; no improvement

#Final Log(Likelihood): -7.07

#dˆ2: 0

#Level T[Level] N[Level]

2 3.60e+06 1.80e+06

and the age of singletons

epos -U -l 1000 test.sfs | epos2ages -n 2

#r A[r] V(A[r]) P[r]

1 3.6e+06 1.296e+13 1.8e+06

where the second column gives their average age as 3× 106, twice the population size. Since epos2ages

follows the convention of measuring time in units of 2N generations, this is the correct result. The other two

output columns of epos2ages are the variance of the age, and the average population size experienced by

the allele, which again agrees with the previous epos result.

• For larger samples of 30 haplotypes the population sizes might look like this
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ms 30 1 -t 1000 | ms2sfs | tee test.sfs | epos -U -l 1e7

#InputFile: stdin

#Polymorphic sites surveyed: 3055

#Monomorphic sites surveyed: 9996945

#m = 1; maximum Log(Likelihood): -1520.427498 {2}

#m = 2; maximum Log(Likelihood): -1162.883232 {2,4}

#m = 3; maximum Log(Likelihood): -1156.803456 {2,4,16}

#m = 4; no improvement

#Final Log(Likelihood): -1156.803456

#dˆ2: 1.13251

#Level T[Level] N[Level]

16 6.08e+02 4.56e+03

4 8.24e+03 7.15e+03

2 8.24e+03 1.00e+00

and the corresponding allele sizes

epos -U -l 1e7 test.sfs | epos2ages -n 30

#r A[r] V(A[r]) P[r]

1 1713.61 5.28278e+06 6467.4

2 2602.4 7.05225e+06 6596.96

3 3236.13 8.04631e+06 6678.69

...

29 8237.33 9.83744e+06 6956.52

• Finally, we can estimate the average age of alleles for the Kap population:

epos2ages -n 144 data/kap144i.out

#r A[r] V(A[r]) P[r]

1 232151 4.18264e+11 1.38013e+06

2 382824 6.51857e+11 1.4013e+06

3 493525 8.05644e+11 1.41684e+06

...

143 3.13086e+06 2.09611e+12 1.60264e+06

2.3 Change Log

The change log can be accessed via the repository web page

https://github.com/evolbioinf/epos

or inside a local copy of the repository by executing

git log

3 Simulations

To examine the performance of our software implementing the proposed method (epos), we generated 10 indepen-

dent site-frequency spectra (SFSs) under each of six different models of population demogrphy used by Liu and

Fu (2015) using msprime (Kelleher et al., 2016) and MaCS (Chen et al., 2009), and applied epos (version 1.6-3)

and Stairway Plot v2 (Liu and Fu, 2015) to the simulated data. We used the mutation rate per site per generation

u = 1.2×10−8 and recombination rate per base pair per generation r = 0.8u in the simulations. We also assumed

a generation time of 24 years. Under scenario A in Table S3, the population has a constant effective size of 10,000

(constant size model). Under scenario B, the population had an ancestral effective size of 7,778 and experienced

an instant increase in effective size 6,809 generations ago, leading to a current effective size of 25,636 (two-epoch
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Table S3: Commands to simulated samples under each scenario, S, A to F by Liu and Fu (2015)

S Command

A mspms 30 1 -t 4800 -r 3800 10000000

B mspms 30 1 -t 12310 -r 9750 10000000 -eN 0.066 0.3

C mspms 30 1 -t 24000 -r 19000 10000000 -G 800

D mspms 30 1 -t 14172 -r 10629 10000000 -G 472.4 -eN 0.00718 0.0339

E mspms 30 1 -t 432000 -r 340000 10000000 -G 46368 -eN 0.0001027 0.008889

F macs 170 3e7 -i 1 -h 1e3 -t 0.002732 -r 0.002179 -h 1e3 -eN 0.01 0.05 -eN 0.0375 0.5 -eN 1.25 1

model). Under scenario C, an ancestral population experienced an exponential growth at rate g = 0.004, leading

to a current effective size of 50,000 (exponential growth model I). Under scenario D, an ancestral population with

effective size 1,000 experienced exponential growth at rate g = 0.004 starting 848 generations ago, leading to

a current effective size of 29,525 (exponential growth model II). Under scenario E, an ancestral population with

effective size 8,000 experienced an instant decrease in effective size leading to 7,900, and then experienced an

exponential growth at rate g = 0.01288, leading to a current effective size of 900,000 (complex model). Under

scenario F, which was initially introduced by Li and Durbin (2011), an ancestral population with effective size

56,917 experienced two instant decreases in effective size leading to effective sizes 28,459 and 2,846, and then

experienced an instant increase in effecitve size leading to a current size of 56,917 (PSMC standard model). Sam-

ple size (number of sequences) n and sequence length L are 30 and 10 Mb, respectively except under scenario F,

where n = 170 and L = 30 Mb were used. 2,000 bootstrap replications were used to find the distribution of the

effective population size estimates under each scenario except under scenario F, where 200 bootstrap replications

were used. We calculated the means of the medians and 2.5 and 97.5 percentiles over 10 SFSs to compare the

performance of the two methods.

4 Analyzing the Yoruba Site Frequency Spectrum

The Yoruba site frequency spectrum distributed with the epos software was originally generated by Lapierre

et al. (2017). We analyzed it without singletons using a sequence length of 2.9 × 109 bp and a mutation rate of

1.2× 10−8:

epos -x 1 -l 2.9e+9 -u 1.2e-8 FoldSFS_YRI.txt

In Figure S7A we compare the Yoruba site frequency spectrum with the spectra expected when positing

1, 2, ..., 5 population sizes (levels) along the coalescent. Clearly, going from a constant population size (m = 1) to

two population sizes (m = 2), improves the fit between observation and model. In contrast, the gain from adding

further levels is imperceptible.

This qualitative observation is quantified in Figure S7B, which shows the log-likelihood as a function of the

number of levels. The likelihood improves dramatically when going from one to two levels, while the gains from

introducing additional levels are comparatively modest. Similarly, the difference between observed and expected

site frequency spectra, d2, decreases strongly by introducing one change in population size. Further levels improve

the fit only marginally, as already observed in Figure S7A.
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