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1 Comparison between the PH-E model with
and without including the random term for
correlated responses

The proposed dimension reduction procedure is based on the following model

log((Yi − Yj)−2) = log(%) +

p∑
k=1

(−ρk)‖Xik −Xjk‖γ + log(εi,j) (1)

with a defect that the pseudo-observations are incorrectly assumed to be mutu-
ally independent. However, with a cost of increasing computational complexity,
dependencies between the pseudo-observations could be accounted for by addi-
tional random effect terms ui,j such that ui,j ⊥⊥ log(εi,j) and

log((Yi − Yj)−2) = log(%) +

p∑
k=1

(−ρk)‖Xik −Xjk‖γ + ui,j + log(εi,j). (2)

The random effect vector u ∈ Rn(n−1)/2 is assumed to follow a multivariate
normal distribution N (0, σ2G) where G ∈ Rn(n−1)/2×n(n−1)/2 is a known ex-
pression covariance matrix between the pseudo-observations. With reference to
the methods where genomic relationship matrices are estimated from molecular
markers located across the genome (see e.g. VanRaden 2008) the matrix G
could be estimated from the model matrix Z ∈ Rn(n−1)/2×p consisting of all
pseudo-variables ‖Xi1 −Xj1‖γ , . . . , ‖Xip −Xjp‖γ such that

Ĝ = (Z− ẑTrow1p)(Z− ẑ
T
row1p)

T/(p− 1)

where ẑrow ∈ Rn(n−1)/2 denotes a vector of the row means of the model matrix
Z and 1p ∈ Rp is a constant vector of ones. In practice the matrix G can be
simply calculated for instance in R as cov(t(Z)).
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However, it can be shown that the results do not differ substantially between
the models (1) and (2). Especially in quantitative trait locus analyses multi-
locus association models have been shown repeatedly to perform well without
including any polygenic term to account for residual dependencies in the model
(see e.g. Setakis et al. 2006; Pikkuhookana and Sillanpää 2009; Kärkkäinen and
Sillanpää 2012; Würschum and Kraft 2015; Toosi et al. 2018). In these studies,
multilocus models are assumed to be consisting of q loci with significant effects
and p − q loci with negligible effects on the trait. The sum over the effects of
these p − q loci is perceived as a finite locus approximation to the polygenic
effects (see e.g. Pikkuhookana and Sillanpää 2009; Kärkkäinen and Sillanpää
2012). In other words, the effects of these q loci emulate cumulatively the ex-
cluded polygenic component such that the dependencies among individuals are
modeled by the loci itself (Habier et al. 2007).

With reference to the finite polygenic approximations we partition the sys-
tematic part of the model (1) according to the magnitude of the parameters ρk
(k = 1, . . . , p) such that

p∑
k=1

(−ρk)‖Xik−Xjk‖γ =

q∑
k=1

(−ρk)‖Xik−Xjk‖γ+

p∑
k=q+1

(−ρk)‖Xik−Xjk‖γ , (3)

where the first q pseudo-variables are assumed to be significantly associated with
the dependent pseudo-variable log((Yi − Yj)

−2). The random effects ui,j are
then approximated by the sum

∑p
k=q+1(−ρk)‖Xik −Xjk‖γ in a sense that the

expression covariances among the pseudo-observations are taken into account
cumulatively by the effects of these p− q pseudo-variables.

The role of the penalty parameter λ: The random effects ui,j are
approximated cumulatively by the effects of the negligible p−q pseudo-variables.
However, once the Lasso/elastic net approach is used we are actually shrinking
the effect sizes of these p − q pseudo-variables towards zero. Larger penalty
parameter λ values therefore provide less degrees of freedom to emulate the
random effects ui,j causing more differences between the results obtained from
the models (1) and (2).

The role of the γ-parameter: Since different γ-parameters in pseudo-
variables yield different estimates of the expression covariance matrices G the
similarities between the results obtained from the models (1) and (2) clearly de-
pend on the γ-parameter. It appears (as will be later shown) that the proposed
γ-parameter value 0.2 consistently implies highly equivalent results between the
models (1) and (2) for both large and small penalty parameter λ values. The
aberrations in the model estimates between the models (1) and (2) tend to in-
crease more clearly with the γ-parameter value 1.0 and even more so with the
value 2.0 as the penalty parameter λ values increase.

Loosely speaking, this is due to the fact that the pseudo-variables with the
γ-parameter value 0.2 are more favourably distributed to approximate normally
distributed random effects ui,j than the ones corresponding to the γ-parameter
values 1.0 and 2.0. In Figure S1 we have provided a simple example based on
the DREAM-challenge dataset described in the simulation section of the article.
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Let us denote the pseudo-variables of the PH-E model for each γ ∈ {0.2, 1.0, 2.0}
by X(γ). To generate ”negligible” effects we simulated a known inverse band-
width parameter vector ρ from the multivariate normal distribution N (0, 0.32I).
Then the histograms of X(γ)ρ-values as well as the values of the randomly cho-
sen pseudo-variable (among X1(γ) . . . , Xp(γ)) are plotted in Figure S1 for each
γ ∈ {0.2, 1.0, 2.0}.

——————— INSERT FIGURE S1 ABOUT HERE —————–

It can be seen that especially the histograms of X(γ)ρ-values corresponding
to the γ-parameter value 0.2 is quite well normally distributed. However, for the
γ-parameter values 1.0 and 2.0 the tails of the histograms of X(γ)ρ-values get
evidently heavier and longer as can be expected by comparing the histograms of
X(γ)-values between different γ-parameter values. Since the random effects ui,j
are assumed to be normally distributed, the sum

∑p
k=q+1(−ρk)‖Xik − Xjk‖γ

with γ = 0.2 can be therefore expected to emulate the random effects ui,j more
effectively than with γ = 1.0 or γ = 2.0.

1.1 Simulated examples

We provide a comparison between the proposed PH-E model with and without
including the random effect term to the model by using the DREAM-challenge
gene-expression dataset described in the simulation section of the article. How-
ever, we used only the first 120 individuals in both analyses since the estima-
tion process for the model with the random effect term is extremely time- and
memory-consuming. One three-way interaction term (dissembled at genes 21,
105, 207 indexes starting from the ACTB gene) was simulated without the main
effects such that

Y = X21X105X207 + ε, (4)

where ε ∼ N (0, σ2). We simulated a single replicate of the phenotype vector and
analyzed the same replicate by the both models through the grid {0.2, 1.0, 2.0}
of different γ-parameter values. The intercept was set to zero and normal resid-
ual variance σ2 was chosen to be relatively small (σ2 = 0.12) due to the small
sample size.

——————— INSERT FIGURE S2 ABOUT HERE —————–

The model coefficients were estimated with the elastic net estimator using the
glmnet R-package (Friedman et al. 2010) for the model (1) and with the ggmix
R-package (Bhatnagar et al. 2019) for the mixed model (2). In both cases
we used the α-parameter value of 1/3 in the elastic net estimator for each
γ ∈ {0.2, 1.0, 2.0}. We note that the model estimates for the models (1) and
(2) are not perfectly aligned by the same λ-values. We have therefore presented
in Figure S2 the regularization paths for the estimated inverse bandwidth pa-

3



rameters against the `1-norm of the whole inverse bandwidth parameter vector
as λ varies. We note that the mixed elastic net algorithm sometimes showed
convergence problems for some fixed penalty parameter λ values. The used R-
code and the simulated phenotype replicate are available at the supplementary
materials B.

It is evident from Figure S2 that the results are overall equivalent between
the models (1) and (2) for each γ ∈ {0.2, 1.0, 2.0} at least in terms of dimen-
sion reduction. In concordance with the finite polygenic approximation studies
(e.g. Pikkuhookana and Sillanpää 2009; Kärkkäinen and Sillanpää 2012) we are
inclined to believe that also in the case of our PH-E model the benefits of the
incorporated random effects ui,j can be emulated by the pseudo-variables itself
accurately enough for practical purposes.

More precisely, Figure S3 displays the estimates of the inverse bandwidth
parameters ρk k = 1, . . . , p for two sets of fixed penalty parameter λ values.
The top six panels (A1-3 and B1-3) represent the estimates of the model (2)
and the estimates the model (1) (B1-3) for a relative small penalty parameter
λ value 0.001 (representing the right edges in the regularization path figures).
Different panel columns separate the estimates produced by different kernels
parameters: γ = 0.2 (panels A1 and B1), γ = 1 (the exponential kernel, panels
A2 and B2) and γ = 2 (the Gaussian kernel, panels A3 and B3). Moreover,
since the results start to deviate between the models (1) and (2) as the penalty
parameter λ increases (see Figure S2) we have also plotted the estimates of the
inverse bandwidth parameters for larger values of λ. In the bottom six panels we
chose the penalty parameter λ value separately for each panel such the number
of non-zero inverse bandwidth parameters was approximately 60 in each case
(blue lines in Figure S3 represent the associated `1-norm values).

As could be seen already in Figure S2, the top six panels (A1-3 and B1-3)
show that the estimates of the inverse bandwidth parameters are almost iden-
tical when the penalty parameter λ is small for each γ ∈ {0.2, 1.0, 2.0}. As the
penalty parameter λ values increase, we get less degrees of freedom to emulate
the random effects by the pseudo-variables itself and the differences between
models (1) and (2) start to expose. It is clear from the bottom six panels (A1-3
and B1-3) that smaller γ-parameter values provide better approximation for
the random effects as expected from the results of the first example (Figure S1).
Especially, the differences between the results obtained from the models (1) and
(2) remained practically equivalent with the γ-parameter value 0.2.

——————— INSERT FIGURE S3 ABOUT HERE —————–

However, while not incorporating the random effect terms into the model does
not seem to cause any substantial drawbacks especially with the proposed γ-
parameter value 0.2 there are significant differences in estimation times in favor
of the model (1). We illustrate the amount of computational alleviation achieved
by using the model (1) without included random effect terms with respect to the
increasing number of individuals (n) and random variables (p). First, multiple
datasets are simulated such that the number of random variables is fixed to 100
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and the number of individuals is changed (25, 50, 75, 100 and 125). Subse-
quently, the number of individuals is fixed to 100 and the number of random
variables is changed (125, 250, 500, 750 and 1000). The random variables were
simulated independently from each other such that each variable was assigned
to follow the standard normal distribution.

——————— INSERT TABLE S1 ABOUT HERE —————–

The estimation times for both methods are listed in Table 1. As can be seen,
when the random effects are not included into the model the estimation process
was extremely fast with respect to the increasing number of individuals and ran-
dom variables. Yet, if the random effects are incorporated into the model the
estimation time increases relatively quickly as the number of individuals or ran-
dom variables increases. It therefore seems that the benefits of using the model
where the dependencies among pseudo-observations are properly accounted for
are insignificant relative to the disadvantages. However, we still suggest to use
the model (2) whenever possible (in terms of computational capacity) for better
theoretical justification.

2 Proofs for the propositions

Proposition 1 The powered exponential kernel function Kγ(Xi,Xj ; ρ) with
0 < γ ≤ 2 has the infinite series representation that contains all possible product
terms

∏
r∈Ms

ρrφMs
(Xi)φMs

(Xj) with respect to all possible subsetsMs of in-
dices {k1, . . . , ks} ⊂ {1, . . . , p} of size s for all 1 ≤ s ≤ p, where φMs

: Rp −→ R
is a mapping φMs

(X) =
∏
k∈Ms

Xk.

Proof. This representation is a consequence of several series expansions
(c.f. Cotter et al. 2011 for γ = 2) of the powered exponential kernel Kγ(Xi,Xj ; ρ).
Let us begin by re-writing the powered exponential kernel as

exp

(
−

p∑
k=1

ρk‖Xik −Xjk‖γ
)

= exp

(
−

p∑
k=1

ρk((Xik −Xjk)2)γ/2

)
(5)

= exp

(
−

p∑
k=1

ρk(X2
ik − 2Z(i,j)k + (

Z(i,j)k

Xik
)2)γ/2

)
(6)

where Z(i,j)k = XikXjk. Now the terms ρk(X2
ik − 2Z(i,j)k + (

Z(i,j)k

Xik
)2)γ/2 for

each k = 1, . . . , p can be represented with the Taylor series expansion around
Z(i,j)k = 0 in the form of

ρk(X2
ik − 2Z(i,j)k + (

Z(i,j)k

Xik
)2)γ/2 =

m∑
l=1

Ql,γ,Xik
ρk(Z(i,j)k)l +O(Zm+1

(i,j)k), (7)

where the terms Ql,γ,Xik
depend on γ, l and Xik (only on the ith observation).

By using the equation (3), the powered exponential kernel (2) can be written as
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the following power series:

Kγ(Xi, Xj ; ρ) =

∞∑
q=0

1

q!

(
−

p∑
k=1

m∑
l=1

Ql,γ,Xik
ρk(Z(i,j)k)l +O(Zm+1

(i,j)k)

)q
(8)

≈
∞∑
q=0

1

q!

(
−

p∑
k=1

m∑
l=1

Ql,γ,Xik
ρk(Z(i,j)k)l

)q
= 1−

p∑
k=1

m∑
l=1

Ql,γ,Xik
ρk(Z(i,j)k)l

+
1

2

∑
k1,k2

∑
l1,l2

Ql1,γ,Xik1
Ql2,γ,Xik2

ρk1ρk2(Z(i,j)k)l1(Z(i,j)r)
l2

− 1

3!

∑
k1,k2,k3

∑
l1,l2,l3

Ql1,γ,Xik1
Ql2,γ,Xik2

Ql3,γ,Xik3
ρk1ρk2ρk3(Z(i,j)k1)l1(Z(i,j)k2)l2(Z(i,j)k3)l3

+ · · ·+(−1)s

s!

∑
k1...ks

∑
l1...ls

Ql1,γ,Xik1
. . . Qls,γ,Xiks

ρk1 · · · ρks(Z(i,j)k1)l1 · · · (Z(i,j)ks)ls ,

where 1 ≤ k1, . . . , ks ≤ p and 1 ≤ l1, . . . , ls ≤ m for some m ∈ N. This rep-
resentation contains all possible product terms

∏
r∈Ms

Q1,γ,Xir
ρr(Z(i,j)r) with

respect to all possible subsets Ms of indices {k1, . . . , ks} ⊂ {1, . . . , p} of size s
for all 1 ≤ s ≤ p.

By applying a simple linear approximation around a point (Q1,γ,Xir , ρr(Z(i,j)r)) =
(a, 0) we have for some constant C ∈ R that∏

r∈Ms

Q1,γ,Xir
ρr(Z(i,j)r) ≈ C + a

∏
r∈Ms

ρr(Z(i,j)) (9)

= C + a
∏
r∈Ms

ρrφMs
(Xi)φMs

(Xj) (10)

from which it can be seen that the powered exponential kernel implicitly enu-
merates all possible product terms

∏
r∈Ms

ρrφMs
(Xi)φMs

(Xj) with respect to
all possible subsets Ms of indices {k1, . . . , ks} ⊂ {1, . . . , p} of size s for all
1 ≤ s ≤ p, as stated in the proposition.

Proposition 2 Let us consider a random vector Xi ∈ Rp, the corresponding
phenotype Yi ∈ R and independent and identically distributed copies Xj ∈ Rp
and Yj ∈ R. Then for any Borel-measurable function T we have that

Yi ⊥⊥
∏
k∈Ms

Xik if and only if T (Yi − Yj) ⊥⊥ φ(Xi)φ(Xj) (11)

where φ : Rp −→ R is a mapping φ(X) =
∏
k∈Ms

Xk for some fixed subset Ms

of indices {l1, . . . , ls} ⊂ {1, . . . , p} of size 1 ≤ s ≤ p.
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Proof. We begin by assuming that the phenotype Yi is independent on
the term φ(Xi) =

∏
k∈Ms

Xik for some integer 1 ≤ s ≤ p and show that it
implies the right-hand side of the proposition. Let us consider an independent
copy Z′ = (Yj , φ(Xj)) of the random vector Z = (Yi, φ(Xi)) so that Zt ⊥⊥ Z

′

h

for 1 ≤ t, h ≤ 2. Let DY , Dφ(Xi) and Dφ(Xj) denote the σ−algebras generated
by the variables Yi, φ(Xi) and φ(Xj), respectively. Now we can consider the
product φ(Xi)φ(Xj) as Dφ(Xi)φ(Xj)-measurable where Dφ(Xi)φ(Xj) is the σ-
algebra generated by the σ−algebras Dφ(Xi) and Dφ(Xj) since φ(Xi)φ(Xj) is a
Borel-measurable function of φ(Xi) and φ(Xj).

It can be shown by the Dynkin π−λ theorem (see e.g. Klenke 2014) that the
σ-algebras Dφ(Xi)φ(Xj) and DYi

are independent which implies that Yi (and Yj)
and φ(Xi)φ(Xj) are independent random variables. This is actually a special
case of a more general case (see e.g. Pfeiffer 1990, Theorems 11.3.1. and 11.3.3).

Since (Yj , φ(Xj)) is independent and identically distributed copy of (Yi, φ(Xi)),
it follows by the Kac’s theorem (see e.g. Itô 1984) that Yi − Yj ⊥⊥ φ(Xi)φ(Xj).
Now that for every Borel measurable function T : R(Yi − Yj) −→ R (where
R(Yi − Yj) denotes the range of Yi − Yj) the σ−algebra generated by the map-
ping T (Yi − Yj) is a sub-algebra of the σ-algebra generated by Yi − Yj implies
that σ(T (Yi−Yj)) ⊥⊥ Dφ(Xi)φ(Xj). Therefore, for any Borel-measurable function
T : R(Yi − Yj) −→ R we have that

Yi ⊥⊥
∏
k∈Ms

Xik =⇒ T (Yi − Yj) ⊥⊥ φ(Xi)φ(Xj). (12)

Let us now assume the independence (Yi − Yj) ⊥⊥ φ(Xi)φ(Xj). This by the
Kac’s theorem implies that Yi ⊥⊥ φ(Xi)φ(Xj) since Yi and Yj are independent.
Since φ(Xi), φ(Xj), Yi and Yj as well as their products are assumed to be
non-constant continuous random variables and that φ(Xj) is independent on
(φ(Xi), Yi) but similarly distributed as φ(Xi) it must be that Yi ⊥⊥ φ(Xi).
As an antithesis let us assume that Yi and φ(Xi) are not independent which
implies that Yj and φ(Xj) are also dependent. Therefore Yi = h(φ(Xi)) + εi
and Yj = h(φ(Xj)) + εj for some Borel-function h and independent error terms
εi and εj .

Since Yi, Yj and φ(Xi)φ(Xj) are independent we have by the Dynkin’s the-
orem that YiYj ⊥⊥ φ(Xi)φ(Xj). Moreover, since Yi and φ(Xi)φ(Xj) are inde-
pendent we have by the antithesis that

h(φ(Xi)) + εi ⊥⊥ φ(Xi)φ(Xj). (13)

By the Kac’s theorem h(φ(Xi)) must be independent on φ(Xi)φ(Xj). Since h
is a Borel-function, h(φ(Xi)) and h(φ(Xj)) are independent so it follows by the
Dynkin’s theorem and the independency YiYj ⊥⊥ φ(Xi)φ(Xj) that

h(φ(Xi))h(φ(Xj)) ⊥⊥ φ(Xi)φ(Xj) (14)

which can be only true if h is degenerate i.e. P (h(φ(Xi) = c)) = 1 for some
constant c ∈ R. As Yi is a continuous random variable implies contradiction
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since now Yi = h(φ(Xi)) + εi = c+ εi where c+ εi ⊥⊥ Yi. Therefore Yi ⊥⊥ φ(Xi)
by the contradiction and

T (Yi − Yj) ⊥⊥ φ(Xi)φ(Xj) =⇒ Yi ⊥⊥
∏
k∈Ms

Xik. (15)

Lemma 1 Let us consider a random vector Xi ∈ Rp, the corresponding phe-
notype Yi ∈ R and independent and identically distributed copies Xj ∈ Rp and
Yj ∈ R. Then we have that

Cov((Yi − Yj)2, φ(Xi)φ(Xj)) 6= 0 if Cov(Yi,
∏
k∈Ms

Xik) 6= 0.

where φ : Rp −→ R is a mapping φ(X) =
∏
k∈Ms

Xk for some fixed subset Ms

of indices {l1, . . . , ls} ⊂ {1, . . . , p} of size 1 ≤ s ≤ p. Moreover, the converse is
also true under the assumption that all dependencies between Y and

∏
k∈Ms

Xk

are identifiable by the interaction model (2).

Proof. Let us first assume that Cov(Yi,
∏
k∈Ms

Xik) 6= 0. Since (Yj , φ(Xj)) is
independent and identically distributed copy of (Yi, φ(Xi)) we can write that
φ(Xi) = aYi + εi and φ(Xj) = aYj + εj for some non-zero constant a ∈ R and
independent error terms εi and εj with E(εi) = E(εj) = 0. Now

Cov((Yi − Yj)2, φ(Xi)φ(Xj)) = Cov((Yi − Yj)2, (aYi + εi)(aYj + εj))

= Cov(Y 2
i − 2YiYj + Y 2

i , a
2YiYj + aYiεj + aYjεi + εiεj)

= Cov(Y 2
i − 2YiYj + Y 2

i , a
2YiYj + aYiεj + aYjεi) = −2a2Cov(YiYj , YiYj) 6= 0.

Let us now assume that Cov((Yi − Yj)2, φ(Xi)φ(Xj)) 6= 0 and that all depen-
dencies between Y and

∏
k∈Ms

Xk are identifiable by the interaction model (2).
Then

Cov((Yi − Yj)2, φ(Xi)φ(Xj)) = Cov(Y 2
i − 2YiYj + Y 2

j , φ(Xi)φ(Xj))

= Cov(Y 2
i , φ(Xi)φ(Xj))− 2Cov(YiYj , φ(Xi)φ(Xj)) + Cov(Y 2

j , φ(Xi)φ(Xj))

= 2Cov(Y 2
i , φ(Xi)φ(Xj))− 2Cov(YiYj , φ(Xi)φ(Xj))

= E(Y 2
i φ(Xi)φ(Xj))− E(Y 2

i )E(φ(Xi)φ(Xj))− E(YiYjφ(Xi)φ(Xj))

= E(φ(Xj)
(
E(Y 2

i φ(Xi))− E(Y 2
i )E(φ(Xi)))

)
− E(Yiφ(Xi))E(Yjφ(Xj)).

Let us consider an antithesis Cov(Yi, φ(Xi)) = 0 which further implies that

E(φ(Xj))
(
E(Y 2

i φ(Xi))− E(Y 2
i )E(φ(Xi)))

)
− E(Yiφ(Xi))E(Yjφ(Xj)) (16)

= E(φ(Xj))
(
E(Y 2

i φ(Xi))− E(Y 2
i )E(φ(Xi)))

)
6= 0, (17)

if and only if the inner term E(Y 2
i φ(Xi))−E(Y 2

i )E(φ(Xi)) i.e. the covariance
Cov(Y 2

i , φ(Xi)) is non-zero. This contradicts by the additional assumption that
all dependencies between Y and

∏
k∈Ms

Xk are identifiable by the interaction
model (2) so it must be that Cov(Yi, φ(Xi)) 6= 0.
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Proposition 3 Let us consider an interaction model (2) with the random vector
X ∈ Rp and the phenotype Y ∈ R. If we have that

Cov(Y,
∏
k∈Ms

Xk) 6= 0 for some Ms = {l1, . . . , ls} ⊂ {1, . . . , p},

then the corresponding inverse bandwidth parameters ρk (k ∈Ms) estimated by
the PH-E method tend to be non-zero.

Proof: Let us assume that Cov(Y,
∏
k∈Ms

Xk) is non-zero for some set
Ms = {l1, . . . , ls} ⊂ {1, . . . , p}. Then by the lemma (1) the covariance between
terms (Yi − Yj)2 and φ(Xi)φ(Xj) is also non-zero. This implies by the propo-
sition 1 that

∏
k∈Msρk

6= 0 due to which the associated bandwidth parameters
{ρk}k∈Ms must be also non-zero.
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Figure S1: The top histograms represent how the values of the single ran-
domly chosen pseudo-variable among the pseudo-variables X1(γ) . . . , Xp(γ) are
distributed for each γ ∈ {0.2, 1.0, 2.0}. The bottom panels in turn are the
histograms of X(γ)ρ-values for each γ ∈ {0.2, 1.0, 2.0} where the inverse band-
width parameter vector ρ is generated from the multivariate normal distribution
N (0, 0.32I). The panel columns separate the histograms for different kernels pa-
rameters.

Table S1: Comparison of computational times in seconds between the PH-E
model without the random effect term (Model 1) and with the random effect
term (Model 2). The top table represents the computational times with respect
to the increasing number (n) of individuals with the the number of random
variables fixed to 100. Respectively, the computational times with respect to
the increasing number (p) of simulated random variables when the number of
individuals is fixed to 100 are presented in the bottom table.

n 25 50 75 100 125

Model 1 0.01 0.01 0.02 0.03 0.05
Model 2 13.05 17.77 52.46 484.35 645.22

p 125 250 500 750 1000

Model 1 0.02 0.05 0.29 0.58 1.21
Model 2 26.49 95.66 2137.30 4718.11 5997.64
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Figure S2: Regularization paths of the estimated bandwidth parameters against
the `1-norm of the whole inverse bandwidth parameter vector as λ varies. Panel
columns separate the regularization paths obtained by the PH-E method with
(left panel) and without (right panel) including the random effect term. The
panel rows represent the regularization paths produced by different kernels pa-
rameters: γ = 0.2 (panels A1 and B1), γ = 1 (the exponential kernel, panels
A2 and B2) and γ = 2 (the Gaussian kernel, panels A3 and B3). Blue verti-
cal lines denote the `1-norm values associated with the λ values that produced
approximately 60 non-zero inverse bandwidth parameters.

12



Figure S3: Panels represent the estimates of the inverse bandwidth parameters
obtained by the PH-E method with (panels A1-3 and C1-3) and without (panels
B1-3 and D1-3) including the random effect term in the model. The panel
columns separate the estimates produced by different kernels parameters: γ =
0.2 (panels A1, B1, C1 and D1), γ = 1 (the exponential kernel, panels A2, B2,
C2 and D2) and γ = 2 (the Gaussian kernel, panels A3, B3, C3 and D3). The
same penalty parameter value λ = 0.001 was used in panels A1-3 and B1-3. In
panels C1-3 and D1-3 the penalty parameter λ values where chosen such that
the number of non-zero inverse bandwidth parameters was approximately 60 in
each case. Black solid lines denote bandwidth parameter estimates and vertical
red lines are the exact places of simulated phenotype associated genes.
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