1 Expanded derivations for Feder et al, 2019

Here we show an extended derivation of $F_{S T}(t)$ (equation 3). Since $F_{S T}=\frac{h_{b}-h_{w}}{h_{b}}$, we need to determine the heterozygosities in our simplified model both within and between subpopulations. There are three alleles to consider with reference to a focal subpopulation: the locally derived allele, which is at frequency $f(t) F(t)$, the non-locally derived allele, which is at frequency $f(t)(1-F(t))$ and the wildtype allele, which is at frequency $1-f(t)$. Because the compartments are symmetric, it is sufficient to determine the within-subpopulation heterozygosity in the focal compartment:

$$
h_{w}=1-[f(t) F(t)]^{2}-[f(t)(1-f(t))]^{2}-(1-f(t))^{2} .
$$

To determine the between subpopulation heterozygosity, we take advantage of symmetries in the allele frequencies. Allele A (local to population A), is at frequency $f_{l}(t)$ in subpopulation A and at frequency $f_{n l}(t)$ in subpopulation B. Similarly, allele B (local to population B) is at frequency $f_{n l}(t)$ in subpopulation A and at frequency $f_{l}(t)$ in subpopulation B. The wildtype allele is at the same frequency $1-f(t)$ across both subpopulations. Therefore,

$$
\left.h_{b}=1-2 f(t) F(t) \times f(t)[1-F(t)]-(1-f(t))^{2}\right] .
$$

Therefore, the numerator of $F_{S T}(t)$ is given as follows:

$$
\begin{equation*}
h_{b}-h_{w}=f(t)^{2}[1-2 F(t)]^{2} \tag{S1}
\end{equation*}
$$

and the denominator of $F_{S T}(t)$ is:

$$
\begin{equation*}
h_{b}=f(t)[2-2 F(t)(1-F(t)) f(t)-f(t)] . \tag{S2}
\end{equation*}
$$

Combining equations S1 and S2, we see equation 3:

$$
F_{S T}(t)=\frac{(1-2 F(t))^{2} f(t)}{2-2 f(t) F(t)(1-F(t))-f(t)} .
$$

To determine $t_{\max }$, we take the derivative of $F_{S T}(t)$ with respect to time t, and assume that at $t=0, F(0)=0$ (the non-local allele is initially not present in the population), and $f(0)=1 / N$ (the frequency of the local allele is at a single copy). Under these conditions, we observe the following simplifications:

$$
\begin{align*}
F(t) & =0.5 \times\left(1-e^{-2 m t}\right) \\
f(t) & =\frac{e^{s t}}{e^{s t}+N-1} \tag{S3}
\end{align*}
$$

Differentiating $F_{S T}(t)$ with respect to time can be done in the program Mathematica, although the closed form is not instructive:

```
> f[t_] := Exp[s*t]/( Exp[s*t] + N - 1 )
> F[t_] := 0.5 + -0.5 * Exp[-2*m*t]
> Fst[t_] := (1 - 2*F[t])^2 * f[t]/
    ( 2-2*f[t] * F[t] * (1 - F[t]) - f[t])
> Solve[Fst'[t] == 0, t]
```

Solving the derivative for 0 results in the form $t_{\max }=\frac{1}{s} \log \left(\left(\frac{s}{m}-4\right)(N-1)\right)$ (equation 4). Plugging $t_{\text {max }}$ back into equation 3 results in $F_{S T}\left(t_{\max }\right)$ (equation 5).

