Supplementary Materials and Methods
Strains 
C. elegans strains were grown at 20°C with OP50 bacteria as food. N2 (Bristol) is the reference wild type strain. Strains used in this study include: 
CSM660 unc-79(mac383) III (backcrossed 6 times, reference lf allele)
CSM555 unc-79(mac389) III
CSM559 unc-79(mac393) III
CB1291 unc-79(e1291) III (Jospin et al., 2007)
VC9 nca-2(gk5) III (Jospin et al., 2007; Yeh et al., 2008)
VC12 nca-1(gk9) IV (Jospin et al., 2007; Yeh et al., 2008)
DR1089 nca-1(e625) IV (Brenner, 1974; Yeh et al., 2008)
CB1272 unc-80(e1272) V (Jospin et al., 2007)
CSM659 unc-80(mac379) V (backcrossed 6 times, reference lf allele)
CSM546 unc-80(mac380) V
CSM547 unc-80(mac381) V
CSM548 unc-80(mac382) V
CSM550 unc-80(mac384) V
CSM551 unc-80(mac385) V
CSM552 unc-80(mac386) V
CSM554 unc-80(mac388) V
CSM556 unc-80(mac390) V
CSM557 unc-80(mac391) V
CSM560 unc-80(mac394) V
CSM710 nlf-1(mac408) X
CSM720 nlf-1(mac409) X (backcrossed 3 times, reference lf allele)
CSM712 nlf-1(mac410) X
CSM553 mac387

CSM661 unc-79(mac383) III; unc-80(mac379) V
CSM699 unc-79(mac383) III; nca-1(e625) IV
CSM662 nca-2(gk5) III; nca-1(gk9) IV
CSM813 nca-2(gk5) III; nlf-1(mac409) X
CSM812 nca-1(gk9) IV; nlf-1(mac409) X
CSM700 nca-1(e625) IV; unc-80(mac379) V
CSM730 nca-1(e625) IV; nlf-1(mac409) X

CSM1227 unc-79(mac383) III; macEx668[PLunc-79a::unc-79a_gDNA; Pmyo-3::GFP] #1
CSM1228 unc-79(mac383) III; macEx698[PLunc-79a::unc-79a_gDNA; Pmyo-3::GFP] #2
CSM731 unc-79(mac383) III; macEx427[PSunc-79a::unc-79a_gDNA; Pmyo-3::GFP] #1
CSM732 unc-79(mac383) III; macEx428[PSunc-79a::unc-79a_gDNA; Pmyo-3::GFP] #2
CSM736 unc-79(mac383) III; macEx430[Punc-79b::unc-79b_gDNA; Pmyo-3::GFP] #1
CSM737 unc-79(mac383) III; macEx431[Punc-79b::unc-79b_gDNA; Pmyo-3::GFP] #2
CSM936 unc-80(mac379) V; macEx511[Punc-80::unc-80_gDNA; Pmyo-3::GFP] #1
CSM937 unc-80(mac379) V; macEx512[Punc-80::unc-80_gDNA; Pmyo-3::GFP] #2
CSM1103 nca-2(gk5) III; nca-1(gk9) IV; macEx582[Pnca-1::nca-1_gDNA; Pmyo-3::GFP] #1
CSM1104 nca-2(gk5) III; nca-1(gk9) IV; macEx583[Pnca-1::nca-1_gDNA; Pmyo-3::GFP] #2
CSM1105 nca-2(gk5) III; nca-1(gk9) IV; macEx584[Pnca-2::nca-2_gDNA; Pmyo-3::GFP] #1
CSM1106 nca-2(gk5) III; nca-1(gk9) IV; macEx585[Pnca-2::nca-2_gDNA; Pmyo-3p::GFP] #2
CSM1107 nca-2(gk5) III; nca-1(gk9) IV; macEx586[Pnca-1::nca-1_gDNA; Pnca-2::nca-2_gDNA; Pmyo-3::GFP] #1
CSM1108 nca-2(gk5) III; nca-1(gk9) IV; macEx587[Pnca-1::nca-1_gDNA; Pnca-2::nca-2_gDNA; Pmyo-3::GFP] #2

CSM1223 macEx664[PLunc-79a::GFP]
CSM749 macEx436[PSunc-79a::GFP]
CSM931 macEx506[Punc-80::GFP]
CSM1247 macEx664[PLunc-79a::GFP]; macEx685[Punc-80::mCherry]
CSM950 macEx506[Punc-80::GFP]; macEx524[PSunc-79a::mCherry]
CSM913 macEx436[PSunc-79a::GFP]; macEx502[Pssu-1::mCherry]
CSM932 macEx436[PSunc-79a::GFP]; macEx507[Pglr-3::mCherry]
CSM953 macEx436[PSunc-79a::GFP]; macEx527[Psra-6::mCherry]
CSM972 macEx528[Pnlf-1::mCherry]
CSM1004 macEx506[Punc-80::GFP]; macEx539[Psra-11::mCherry]
CSM1005 macEx506[Punc-80::GFP]; macEx540[Pmgl-1::mCherry]
CSM1006 macEx506[Punc-80::GFP]; macEx541[Pnmr-1::mCherry]
CSM1038 macEx506[Punc-80::GFP]; macEx545[Pnlf-1::mCherry]

CSM1248 macEx686[PLunc-79a::Cas9; PU6::unc-79_sgRNA; Pmyo-3::GFP] #1
CSM1249 macEx687[PLunc-79a::Cas9; PU6::unc-79_sgRNA; Pmyo-3::GFP] #2
CSM1079 macEx562[PSunc-79a::Cas9; PU6::unc-79_sgRNA; Pmyo-3::GFP] #1
CSM1080 macEx563[PSunc-79a::Cas9; PU6::unc-79_sgRNA; Pmyo-3::GFP] #2
CSM1095 macEx574[Punc-119::Cas9; PU6::unc-79_sgRNA; Pmyo-3::GFP] #1
CSM1096 macEx575[Punc-119::Cas9; PU6::unc-79_sgRNA; Pmyo-3::GFP] #2
CSM1097 macEx576[Punc-119::Cas9; PU6::unc-80_sgRNA; Pmyo-3::GFP] #1
CSM1098 macEx577[Punc-119::Cas9; PU6::unc-80_sgRNA; Pmyo-3::GFP] #2
CSM1155 macEx617[Pnmr-1::Cas9; PU6::unc-80_sgRNA; Pmyo-3::GFP] #1
CSM1156 macEx618[Pnmr-1::Cas9; PU6::unc-80_sgRNA; Pmyo-3::GFP] #2

CSM939 unc-80(mac379) V; macEx514[Punc-80::unc-80_cDNA; Pmyo-2::mCherry] #1
CSM940 unc-80(mac379) V; macEx515[Punc-80::unc-80_cDNA; Pmyo-2::mCherry] #2
CSM1250 unc-80(mac379) V; macEx688[PLunc-79a::unc-80_cDNA; Pmyo-3::GFP] #1
CSM1251 unc-80(mac379) V; macEx689[PLunc-79a::unc-80_cDNA; 
Pmyo-3::GFP] #2
CSM942 unc-80(mac379) V; macEx517[Pnlf-1::unc-80_cDNA; Pmyo-3::GFP] #1
CSM943 unc-80(mac379) V; macEx518[Pnlf-1::unc-80_cDNA; Pmyo-3::GFP] #2
CSM1040 unc-80(mac379) V macEx547[Pnmr-1::unc-80_cDNA; Pmyo-2::mCherry] #1
CSM1041 unc-80(mac379) V macEx548[Pnmr-1::unc-80_cDNA; Pmyo-2::mCherry] #2
CSM1122 unc-80(mac379) V; macEx594[Pglr-1::unc-80_cDNA; Pmyo-3::GFP] #1
CSM1123 unc-80(mac379) V; macEx595[Pglr-1::unc-80_cDNA; Pmyo-3::GFP] #2
CSM1205 unc-80(mac379) V; macEx660[Pflp-18::unc-80_cDNA; Pflp-1::unc-80_cDNA; Punc-7b::unc-80_cDNA; Pmyo-2::mCherry] #1
CSM1206 unc-80(mac379) V; macEx661[Pflp-18::unc-80_cDNA; Pflp-1::unc-80_cDNA; Punc-7b::unc-80_cDNA; Pmyo-2::mCherry] #2

CSM1261 unc-79(mac383) III; macEx690[PLunc-79a::unc-79a_cDNA::GFP; Pmyo-2::mCherry] #1
[bookmark: _GoBack]CSM1262 unc-79(mac383) III; macEx691[PLunc-79a::unc-79a_cDNA::GFP; Pmyo-2::mCherry] #2

Molecular biology
The 21.2 kb PLunc-79a::unc-79a_gDNA including an unc-79a long promoter (5056 bp upstream of the ATG start codon) and the full-length genomic fragment was amplified by PCR with the fosmid WRM0625cH11 (kindly provided by Yingchuan Qi) as template.

The 17.9 kb PSunc-79a::unc-79a_gDNA including an unc-79a short promoter (1946 bp upstream of the ATG start codon and 2 bp of the first exon) and the full-length genomic fragment was amplified by PCR with the fosmid WRM0625cH11 (kindly provided by Yingchuan Qi) as template.

The Punc-79b::unc-79b_gDNA consists of the 16 kb unc-79a full-length genomic fragment without the unc-79a promoter.

The 22.5 kb Punc-80::unc-80_gDNA including an unc-80 promoter (3595 bp upstream of the ATG start codon and 54 bp of the first exon) and the full-length genomic fragment was amplified by PCR with the fosmid WRM0616bC05 (kindly provided by Yingchuan Qi) as template.

The 19.2 kb Pnca-1::nca-1_gDNA including an nca-1 promoter (3142 bp upstream of the ATG start codon) and the full-length genomic fragment was amplified by PCR with the fosmid WRM0613dC08 (kindly provided by Yingchuan Qi) as template.

The 17.3 kb Pnca-2::nca-2_gDNA including an nca-2 promoter (3062 bp upstream of the ATG start codon) and the full-length genomic fragment was amplified by PCR with the fosmid WRM065cA04 (kindly provided by Yingchuan Qi) as template.

For PLunc-79a::GFP construct, the unc-79a long promoter was amplified by PCR and subcloned to pPD95_79 vector using SbfI/XmaI restriction sites.

For PSunc-79a::GFP construct, the unc-79a short promoter was amplified by PCR and subcloned to pPD95_79 vector using SphI/XmaI restriction sites.

For Pssu-1::mCherry construct, the mCherry gDNA was amplified by PCR using pCFJ90 as template and subcloned to pPD95_79 vector by replacing GFP using AgeI/EcoRI restriction sites. The ssu-1 promoter (543 bp upstream of the ATG start codon) (Carroll et al.) was amplified by PCR and subcloned to pPD95_79-mCherry using SphI/XmaI restriction sites.

For Psra-6::mCherry construct, a sra-6 promoter (3734 bp upstream of the ATG start codon and 33 bp of the first exon) (Troemel et al., 1995) was amplified by PCR and subcloned to pPD95_79-mCherry in frame with mCherry using SbfI/XmaI restriction sites.

For Pglr-3::mCherry construct, a glr-3 promoter (2182 bp upstream of the ATG start codon and 30 bp of the first exon) (Brockie et al., 2001a) was amplified by PCR and subcloned to pPD95_79-mCherry in frame with mCherry using SphI/KpnI restriction sites.

For Punc-80::GFP construct, the unc-80 promoter was amplified by PCR and subcloned to pPD95_79 vector using SphI/XmaI restriction sites.

For Pnmr-1::mCherry construct, an nmr-1 promoter (5035 bp upstream of the ATG start codon) (Brockie et al., 2001b) was amplified by PCR and subcloned to pPD95_79-mCherry using SphI/XmaI restriction sites.

For Pmgl-1::mCherry construct, an mgl-1 promoter (3956 bp upstream of the ATG start codon) was amplified by PCR and subcloned to pPD95_79-mCherry using SbfI/XmaI restriction sites. mgl-1 was previously reported to be expressed in AIA, AIY, NSM and RMD neurons (Greer et al., 2008; Wenick and Hobert, 2004). In this study, we found that pharyngeal interneurons I3 and I4 were also labeled by the Pmgl-1::mCherry reporter.

For Punc-80::mCherry construct, the unc-80 promoter was amplified and subcloned to pPD95_79-mCherry using SphI/XmaI restriction sites.

For PSunc-79a::mCherry construct, the unc-79a short promoter was amplified  and subcloned to pPD95_79-mCherry using SphI/XmaI restriction sites.

For Pnlf-1::mCherry construct, an nlf-1 promoter (5824 bp upstream of the ATG start codon from -40 to -5863 nt) was amplified by PCR and subcloned to pPD95_79-mCherry using SbfI/XmaI restriction sites. (Xie et al., 2013)

For Psra-11::mCherry construct, a sra-11 promoter (3352 bp upstream of the ATG start codon and 104 bp of the first exon) (Altun-Gultekin et al., 2001) was amplified by PCR and subcloned to pPD95_79-mCherry in frame with mCherry using SphI/XmaI restriction sites.

For PSunc-79a::Cas9::NLS::3’UTR construct, the Cas9::NLS::3’UTR fragment was amplified by PCR using the pPD162 plasmid (Dickinson et al., 2013) as template and subcloned to pPD95_79-PSunc-79a with In-fusion HD Cloning Kit (Clontech) using XmaI restriction sites.

For PLunc-79a::Cas9::NLS::3’UTR construct, the unc-79a long promoter was amplified and subcloned to pPD95_79-PSunc-79a::Cas9::NLS::3’UTR by replacing the unc-79a short promoter using SphI/XmaI restriction sites.

For Punc-80::Cas9::NLS::3’UTR construct, the unc-80 promoter was amplified  and subcloned to pPD95_79-PSunc-79a::Cas9::NLS::3’UTR by replacing the unc-79a short promoter using SphI/XmaI restriction sites.

For Pnmr-1::Cas9::NLS::3’UTR construct, the nmr-1 promoter (Brockie et al., 2001b) was amplified and subcloned to pPD95_79-PSunc-79a::Cas9::NLS::3’UTR by replacing the unc-79a short promoter using SphI/XmaI restriction sites.

For Punc-119::Cas9::NLS::3’UTR construct, an unc-119 promoter (1995 bp upstream of the unc-119b start codon and 49 bp of the first exon) (Maduro and Pilgrim, 1995) was amplified by PCR and subcloned to pPD95_79-PSunc-79a::Cas9::NLS::3’UTR by replacing the unc-79a short promoter using SphI/XmaI restriction sites.

For Punc-80::unc-80_cDNA construct, the full-length unc-80_cDNA synthesized at Sangon Biotech (Shanghai) was subcloned to pPD95_79 vector using XmaI/KpnI sites. The unc-80 promoter was amplified and subcloned to pPD95_79-unc-80_cDNA using SphI/XmaI restriction sites. 

For PLunc79a::unc-80_cDNA construct, the unc-79a long promoter was amplified and subcloned to pPD95_79-Punc-80::unc-80_cDNA by replacing the unc-80 promoter using SphI/XmaI restriction sites.

For PSunc79a::unc-80_cDNA construct, the unc-79a short promoter was amplified and subcloned to pPD95_79-Punc-80::unc-80_cDNA by replacing the unc-80 promoter using SphI/XmaI restriction sites.

For Pnmr-1::unc-80_cDNA construct, the nmr-1 promoter (Brockie et al., 2001b) was amplified and subcloned to pPD95_79-Punc-80::unc-80_cDNA by replacing the unc-80 promoter using SphI/XmaI restriction sites.

For Pnlf-1::unc-80_cDNA construct, the unc-80 cDNA was amplified and subcloned to pPD95_79- Pnlf-1::mCherry using XmaI/KpnI restriction sites.

For Pglr-1::unc-80_cDNA construct, a glr-1 promoter (2996 bp upstream of the ATG start codon) (Brockie et al., 2001) was amplified by PCR and subcloned to pPD95_79-Pnlf-1::unc-80_cDNA by replacing the nlf-1 promoter using SbfI/XmaI restriction sites.

For Pflp-1::unc-80_cDNA construct, a flp-1 promoter (1574 bp upstream of the ATG start codon) (Nelson et al., 1998) was amplified by PCR and subcloned to pPD95_79-Pnlf-1::unc-80_cDNA by replacing the nlf-1 promoter using SbfI/XmaI restriction sites.

For Pflp-18::unc-80_cDNA construct, the flp-18 promoter (Rogers et al., 2003) was amplified and subcloned to pPD95_79-Punc-80::unc-80_cDNA by replacing the unc-80 promoter using SphI/XmaI restriction sites.

For Punc-7b::unc-80_cDNA construct, an unc-7b promoter (3122 bp upstream of the unc-7b start codon) (Altun et al., 2009) promoter was amplified by PCR and subcloned to pPD95_79-Pnlf-1::unc-80_cDNA by replacing the nlf-1 promoter using SbfI/XmaI restriction sites.

For Pmgl-1::unc-80_cDNA construct, the mgl-1 promoter was amplified and subcloned to pPD95_79-Pnlf-1::unc-80_cDNA by replacing the nlf-1 promoter using SbfI/XmaI restriction sites.

For Psra-11::unc-80_cDNA construct, the sra-11 promoter was amplified and subcloned to pPD95_79-Punc-80::unc-80_cDNA by replacing the unc-80 promoter using SphI/XmaI restriction sites.

For PLunc-79a::unc-79a_cDNA::GFP construct, the full-length unc-79a_cDNA was amplified by PCR and subcloned to pPD95_79- PLunc-79a using XmaI/KpnI restriction sites. 

All plasmids were verified by restriction digestion and sequencing. Primers are listed in Table S5.

Generation of nlf-1 deletion alleles using the CRISPR/Cas9 method
For the generation of nlf-1 deletions using a CRISPR/Cas9 method (Friedland et al., 2013), the transgenic mixture containing 50 ng/μl pPD162 (Peft-3::Cas9::NLS::3’UTR), 25 ng/μl PU6::nlf-1_sgRNA, and 20 ng/μl pPD95_86 (Pmyo-3::GFP) as co-injection marker was injected to wild type animals and GFP-positive F1 progeny were picked to individual plates and genotyped. 
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