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S1 False discovery rate and power of the Monte Carlo simulation method to detect 3 

conserved genes 4 

To assess the false-discovery rate (FDR) of the Monte Carlo simulation method when testing 5 

for (highly) conserved genes, we perform a simulation study in the following way. We 6 

simulated gene expression datasets under a Brownian motion model along the given 5-species 7 

Heliconius phylogeny. For this simulation, we chose sigma values (i.e. the rate of evolution) 8 

of 0.0, 0.01, …, 0.09, 0.1, 0.2, …, 1.0. These values were chosen to resemble our empirically 9 

estimated sigma values, which ranged between 0 and 3.5, and to highlight the performance of 10 

the method for values of sigma close to 0. For each value of sigma, we simulated 1,000 11 

datasets. Then, we analyzed the simulated datasets as described in the main text. In summary, 12 

we computed the posterior probability distribution of sigma for each dataset and assessed if 13 

the posterior mean of sigma was larger than 95% of computed sigma values when the data 14 

were simulated with sigma=0. 15 

 Appendix figure S1 shows the results of the simulation study. Although the FDR for a 16 

sigma of 0 is represented as 1.0, this is actually not a false-discovery as the true mode of 17 

evolution was highly conserved. The closer the true value of sigma was to 0, the higher the 18 

false-discovery rate was. This is not surprising as our approach tested for significant 19 

differences of sigma from 0, and if the true sigma was very close to 0 then there was not 20 

enough information in the simulated data to reject the null hypothesis (i.e. sigma = 0). When 21 

sigma was equal or larger than 0.1 we find a false-discovery rate of below 0.05 (red dashed 22 

line), which represents the common nominal false-discovery rate. Thus, the likelihood that 23 

our Monte Carlo simulation approach for assessing conserved genes was reporting a false 24 

positive was very low for larger values of the rate of evolution. This simulation demonstrates 25 
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that our Monte Carlo simulation method only detects genes that are conserved if the true rate 26 

of evolution was either 0 or very small. 27 

 We omit an additional analysis to assess the power of our Monte Carlo simulation 28 

method because the power is directly visible from the false-discovery rate. For the case 29 

sigma=0, we observe that our Monte Carlo simulation method correctly classifies all 30 

simulated datasets as being conserved (Appendix figure S1). 31 

 32 

Appendix figure S1. Simulation study to assess the false-discovery rate (FDR) of our Monte 33 

Carlo simulation method for assessing if a gene was conserved. Each dot represents the 34 

frequency of classifying a dataset as conserved for the 1,000 simulations under a given value 35 

for sigma (the rate of evolution). The red dashed line shows the nominal FDR of 0.05. The 36 

results show that if the true rate of evolution was 0.1 or larger, then almost no datasets were 37 

classified as conserved. 38 

 39 

S2 Power of the Monte Carlo simulation method to detect conserved genes when the true 40 

mode of evolution was stabilizing selection 41 

Similar to the previous simulation study, we assessed the power of our Monte Carlo 42 

simulation method to classify a gene as conserved when the true mode of evolution was 43 

stabilizing selection. We simulated datasets as described above with the main difference that 44 

we now simulated the datasets using an Ornstein-Uhlenbeck process. We chose values for 45 
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sigma between 0.1, 0.3, …, 0.9 and values for alpha (the rate of attraction/selection) between 46 

0.1, 0.3, …, 0.9. For each of the pairwise combinations of sigma and alpha values we 47 

simulated 1,000 gene expression datasets.  48 

 We observed that the Monte Carlo simulation method has low power to classify a gene 49 

as being conserved the higher the rate of evolution of the gene (Figure S2). These results 50 

confirm the previous simulation study under the Brownian motion model. However, the 51 

power was slightly elevated when the rate of evolution was low (e.g. sigma=0.1) and the rate 52 

of attraction was high. This is expected because a process with little evolution and strong 53 

attraction is expected to virtually remain constant (i.e. no change). Thus, datasets in these 54 

situations are correctly classified as being conserved. 55 

 56 

Appendix figure S2. Simulation study to assess the power of our Monte Carlo simulation 57 

method for classifying if a gene was conserved. Each dot represents the frequency of 58 

classifying a dataset as conserved for the 1,000 simulations under a given value for sigma (the 59 

rate of evolution) and alpha (the rate of attraction). 60 

 61 

S3 Power of Bayes factors to detect genes evolving under stabilizing selection 62 

 To assess the power of the Bayes factor method to detect genes evolving under 63 

stabilizing selection, we performed a simulation study as follows. We simulated gene 64 

expression datasets for the given 5-species Heliconius phylogeny under an Ornstein-65 
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Uhlenbeck process. We chose values for sigma (the rate of evolution) between 0.01, 0.1, 1.0, 66 

10.0 and values for alpha (the rate of attraction/selection) between 0.01, 0.1, 1.0, 10.0. For 67 

each combination of sigma and alpha we simulated 1,000 datasets. Then, for each dataset we 68 

simulated Bayes factors between a Brownian motion model and an Ornstein-Uhlenbeck 69 

process model. Then we assessed if we can reject the simpler model (BM) in favor of the 70 

more complex model (OU) with a 2ln(BF) threshold of 6. 71 

 Our results of this simulation study show that Bayes factors seem to have very low 72 

power to detect that the true model was in fact an Ornstein-Uhlenbeck process. This lack of 73 

power is most likely due to the small dataset size of only 5 species. Bayes factors are 74 

calculated as the ratio of the marginal probability of the data given the first model over the 75 

marginal probability of the data given the second model. Since the information in the data is 76 

comparably low, the marginal probability of the data under the two models is very similar and 77 

thus there is little power to distinguish between the models. 78 

 79 

Appendix figure S3. Power to detect stabilizing selection using Bayes factors (example when 80 

the mean prior on sigma was 10; best case scenario). Here we simulated 1000 datasets on 81 

phylogenies of 5 taxa with a rate of evolution sigma=0.1 and varying rate of stabilizing 82 

selection, alpha = {0.01, 0.1, 1.0, 10.0}. We also show the impact of the prior distribution on 83 

alpha, where we chose different prior means of the exponential distribution similar to the 84 

range of true parameter values (prior mean = {0.01, 0.1, 1.0, 10.0}).  85 

 86 
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S4 False discovery rate to detect branch-specific shifts in gene-expression evolution 87 

 We simulated gene-expression datasets under the null model (Brownian motion without 88 

rates shift) to assess the false-discovery rate of our method to identify branch-specific rate 89 

shifts. Thus, we simulated a 1000 gene-expression dataset, each using a Brownian motion 90 

process. We repeated the simulation for different values of sigma = {0.01, 0.1, 1, 10}. Then, 91 

we estimated marginal likelihoods for the Brownian motion without rate shift, and marginal 92 

likelihoods for Brownian motion with a shift at any of the five terminal branches. Finally, we 93 

recorded the frequency of how often we rejected the null model in favor of one of the five 94 

Brownian motion shift models with a Bayes factor larger than 3.  95 

 96 

Appendix figure S4. Power to detect stabilizing selection using Bayes factors from the full 97 

range of analyses (all combinations of true sigma and sigma priors). Here we simulated 1000 98 

datasets on phylogenies of 5 taxa with a rate of evolution sigma = {0.01, 0.1, 1.0, 10.0} and 99 

rate of stabilizing selection, alpha = {0.01, 0.1, 1.0, 10.0}. We also show the impact of the 100 

prior distribution on sigma and alpha, where we chose different prior means of the 101 

exponential distribution similar to the range of true parameter values (prior mean = {0.01, 0.1, 102 

1.0, 10.0}).  103 



 6 

 104 

 Appendix figure S5 shows that we obtain a nominal false-discovery rate of 5%. 105 

Interestingly, we obtain the lowest false-discovery rate in simulations when the true rate of 106 

evolution, sigma, was smallest. This is most likely due to the fact that the simulated gene 107 

expression levels did not vary much, and thus no rate shift was necessary to explain the data. 108 

For larger values of sigma it can happen by chance that the simulated values of gene 109 

expression vary a lot at the tips, and thus a Brownian motion model with a branch-specific 110 

shift was supported.  111 

 112 

Appendix figure S5. Simulation study to assess the false-discovery rate of our branch-113 

specific models. We simulated 1000 gene-expression datasets using a constant rate Brownian 114 

motion along the empirical phylogeny for different values of sigma. The false-discovery rate 115 

(FDR) shows the frequency of dataset for which we falsely identified a shift using the method 116 

described in the main text. The dashed red line shows the nominal FDR of 5%. 117 
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