1 Supplementary material

2 Supplementary figure legends

3 Figure S1 (Supplement to Figure 2): Mutants of rig-3 show increased GLR-

4 1::GFP in the AVA cell body

5 GLR-1::GFP puncta were imaged from AVA near the nerve ring. The images on the 6 left show GLR-1::GFP expression in wild type (WT, n=12), rig-3 mutants (n=13) and 7 a rig-3; Pflp-18::RIG-3 rescue line (n=12). The dot plot on the right shows the 8 quantitative measure of fluorescence intensity as an arbitrary fluorescence unit 9 (AFU). The entire region indicated in the image was taken for fluorescence quantification. The number of dots in the dot plot shows the number of animals 10 observed, with each dot representing the fluorescent intensity from a single animal. 11 12 The error bars represent SEM. Statistical significance was determined with one-way 13 ANOVA with Bonferroni's multiple comparison test. Significance is represented as "**" p<0.01, "***" p<0.001 and "ns" for not significant. The statistics above each plot 14 15 indicate significance with respect to the WT plot.

Figure S2 (Supplement to Figure 3): Individual traces associated with the Calcium imaging experiment

18 (A) Traces of calcium activity from freely reversing animals recorded for the whole 19 duration of a reversal using GCaMP5 expressed specifically in the AVA command 20 interneuron. The genotypes used include WT and mutant strains (rig-3, glr-1 and glr-21 1; rig-3). In this figure each trace is plotted for each genotype imaged (genotypes are 22 indicated on the top left of each plot). 14 animals were plotted for each genotype. (B) Graph of body-bends per reversal in WT (n=20), rig-3 (n=10) and flp-18 (n=20) 23 24 animals. The error bars represent SEM. Statistical significance was determined with 25 one-way ANOVA with Bonferroni's multiple comparison test. Significance is

1

represented as "***" p<0.001 and "ns" for not significant. The statistics above each plot indicate significance with respect to the WT plot.

Figure S3 (Supplement to Figure 4): Decreased reversals of *npr-5* mutants could be rescued by NPR-5 expression in sensory neurons

30 (A) Reversal assays were performed for a duration of 5 minutes (min) and plotted as dot plots for WT (n=14), npr-5 (n=14) and npr-5; Pgpa-3::NPR-5 (n=14) animals. The 31 error bars represent SEM. Statistical significance was determined with one-way 32 33 ANOVA with Bonferroni's multiple comparison test. Significance is represented as 34 "***" p<0.001 and "ns" for not significant. The statistics above each plot indicate 35 significance with respect to the WT plot. (B) Reversal assays were performed for a 36 duration of 5 min and plotted as dot plots for WT (n=14), npr-5 (n=14) and npr-5; Pgcy-5::NPR-5 (n=14) animals. The error bars represent SEM. Statistical 37 38 significance was determined with one-way ANOVA with Bonferroni's multiple comparison test. Significance is represented as "*" p<0.05, "***" p<0.001 and "ns" for 39 40 not significant. The statistics above each plot indicate significance with respect to the WT plot. (C) Dot plot of reversals from WT (n=17), FLP-18++ (n=12), glr-1 (13) 41 and FLP-18++; glr-1 (n=18) animals. The error bars represent +SEM. 42 Statistical significance was determined with one-way ANOVA with 43 Bonferroni's multiple comparison test. Significance is represented as "***" 44 p<0.001 and "ns" for not significant. The statistics above each plot indicate 45 significance with respect to the WT plot. 46

47 Supplementary video legends

48 Video 1-3: Reversals over a period of 15s

49 (1) Representative video indicated a WT control animal recorded for a period of 15s
50 on a plate without food. (2) Representative video indicated a *rig-3* mutant animal

2

recorded for a period of 15s on a plate without food. (3) Representative video indicated a *rig-3* mutant *C. elegans* expressing RIG-3 under the *rig-3* promoter. The movement of these animals were recorded for a period of 15s on a plate without food.

55 Video 4-7: Calcium imaging in the AVA neuron

56 Representative video recordings from a moving *C. elegans* with GCaMP5 expressed 57 in the AVA command interneuron of the genotypes given below. The circle indicates 58 the AVA neuron that is being recorded and in the top left corner "F" and "R" indicate 59 forward and reverse movement of the *C. elegans*.

- 60 (4) WT
- 61 (5) *rig-3*
- 62 (6) *glr-1*
- 63 (7) *glr-1; rig-3*
- 64

65 Supplementary tables

66 Table S1: List of strains used in this study

Strain	Genotype	Comments	
VC2016	flp-18 (gk3063) X	CGC strain	
RB1330	npr-1 (ok1447) X	CGC strain	
tm1782	npr-4 (tm1782) X	NBRP	
CX14394	npr-5 (ok1583) V	CGC strain	
AX1444	<i>Pflp-18::</i> FLP-18:: <i>sl2</i> ::GFP	From Mario de bono Lab	
KP6535	glr-1 (n2461); rig-3 (ok2156)	From Josh Kaplan Lab	
BAB1541	flp-18 (gk3063) X	3X out crossed CGC strain VC2016	

BAB1542	npr-1 (ok1447) X	3X out crossed CGC strain RB1330
BAB1543	npr-4 (tm1782) X	3X out crossed NBRP strain
BAB1544	npr-5 (ok1583) V	3X out crossed CGC strain CX14394
BAB1552	<i>Pflp-18::</i> FLP-18:: <i>sl2</i> ::GFP; <i>npr-5 (ok1583)</i>	This study
BAB1553	<i>Pflp-18::</i> FLP-18:: <i>sl2</i> ::GFP; <i>npr-1</i> (<i>ok1447</i>)	This study
BAB1554	<i>Pflp-18::</i> FLP-18:: <i>sl2</i> ::GFP; <i>npr-4 (tm1782)</i>	This study
BAB1555	Prig-3::HA::GLR-1::GFP	From Villu Maricq lab
BAB1556	<i>Prig-3::</i> HA::GLR-1::GFP; <i>rig-3 (ok2156)</i>	This study
BAB1557	<i>Prig-3::</i> HA::GLR-1::GFP; <i>rig-3 (ok2156); Pflp- 18::</i> RIG-3 (<i>indEx508</i>)	This study
BAB1559	npr-5 (ok1583); rig-3 (ok2156)	This study
BAB1560	<i>rig-3 (ok2156); Prig-3::</i> RIG-3::sl2::wrmScarlet; <i>Punc-122::</i> GFP (<i>indEx508</i>)	This study
BAB1561	rig-3 (ok2156);	This study
BAB1562	rig-3 (ok2156);	This study
BAB1563	Prig-3::GCaMP5; PCFJ90 (indEx511)	This study
BAB1564	rig-3 (ok2156);	This study
BAB1565	glr-1 (n2461);	This study
BAB1566	glr-1 (n2461); rig-3 (ok2156); Prig-3::GCaMP5; PCFJ90 (indEx511)	This study
BAB1567	<i>Pflp-18::</i> FLP-18:: <i>sl</i> 2::GFP; <i>npr-5</i> (<i>ok1583</i>); Pgcy-5::NPR-5; <i>PCFJ90</i> (<i>indEx512</i>)	This study
BAB1568	<i>Pflp-18::</i> FLP-18:: <i>sl</i> 2::GFP; <i>npr-5</i> (<i>ok1583</i>); Pgpa-3::NPR-5; <i>PCFJ90</i> (<i>indEx513</i>)	This study
BAB503	glr-1 (n2461) III	3X out crossed CGC strain KP4
BAB501	rig-3 (ok2156) X	3X out crossed CGC strain RB1712

BAB1571	npr-5 (ok1583); Pgpa-3::NPR-5; PCFJ90 (indEx513)	This study
BAB1572	npr-5 (ok1583); Pgcy-5:NPR-5; PCFJ90 (indEx512)	This study
BAB1573	<i>Prig-3::</i> HA::GLR-1::GFP; <i>rig-3 (ok2156); Prig-3-18::</i> RIG-3	This study
BAB1570	<i>Pflp-18::</i> FLP-18:: <i>sl2</i> ::GFP; <i>glr-1</i> (<i>n2461</i>)	This study
BAB1574	rig-3 (ok2156) flp-18 (gk3063)	This study

68 Table S2: List of primers used in this study

Primer Code	Sequence	Comment	Gene
AB37	ACCTTTCGGCTCCGACTTG	WT Forward	glr-1
AB38	ACCTTTCGGCTCCGACTTA	Mutant Forward	glr-1
AB39	ATTGAAATGACCATACCACC	Common reverse	glr-1
AB113	AGGACGGAAATTACCTGTGC	Genotyping Forward External	flp-18
AB114	GCTTCGGGAAACGCTCATAT	Genotyping Reverse Internal	flp-18
AB115	TTATTCTTTCTTGTCGGGGCC	Genotyping Reverse External	flp-18
AB116	ACCTGTCACTTTTACGCCGG	Genotyping Forward External	npr-1
AB117	TGATTTCGTTCCAGTTGAACG	Genotyping Reverse Internal	npr-1
AB118	GAACCTTCACTTCTCCTGTG	Genotyping Reverse External	npr-1
AB119	AGCTGTTGTCTCCTTCCAGG	Genotyping Forward External	npr-4
AB120	CGATTTCCGATGAGGAAACC	Genotyping Reverse Internal	npr-4
AB121	CACAGCTTCTAATAGGAAAGGG	Genotyping Reverse External	npr-4
AB122	GCACGACGAACTGCAAATTT	Genotyping Forward External	npr-5

AB123	TCCTTGAGTTTTCTGGGATG	Genotyping Reverse Internal	npr-5
AB124	AGGCATTTTTGGAAACGGCG	Genotyping Reverse External	npr-5
AB108	ACGCGTCGAC TCTGTCACATACTGCTCGAA	Cloning Forward Sall	Pflp-18
AB109	CCCCCCGGGGTTGCTGTCTAACCCTGAAA	Cloning Reverse <i>Xmal</i>	Pflp-18
AB139	GCGTCGACAAGTGACACCACGCTCACA	Cloning Forward Sall	Prig-3
AB140	CCCCCCGGGAGCTGTGAAATTTTTAGGCA GT	Cloning Reverse <i>Xmal</i>	Prig-3
PRS71	CGAAAAGGGGAGCAAACATCG	Genotyping External Forward	rig-3
PRS72	ATCTTGATCTCCTCGTCTCCG	Genotyping Internal Reverse	rig-3
PRS73	GCAATACCACACTATCTCCTG	Genotyping External Reverse	rig-3
AB148	CTAGCTAGCATGGGACGACTACTTGCCAA GAT	Cloning Forward <i>Nhel</i>	<i>rig-3</i> cDNA
AB149	CGGGGTACCTTAGATAAAAAGACAGACAA AAAATAACGTG	Cloning Reverse <i>Kpnl</i>	<i>rig-3</i> cDNA
AB209	ACATGCATGCACAAAGTTTTTAAAAAGTTG TTGATCGG	Cloning Forward <i>Sphl</i>	Pgpa-3
AB210	CCCCCCGGGGAAGCACAACTCTAAAAAG CCCA	Cloning Reverse <i>Xmal</i>	Pgpa-3
AB216	ACATGCATGCCGATTGACATTGGTCTTAC ATTTTGAC	Cloning Forward Sphl	Pgcy-5
AB217	CCCCCCGGGATTGAAATTCTACTACTTCT GGGGG	Cloning Reverse <i>Xmal</i>	Pgcy-5

70 Table S3: List of plasmids used in this study

S. No.	Plasmid No.	Plasmid
1	pBAB515	Prig-3::RIG-3::sl2::wrmScarlet

2	pBAB516	Pflp-18::RIG-3	
3	pBAB519	Pgcy-5::NPR-5	72
4	pBAB520	<i>Pgpa-3</i> ::NPR-5	
5	pAG_09	<i>Prig-3</i> ::GCaMP5 (from Cori Bargmann lab)	74
			75