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File S1: Supplemental methods for “Tissue-specific transcriptomes reveal gene  
expression trajectories in two maturing skin epithelial layers in zebrafish embryos” 
 
To analyze Salmon’s per-experiment per-transcript quantifications, we follow the general outline 
of bootstrap-aware R Bioconductor package Sleuth (as if the Wasabi package was importer), 
but perform all steps manually to have better control and incorporate some DESeq2 package 
features that Sleuth does not support. 
 
Experiment scale factors (SFs). We need to estimate a per experiment SF to correct for 
depth-of-sequencing variation. Thousands of transcripts are expected to not truly vary in 
expression across experiments (having observed values that vary due to biological and 
technical sampling variation, but not from condition-to-condition effects; indeed, at the end  
of a typical generic differential expression analysis, most objects analyzed are not considered 
differentially expressed). If X(t, e) is estimated number of reads for transcript t in experiment e 
(for SF estimation, we restrict to transcripts with X(t, e) ≥ 15.0 for all e), and t and u are two such 
transcripts, then the 
 

“instability” of t to u := standard deviation over experiments e of log2 [X(t, e) / X(u, e)] 
 
is expected to be relatively low (compared to cases involving a transcript that does differentially 
express over conditions), as X(t, e) / X(u, e) should be the relatively constant expression ratio 
between the transcripts (and the unknown depth-of-sequencing factors do not need to be 
included, since each ratio involves the same experiment and the common unknown factor 
cancels). By finding a large group of transcripts where pairwise instability within the group is 
low, we find transcripts that are well-suited for SF estimation. 
 
The “i-th instability” for transcript t is the i-th smallest pairwise instability of t to all the transcripts, 
and the “j-th mean instability” is the mean of the j-th instability over all transcripts. Find j (the 
smallest, if tied) for which the difference in mean instability between j and j + 1 is minimum 
(expected to be close to the point of highest density in the distribution of mean instabilities).  
The transcripts to use for SF estimation are the j ones with smallest j-th instability. We now  
have j “invariant” transcripts t whose expression can be modeled as 
 

X(t, e) = SF(e) ⋅ E(t) ⋅ residual(t, e) 
or (equivalently):  residualʹ(t, e) = Xʹ (t, e) – SFʹ (e) – Eʹ (t) 

 
where SF(e) is the scale factor of experiment e, E(t) is the expression level of transcript t, 
residual(t, e) entries are “near” 1.0, and primed Xʹ (t, e) is log2 X(t, e), etc. We choose to 
minimize the Frobenius norm of residualʹ, and resolve the single linear degree of ambiguity  
of adding a constant to all entries of SFʹ and subtracting the same constant from all entries  
of Eʹ by adding the natural requirement that SFʹ have mean zero over its entries (i.e., that  
the geometric mean of SFs is 1.0, so post-SF [i.e., normalized] expression is on a scale of  
read counts of an “average” original experiment). The solution is 
 

SF' (e) = [mean over t of X' (t, e)] – [mean over all entries of X' ]. 
 
We do this process once for Salmon transcript estimates (where 4,802 transcripts are selected), 
and once for gene estimates (where X(g, e) for a gene g is the sum of X(t, e) for transcripts t 
belonging to g, and 4,513 genes are selected), and the final SF estimate of an experiment is the 
geometric mean of these two (which were quite close). Final SFs vary 0.45 to 1.83, and ~93% / 

92% of invariant genes / genes with at least one invariant isoform ended up in flow NNN. 
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The SF estimation of Sleuth is simpler (take X(t [or g], e), in each row multiply elements by a 
constant to make the row geometric mean 1.0, replace each column by its median, and multiply 
the tentative SFs so obtained by a constant so their geometric mean is 1.0). It is somewhat 
robust due to its use of geometric means and medians, but when there are large condition-to-
condition changes (such as here between nonskin and skin), these SFs can be somewhat 
distorted by their inclusion of many condition-varying genes. 
 
 

 
 

Comparison of estimated counts for “A” := 20 SS nonskin1 replicate b vs. “B” := 20 SS  
all skin replicate b, as normalized by different methods: left to right is unnormalized, 
followed by normalized via total counts, Sleuth, and our “low instability” method. 
Histograms (bins of 0.05) are of log2 ( A   / B ) over all 31,901 genes, restricted to genes  
with A ≥ 10 and B ≥ 10. The mode is closest to zero with our scale factor method. 

 
Technical variance baseline. Following Sleuth, we model “transformed” (log-scale) expression 
per gene per condition as normally distributed. Rather than a log2(0.5 + estimated reads) scale, 
we use log2(max[0.5, estimated reads]). As in Sleuth, we decompose modeled expression 
variance into a technical assay component (which is large for genes with low counts or those hit 
by many reads of high mapping ambiguity) plus a presumed independent biological component. 
Technical variance is informed by Salmon bootstrap samples, while biological variance is 
informed by replicate experiments within conditions; shrinkage procedures help to overcome  
the small (as is typical) number of replicates per condition (which is two in this study for all  
but one condition, where it is one), so that direct estimation is too unstable (or not possible).  
We do not filter out genes of low expression (e.g., Sleuth’s genes with < 47% of experiments 
having ≥ 5.0 estimated reads) early in the analysis. 
 
Unlike Sleuth, we estimate a “baseline” (minimum) technical variance (as ambiguity due to low 
counts is always present, even if not apparent in some bootstrap samples) given a gene’s 
transformed expression level x in some experiment as follows. Let y, the gene’s “technical 
standard deviation” in this experiment, be the standard deviation of the transformed Salmon 
Gibbs bootstraps for the gene in the experiment*, and collect (x, y) pairs where y > 0 over all 
genes and experiments. Note, as the number of reads goes to infinity, that log2(max[0.5, 
Poisson(reads)]) has mean ≈ log2(reads), variance ≈ 2 / reads, and log2(y) is expected for large x 
to tend to (1 – x) / 2. We thus quantile regress x vs. z := log2(y) – (1 – x) / 2 [using R packages 
quantreg 5.36 and splines: rq(z ~ bs(x, degree=3, knots=c(1.0, log2(3.0), 2.0, 3.0, 4.0, 
8.0, 12.0, 16.0, 20.0, 22.0)), tau=0.25, method="fn")], then we evaluate x for each gene 
and experiment, converting the resulting z' to y' in y scale. The gene’s new “y with technical 
baseline imposed” for the experiment is max(y, y' ). If y is in (y' / 1.1, 1.1 ⋅ y' ), we consider the 
observation to be “uncomplicated by technical quantification issues”, and if every experiment  
of a gene is uncomplicated then we consider the gene as “uncomplicated”, which is ~82% of 
genes (with strong representation at all expression levels). 
 
(*For a gene–experiment pair with Salmon expected reads < 0.5, we take y = 0.68 ≈ standard 
deviation of log2 [max(0.5, Poisson[0.5])].) 
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Imposition of technical baseline. All three panels are 2-D histograms over all genes  
and experiments, with rainbow hues purple-to-red indicating log-scale tallies low-to-high. 
In all three, the horizontal axis is the variable x discussed above (i.e., log2 estimated 
counts), and the vertical axis in the top two is variable y, i.e., technical standard 
deviation: before baseline imposition in the top panel, and afterwards in the middle 
panel. The vertical axis in the bottom panel is variable z (i.e., y de-trended against  
large count theoretical expectation; before imposition), with which regression operates. 
The middle, top, and bottom black curves in the top and bottom panels show the 
regressed baseline, and it multiplied by 1.1 and divided by 1.1 (the “uncomplicated” 
thresholds discussed above). 
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Biological variance baseline. Back to paralleling Sleuth, we take, for each gene, observed 
variance across experiments within a condition to be an independent sum of technical variance 
due to the assay plus biological variance; some genes are more biologically noisy than others.  
It is important to estimate total variance affecting a gene as accurately as possible, as this 
directly affects judgement of statistical significance of observed differences for the gene across 
conditions. If replicates within conditions were abundant, total variance could simply be taken  
as observed variance and estimated gene-by-gene (and even per condition) directly; however, 
as is typical, replicates are not plentiful, and so shrinkage is employed so that genes of similar 
expression levels can contribute to each other and regularize estimates. 
 
Starting with transformed Salmon estimated read counts, we apply per experiment SFs to obtain 
normalized transformed expression W(g, e) for gene g in experiment e. For gene g, we take  
s := mean of W(g, e) over all e as its “overall expression level”. The mean σ2

total, taken over the 
eleven conditions c with two replicate experiments each, of the sample variance of W(g, e) for 
the two e in c is an estimator of the per condition total variance of g. (Note that sample variance 
of a two-observation sample a and b is just (a – b)2

 / 2.) The mean across experiments of the 
squares σ2

tech of the gene’s technical standard deviations with technical baseline imposed is our 
estimator of the technical variance contribution to σ2

total. Hence, σ2
bio := σ2

total – σ2
tech (which may 

be below zero; for genes with low counts, for example, technical variance tends to dominate 
biological variance) is an estimate of the per condition biological variance for the gene. 

 
 

Expression level uncertainty in low expression genes is dominated by technical variance, 
and the genes uncomplicated by technical quantification issues well-represent the 
expression level distribution of all genes. All four histograms (blue and red in left  
and right panels) are gene-based, and horizontal axis is variable s discussed above  
(i.e., mean normalized transformed [log2-scale] expression over experiments), in bins  
of size 1.0. Vertical blue axis is number of genes in the bin (which falls off rapidly at  
high expression). Vertical red axis is percentage of genes in the bin for which σ2

bio > 0 
(positive biovariance excess observed); left panel is for all 31,901 genes, right panel  
is for those that are uncomplicated. As expression falls below ≈ 30 normalized counts, 
the fraction of genes for which technical variance overwhelms biological variance grows 
(and technical variance is the major estimation obstacle for un-/lowly-expressed genes). 
The right panel’s similarity to the left indicates that restriction to uncomplicated genes 
(primarily those genes with negligible fractions of reads having read-to-gene assignment 
ambiguity) does not appreciably change the distribution of expression levels. 

 
Over genes uncomplicated by technical quantification issues (rather than all genes), we quantile 
regress (rather than LOESS) s vs. b := the square root of max(0.0, σ2

bio) [with rq(b ~ bs(s, 
degree=2, knots=c(2.0, 4.0, 8.0, 10.0)), tau=0.50)]. (Transforms of the b-axis are less 
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important for quantile regression compared to LOESS, so we do not use the fourth root as 
Sleuth does, just square root [so s and b are on the same scale], and we do not entirely 
suppress cases where σ2

bio < 0; we are not trying to estimate “true” biological variance, but 
rather biological “excess” variance beyond technical variance, and zero excess is commonly 
expected for genes as s gets low, and is perfectly fine.) For each gene, we evaluate its s to  
get b', and the gene’s new “σ2

bio with biological baseline imposed” is max(σ2
bio, b' 2). The gene’s 

“final per condition σ2
total” is then [its σ2

tech with technical baseline imposed] + [its σ2
bio with 

biological baseline imposed]. 
 

 
 

 
 

Imposition of biological baseline. Both panels are 2-D histograms over all genes,  
with rainbow hues purple-to-red indicating log-scale tallies low-to-high. In both panels, 
the horizontal axis is variable s discussed above (mean normalized transformed  
[log2-scale] expression over experiments). In the top panel, the vertical axis is σ2

bio ,  
and the regressed biological baseline is shown as a black curve. In the bottom panel,  
the vertical axis is σbio with biological baseline imposed. 

 
Expression and contrast models. For condition c of gene g, the model of normalized 
transformed expression W(g, c) is a normal distribution N[µ, σ2] with mean µ = the average  
of W(g, e) over experiments e in c, and variance σ2 = the final σ2

total for g times either ½ or 1 
according to whether c has two or one replicate experiments, respectively; models for different 
conditions are independent. Note that a ratio of two normalized linear-scale expression levels 
becomes a simple subtraction of the corresponding normalized log-scale expression levels. 
Hence, for a contrast that is N[µB, σB

2] subtracted from (independent) N[µA, σA
2] (corresponding 

to linear-scale ratio A / B)†, the model is again normal: N[µA – µB, σA
2 + σB

2]. This is all essentially 
the same as Sleuth (although its operation in terms of non-singular design matrices and lack of 
explicit linear combination contrast support may obscure the simple cases here). 
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(†Call a gene a “zero” in a condition if expected reads for it in every experiment in that condition 
are ≤ 0.5. Since [max SF] / [min SF] is ≈ four-fold, we do not want zero genes to show as 
differentially expressed due to normalization. Hence, in models N[µ, σ2] for ratio condition A  
over condition B, we adjust µ for some cases involving genes that are zero in A and/or B: If a 
gene is zero in both A and B, we set µ to 0.0 [no difference expected]. If a gene is zero in A but 
not B, we change µ to [log2 0.5 normalized by mean log2 SF for experiments in B (rather than in 
A)] – [µ for current gene in B] if this moves µ strictly closer to no difference expected; and vice-
versa if a gene is zero in B but not A. Note the next section does an independent filtering before 
constructing q-values; contrast instances with zero genes are not unlikely to be dropped there.) 
 
#Abbreviating all skin / nonskin1 / periderm / basal cells / nonskin2 as ‘M’ / ‘C’ / ‘P’ / ‘B’ / ‘c’ and 
20 SS / 52 hpf / 72 hpf as ‘2’ / ‘5’ / ‘7’, the 36 contrasts considered were C5/C2, C7/C2, C7/C5, 
M5/M2, M7/M2, M7/M5, c5/C2, c7/C2, c7/c5, B5/M2, B7/M2, B7/B5, P5/M2, P7/M2, P7/P5, 
M2/C2, M5/C5, B5/c5, P5/c5, P5/B5, M7/C7, B7/c7, P7/c7, P7/B7, C5/c5, M5/c5, B5/C5, P5/C5, 
B5/M5, P5/M5, C7/c7, M7/c7, B7/C7, P7/C7, B7/M7, and P7/M7. 
 
Differential expression p- and q-values for conditions pairwise. For the contrast that is the 
ratio of condition A over B, the log2-scale ratio for each gene has a normal model N[µ, σ2] as 
described in the previous section. Preferring to avoid point comparisons for any detectable 
difference, we desire p-values with the flexibility of DESeq2 ’s altHypothesis= alternative 
hypothesis and lfcThreshold= log-scale fold change threshold options (which Sleuth does not 
support). For example, the master Excel workbook in the NCBI GEO submission contains  
two-sided p-values for expression level change of more than 1.5x-fold either up or down 
(DESeq2 altHypothesis="greaterAbs" and lfcThreshold = essentially f := log2 1.5): p =  
min(1, 2 ⋅ [1 – cdf of N[f, σ2] at |µ|]) = min(1, 2 ⋅ [cdf of N[µ, σ2] at f ], 2 ⋅ [1 – cdf of N[µ, σ2] at –f ]). 
Other DESeq2 p-value styles are similarly easy. For example, altHypothesis="greater" with 
the same lfcThreshold is p = (1 – cdf of N[f, σ2] at µ) = (cdf of N[µ, σ2] at f ). 
 
We conduct an independent filtering (as does DESeq2) on contrasts before applying Benjamini–
Hochberg (BH) False Discovery Rate (FDR) correction to the p-values (rather than dropping low 
expression genes entirely early in analysis, as in Sleuth). Gene g in contrast A / B is retained if 
and only if the maximum of normalized transformed expression W(g, e) over experiments e in 
condition A or B is at least a threshold. The threshold chosen, 2.72 (equivalent to ≥ ~6.6 linear 
scale normalized counts in at least one experiment in the contrast), was optimized (similar to  
as in DESeq2) to maximize the number of significant q-values below 0.02 (for all 36 contrasts  
of the paragraph marked (#) above considered at once) after FDR correction. 
 
Approximate Transcripts Per Million (TPMs). The Salmon / Sleuth-like model and statistics we 
follow are primarily focused on and operate with normalized transformed estimated read counts 
(per transcript/gene, per experiment/condition), as these are the values essentially measured  
by RNA-Seq assays. Hence, these are also the values that we focus on in reports and figures. 
However, these values differ from absolute expression levels in that, e.g., transcripts/genes  
with longer mRNAs tend to have higher counts. Salmon estimates an “effective length” L(t, e) for 
each transcript t and experiment e (that accounts for transcript annotated length vs. RNA-Seq 
library insert length distribution and various RNA-Seq biases Salmon empirically considers)  
to be used in combination with estimated read counts X(t, e) if, e.g., TPMs are desired. 
 
To get TPM(g, e) for gene g in fixed experiment e, form ratios X(t, e) / L(t, e) for all transcripts t, 
multiply by S(e) := 1 million over the sum of these ratios, and then sum the resulting TPM(t, e) 
over t in g. (Note that per-experiment scale factors SF(e) do not matter, as they would cancel; 
TPMs are normalized by simplistic totals.) We summarize the combined effect of L(t in g, e)  
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and S(e) by S*(g, e) := TPM(g, e) / (sum X(t, e) over t in g) when the denominator is ≥ 0.1  
(we do not summarize if the gene is unexpressed in e). We then summarize the effect for this 
gene over experiments by S*(g) := the geometric mean of summarized S*(g, e) (and we do  
not summarize if the gene is unexpressed in all experiments). Thus, for an expressed gene g,  
TPMs  ≈  S*(g)  ⋅  counts (approximate up to variation over experiments and isoforms). Using  
this relationship, we are able to, e.g., dual label counts-focused axes with approximate TPMs, 
as seen in Figure 2A and the expression profile plots on the website. 
 
Over genes g expressed in at least one experiment, ~75.6% have 0.0113 < S*(g) < 0.113  
(the decade centered around the densest part of the distribution of S*(g) over genes). This 
supports the TPM labeling of the “mean across 12 conditions” colorbar of Figure 5. 
 
Classification of genes into flows. Placement of genes into exactly one “flow”, summarized  
in Figure 3, is done by independently classifying the gene at 20 SS, 52 hpf, and 72 hpf.  
Using the condition abbreviations of the paragraph marked (#) above, 20 SS is straightforward  
as it involves only a single pairwise comparison between M2 and C2; once M2 “>” / “≤” C2  
is resolved, the flow class at 20 SS is ‘S’ / ‘N’, respectively. M2 “>” vs. “≤” C2 is taken to be  
when DESeq2 greater-style p-values with 1.5x fold change threshold are < vs. ≥ 0.02. 
 
52 and 72 hpf are more complex, as they involve at least partially ordering three expression 
levels, rather than two: x / y / z = c5 / B5 / P5 for 52 hpf and c7 / B7 / P7 for 72 hpf, respectively. To 
order the three values, note that it suffices to consider a := y – x and b := z – y (as the remaining 
difference, z – x, is a + b). Further, note that if x ~ N[µx, σx

2], y ~ N[µy, σy
2], and z ~ N[µz, σz

2] are 
independent normals (as here), that while a ~ N[µy – µx, σx

2 + σy
2] and b ~ N[µz – µy, σy

2 + σz
2] 

are normals, they are not independent, having non-zero covariance –σy
2. Hence, to classify we 

do not (as can be common) use a decision chain based on pairwise comparisons of conditions; 
p-value computation should be aware of all three variables at once, treating bivariate (a, b) as a 
2-D binormal with mean (µy – µx, µz – µy), variance (σx

2 + σy
2, σy

2 + σz
2), and covariance –σy

2. 
 
To work toward the needed classification with fold change threshold f := log2 1.5, we partition  
R3 ∋ (x, y, z) into pieces: (x < y < z) vs. (x < z < y) vs. (y < x < z) vs. (y < z < x) vs. (z < x < y) vs. 
(z < y < x). (The three values are distinct with probability 1 in the model, so we are free to ignore 
the probability zero cases where two or more of the variables are equal, and other probability 
zero cases.) If c < d are two of x, y, z ordered in agreement with the current piece, we write  
“c ≪ d ” if d – c > f (i.e., “d is significantly larger than c  ”), and otherwise “c ≲ d ” (0 < d – c < f ).  
If c < d < e are x, y, z ordered in agreement with the current piece, we subpartition the current 
piece into cases: [I] (c ≪ d ≪ e) vs. [II] (c ≪ d ≲ e) vs. [III] (c ≲ d ≪ e) vs. [IV] (c ≲ d ≲ e and  
c ≲ e) vs. [V] (c ≲ d ≲ e and c ≪ e); these correspond to various subsets of (a, b) ∈ R2 given by 
conjunctions of affine inequalities, e.g., for part x < y < z: [I] (a > f and b > f ) vs. [II] (a > f and  
0 < b < f ) vs. [III] (0 < a < f and b > f ) vs. [IV] (0 < a < f and 0 < b < f – a) vs. [V] (0 < a < f and  
f – a < b < f ). The model probability of each case is then the 2-D integral of the probability 
density function of binormal (a, b) over the case’s subset of R2. We compute these using 
numerical integration in Mathematica; among other strategies, integration of one dimension 
(e.g., b) is easily analytically expressed in terms of standard Erf[⋅] and Erfc[⋅] special functions, 
so that the numerical integrations only need be 1-D (and we provide the integrator appropriate 
hints to where bulk of density lies). Case [V] is interpreted to be the three values weakly distinct 
(enough that c ≪ e but not c ≪ d or d ≪ e); its mass is redistributed to Cases [II] and [III]  
in proportion of those two cases to their sum. 
 
We currently have probability 1.0 partitioned across 24 cases: [I] to [IV] for six strict orderings  
of x, y, z. If x, y, and z were three not-necessarily-distinct real numbers, there would be thirteen 
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weak orderings of them: (x < y < z), (x < z < y), (y < x < z), (y < z < x), (z < x < y), (z < y < x),  
(x = y < z), (z < x = y), (x = z < y), (y < x = z), (y = z < x), (x < y = z), and (x = y = z). We re-
partition the probability 1.0 to these thirteen weak orderings by interpreting “<” as “≪” and  
“=” as “≲”, and summing over all permutations of variables connected by “=”. 
 
We now have probability 1.0 partitioned into the thirteen weak orderings of x, y, z. If, say, the 
probability of exactly one of these thirteen was very close to 1.0, then one would accept the 
classification of genes x, y, and z as statistically ordered in that way. For 52 and 72 hpf flow 
placement, we do not need distinctions this fine, however; by re-partitioning probabilities a last 
time, we avoid some problems with being unable to classify well because more than one of the 
thirteen weak orderings has non-negligible probability, but the split is across cases we do not 
need to distinguish for flow placement. With (x, y, z) = (c5, B5, P5) or (c7, B7, P7), we gather  
b := “y is highest” = (x < z < y) + (z < x < y) + (x = z < y),  p := “z is highest” = (x < y < z) +  
(y < x < z) + (x = y < z),  g := “y and z equal but above x” = (x < y = z),  and  n := sum of the 
remaining six = (y < z < x) + (z < y < x) + (y = z < x) + (z < x = y) + (y < x = z) + (x = y = z).  
If probability n < 0.02 and probability g < 0.02, then the flow placement is ‘P’ / ‘B’ if probability p 
is ≥ / < 0.5, respectively (and no cases actually empirically arise where probability p is at all close 
to the boundary 0.5); otherwise, the flow placement is ‘G’ / ‘N’ if n is < / ≥ 0.02, respectively. 
 
Genes ranked within flows and combinations of flows. Individual flows are named by 
combinations of three characters (the first character for 20 SS, the second for 52 hpf, and  
the third for 72 hpf) determined in the previous section: ‘N’ or ‘S’ at 20 SS, and ‘N’ or ‘G’ or ‘B’  
or ‘P’ at each of 52 and 72 hpf. We also consider certain combinations of flows: a first character 
‘*’ combines ‘N’ and ‘S’ at 20 SS; a second and/or third character ‘*’ combines ‘N’ and ‘G’  
and ‘B’ and ‘P’ at 52 and/or 72 hpf; and a second and/or third character ‘S’ combines ‘G’ and ‘B’ 
and ‘P’ at 52 and/or 72 hpf. 
 
For reports and Gene Ontology analyses, it is useful to have the genes within each flow and 
combination of flows ranked, with genes early in a ranked list strongly exhibiting the pattern and 
those of low rank being weaker examples, getting closer to classification as another pattern. Fix 
a flow or flow combination; for each gene, we assign an ordering value a, b, and c in [0.0, 1.0]  
to 20 SS, 52 hpf, and 72 hpf, and then genes are ranked by descending min(a, b, c). For 20 SS: 
for class ‘N’, a := the p-value used to classify (i.e., DESeq2 greater-style with 1.5x threshold  
for M2 > C2); for class ‘S’, a := 1.0 – that p-value; and for class ‘*’, a := 1.0. For 52 hpf: with  
(n, g, b, p) being the partition of probability 1.0 as described in the previous section, for classes 
‘N’ / ‘G’ / ‘B’ / ‘P’ / ‘S’ / ‘*’, then b := n / g / b / p / (g + b + p) / 1.0; and 72 hpf assigns its c similarly. 
 
Gene Ontology (GO) gene–term and term–term associations. Compilation of gene–term 
associations began with extraction of all Biological Process (BP), Molecular Function (MF),  
and Cellular Component (CC) GO cross-references (from all external DBs, info-type/text 
combinations, and evidence codes) for genes/transcripts/proteins (ENSDARG/T/P’s, including 
non-protein coding genes and genes on non-primary assembly components) from the database 
files of Ensembl release 92 for zebrafish (danio_rerio_core_92_11). Associations for transcripts 
and proteins were taken as for the parent gene. (Here, all uses of the evidence code “ND” =  
“[N]o biological [D]ata available” are only to BP/MF/CC root GO terms.) Term–term associations 
began with the GO Consortium basic release (http://purl.obolibrary.org/obo/go/go-basic.obo) 
dated 2018-09-23. 
 
Gene–term associations involving out-of-date GO ids were updated: GO:0000989 → 
(GO:0008134 + GO:0140110); GO:0000990 → (GO:0043175 + GO:0140110); GO:0000991 → 
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(GO:0000993 + GO:0140110); GO:0001076 → (GO:0001085 + GO:0140110); GO:0001129 → 
(GO:0001085 + GO:0140110 + GO:0017025 + GO:0051123); GO:0001191 → (GO:0001085 + 
GO:0001227); GO:0098811 → (GO:0001102 + GO:0001227); GO:0004871 → (GO:0060089 + 
GO:0007165); GO:0005057 → (GO:0060089 + GO:0007165 + GO:0035556); GO:0004716 → 
(GO:0060089 + GO:0035556 + GO:0004713 + GO:0023014); GO:0004702 → (GO:0060089 + 
GO:0035556 + GO:0004674 + GO:0023014); GO:0030818 → (GO:0006171 + GO:1900372); 
GO:0030819 → (GO:0006171 + GO:1900373); GO:0051436 → (GO:1904667 + GO:1903047); 
GO:0097033 → (GO:0034551); GO:0097034 → (GO:0033617); GO:0001007 → (GO:0008134 
+ GO:0140110 + GO:0006359); GO:0001026 → (GO:0000995); GO:0021865 → (GO:0051301 
+ GO:0021846); GO:0031659 → (GO:1900087 + GO:0045737); GO:0044376 → (GO:0006606 
+ GO:0000993); and GO:1990022 → (GO:0006606 + GO:0000994); followed by use of the 
OBO file to replace alternate GO ids by primary ids, and then primary ids by replaced–by ids. 
This nets 21,381 genes (all but 22 of which have Ensembl biotype protein_coding) associated 
to at least one non-root GO term (in 130,112 distinct pairs), with 7,927 distinct non-root GO 
terms involved. 
 
Gene–term associations were expanded toward the BP / MF / CC roots to be inferentially closed 
(by following all relations in the OBO file; while one should not propagate CC across regulates / 
positively_regulates / negatively_regulates links, no such links exist here). This expands the 
21,381 genes to be associated to 11,977 distinct non-root GO terms in 922,075 distinct pairs. 
 
GO enrichment analyses in flows and flow combinations. For GO enrichment in flows and 
flow combinations of interest — these being all (NS*)(NGBPS*)(NGBPS*) with at least one  
‘G’ / ‘B’ / ‘P’ / ‘S’ — we first determine the subset of genes and subset of GO terms to analyze. 
Given the lack of gene–term associations for non-protein coding genes (non-“PCG”s),  
we restrict genes to PCGs. For terms, start with PCGs from all flows and flow combinations  
of interest. We thin this term set to eliminate trivial redundancies of more general terms that do 
not encompass more genes: collect all terms a for which there exists another term b that a is  
a direct parent of, but a is not associated to any more genes than b. Number current term layers 
by 1 = leaves,  2 = direct parents of layer 1,  3 = direct parents of 2,  and so on;  if there are any a, 
delete all a on the lowest numbered layer that has any a and continue thinning. The terms 
remaining minus the BP, CC, and MF root terms are the “terms to be analyzed”. This gives 
3,432 terms in the BP GO aspect, 559 in the CC GO aspect, and 1,393 in the MF GO aspect. 
 
To analyze one flow or flow combination in a GO aspect (BP, MF, or CC), the “background”  
(or “universal”) set of associations are the gene–term associations of the previous section, 
restricted to PCGs, the GO terms to be analyzed, and the current aspect. The “background 
genes” and “background terms” are the distinct genes and terms mentioned in the background 
set of associations. Consider the ranked list L of genes (including non-PCGs) for the current 
flow or flow combination, and the ranked subset L' of it that is L restricted to the background 
genes. Enrichment is considered for each distinct GO term mentioned in background 
associations involving genes in L', where the enrichment for a specific term is determined  
as follows: all non-empty prefixes of L' are considered, with the p-value for a prefix being the 
hypergeometric probability that a random subset of size a from a universal set of size u, and an 
independently random subset of size b from the universal set, have an intersection of size ≥ c, 
where u := the number of background genes, a := the number of background genes associated 
to the current term in the background associations, b := the number of genes in the current 
prefix of L', and c := the number of genes in the current prefix of L' that are associated to the 
current term in the background associations. The earliest prefix that minimizes p is taken. 
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Due to the complex structure of these p-values (e.g., from the GO directed acyclic graph-
imposed interdependencies on terms), False Discovery Rate correction by the Benjamini–
Hochberg procedure is not directly applicable. However, in practice, BH FDR correction  
often does little more than assist in choosing a threshold on q-values for “significance”,  
which — since BH FDR does not change rank order of values in the p-to-q transformation —  
is equivalent to another threshold and the already-in-hand rank order on p-values. Similar  
to the underlying assumption in typical differential expression analyses that most genes are  
not differentially expressed between most conditions, here it is reasonable to assume that  
most GO terms are not enriched in most flows and flow combinations. Thus, we may simply 
histogram these p-values over a wide range of terms and flows/combinations and empirically 
determine what p-value ranges are common and, hence, uninteresting/insignificant. 
 

 
 

Empirical determination of significance for GO enrichment analyses p-values. For each 
GO aspect, all p-values computed (in –log10 scales on horizontal axes; bins of size 0.25) 
are histogrammed. Vertical axes are number of GO terms in the bin. Assuming most GO 
terms are not enriched in most flows / combinations, the rapid falloff of the distributions 
from ≈4.0 to 5.0 is indicative of passage from insignificance to significance, and was 
reflected in the colors used for the colorbars of Figure 4 and File S2, with grays below 
this point transitioning to saturated colors above this point (then progressing in hue from 
purple-to-red-to-pink as p-values continue to approach zero). 

 
Thus, the p-value-to-color mapping used in Figure 4 (and File S2) was chosen with the 
assistance of the histograms above. For each GO aspect (BP / MF / CC), all pairs of flows/ 
flow combinations and GO terms that had p-value ≤ 0.0001, i.e., P := –log10 p ≥ 4.0, were 
identified, and then full heatmaps of all flows / flow combinations involved and all GO terms 
involved composed. Rows and columns were each clustered with Euclidean distance, complete 
linkage, and optimal swiveling to minimize sum of distances of adjacent leaves, where p-values 
were temporarily transformed by arctan(P – 5.0) to soft-threshold the insignificant-to-significant 
transition near P ≈ 5.0. After hand inspection of the results (File S2), representative rows and 
columns were chosen to be highlighted in Figure 4. 
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Compilation of type I and type II keratins. Identification of type I and type II keratins in  
the Ensembl release 92 protein coding gene models (we did not consider potential repairs to 
existing gene models or a deep scan of the reference genome sequence or de novo RNA-Seq  
to model new loci) started with a case-insensitive search for “krt” and “keratin” against much  
of the database files of Ensembl release 92 for zebrafish (danio_rerio_core_92_11 tables  
gene, gene_attrib, transcript, transcript_attrib, translation, translation_attrib, 
protein_feature, xref, object_xref, ontology_xref, dependent_xref, and external_synonym), 
including gene descriptions, synonyms, alternate long names, remarks, and hidden remarks; 
protein features / domains (as Ensembl uses InterPro, from CDD 3.14, Gene3D 4.1.0, HAMAP 
2017-01, Panther 12.0, PFAM 31.0, PIRSF 3.02, PRINTS 42.0, ProDom 2006.1, PROSITE 
20.132, SFLD 3, SMART 7.1, and SuperFam 1.75); transcript synonyms, alternate long  
names, remarks, and hidden remarks; and all external database cross-references (e.g.,  
into NCBI RefSeq and EMBL-EBI UniProt). These were then hand-filtered to remove nominal 
false positives from keratin-associated proteins (non-keratins involved in keratinization  
[e.g., periplakin], filament binding proteins, and proteins involved in keratin metabolism), 
keratinocyte-associated proteins, and proteins involved in keratinocyte differentiation. “krt”  
and “keratin” matched gene symbols, gene names / short descriptions (including names of 
homologous genes in external databases), PRINTS signatures PR01248 (“TYPE1KERATIN”)  
and PR01276 (“TYPE2KERATIN”), PFAM family PF16208 (“Keratin_2_head”), various Panther 
subfamilies of PTHR23239 (“INTERMEDIATE FILAMENT”) including “KERATIN, TYPE I” and 
“KERATIN, TYPE II” CYTOSKELETALs, Gene Ontology term GO:0045095 (“keratin filament”), 
and Reactome R-DRE-6805567 (“Keratinization”). 
 
This gave 41 ENSDARG gene loci that included numerous well-known type I and type II 
keratins, with the status of a number of other loci less clear. ENSDARP isoforms of all were 
multiply aligned (Geneious global alignment using BLOSUM62 and gap open / extend 12 / 3 
scoring, with five refinement iterations) and a phylogenetic tree constructed (Geneious tree 
builder using neighbor-joining over Jukes–Cantor distances with no outgroup, forming  
a consensus tree from 100 bootstrap resamples with 50% support threshold). Thinning each 
gene locus to the isoform most homologous to isoforms of other analyzed genes, there were 
three clear protein groups — 23 putative type I keratins, six putative type II keratins, and  
seven putative other intermediate filaments (nefma, nefmb, neflb, prph, gfap, zgc:65851, and 
si:dkey-27m7.4) — as well as five proteins at relatively large distances: (1)–(2) thread keratins 
alpha / gamma (“T.K.A.” / “T.K.G.”) and (3) krt222, plus two we rejected: (4) bfsp2 (beaded 
filament structural protein 2 a.k.a. phakinin, an intermediate filament-like eye lens component 
considered by some literature to be a “beaded filament” protein, hence taken as not a type I  
or type II keratin, although InterPro family IPR027694 “Phakinin” is a subfamily of IPR002957 
“Keratin, type I” and our Figure S1 also suggests it is a reasonable alternative to consider bfsp2 
as a type I keratin), and, finally, (5) fam83hb (a FAM83-family oncogene pulled in by Ensembl 
cross-reference UniProt Q1LVV0 as “colocalizes_with” GO:0045095, and not a keratin itself). 
The working pool at the end of this stage thus contained 23 + 6 + 7 + (5 – 2) = 39 genes. 
 
InterProScan 5.34–73.0 was run on the 39 genes to examine their domain structure in a wide 
range of databases (File S4). The universal feature was InterPro domain IPR039008 “Inter-
mediate filament, rod domain”, supported by all of SMART SM01391 “Filament”, Pfam PF00038 
“Filament”, and PROSITE PS51842 “IF_ROD_2” (where all three hit once each on top of each 
other and occupied the majority of the protein’s length, except for krt222 where the PROSITE  
hit was longest, the SMART hit somewhat shorter, and the Pfam hit less than half as long). 
InterPro family IPR002957 “Keratin, type I” supported by Panther PTHR23239 “INTERMEDIATE 
FILAMENT” (in one full/near-full length hit) corresponded perfectly to putative type I status — 
and was missing from T.K.A., T.K.G., and krt222 — and both family IPR003054 “Keratin, type II” 



Skin transcriptomes in zebrafish embryos File S1 page 12 of 19 

 

supported by PRINTS PR01276 “TYPE2KERATIN” (in six small hits spread over the rod 
domain) and domain IPR032444 “Keratin type II head” supported by Pfam PF16208 
“Keratin_2_head” (occupying the majority of the residues upstream of the rod domain) 
corresponded perfectly to putative type II status — and was also missing from T.K.A.,  
T.K.G., and krt222. Among these 39 genes, this analysis supports the putative type I  
keratins as precisely the type I’s, the putative type II keratins as precisely the type II’s,  
and T.K.A., T.K.G., and krt222 as neither type I nor type II keratins. 
 
To expand the 39 gene list to sequence-similar genes possibly missed by the keyword search, 
for each of six groups — (1) the 23 putative type I keratins, (2) the six putative type II keratins, 
(3) the seven putative other intermediate filaments, (4) the single T.K.A. gene, (5) the single 
T.K.G. gene, and (6) the single krt222 gene — we collected over genes in the group the single 
chosen isoform per gene, and multiple aligned them with Geneious as in the paragraph before 
the previous paragraph. In each multiple alignment, there was a single large region of high 
conservation; multiple alignments were restricted to these regions and, for each, HMMer 3.1b2 
hmmbuild used to build a Hidden Markov Model (HMM), after which hmmscan was used with 
default parameters to scan all Ensembl peptides (ftp://ftp.ensembl.org/pub/release-92/fasta/ 
danio_rerio/pep/Danio_rerio.GRCz11.pep.all.fa.gz) for occurrences of the HMMs. 
 
The resulting 627 distinct ENSDARPs contained hits at a wide range of E-values (up to the 
extremely marginal E-value score 5.0). For each HMM, all hits for members of the HMM’s  
group had lower E-values than for any hit to that HMM from other groups; the point at which  
hits by ascending E-value first appeared for a member of another group definitely of the nominal 
type of that other group established a cut (~10–98 to 10–72, except ~10–23 for krt222 ) beyond 
which ENSDARPs were discarded. This gave only eight new genes to add from the pile of 627: 
nefla, desma, desmb, inaa, inab, vim, viml, and si:dkey-33c12.3 (most of which are well-known 
definite other types of intermediate filaments and not type I or type II keratins). 
 
To provide further context, another round of HMM formation and scanning was done to gather 
zebrafish intermediate filament proteins more generally. This brought in lmna, lmnb1, lmnb2, 
lmnl3, ngs, nes, synm, vimr1, vimr2, iffo1a, iffo1b, iffo2a, iffo2b, and zgc:172323. The resulting 
39 + 8 + 14 + bfsp2 = 62 genes were multiply aligned with ClustalW 2.1 (BLOSUM costs and gap 
open / extend 10 / 0.1, without free end gaps) and analyzed with MrBayes 3.2.6 aamodelpr=mixed 
(for 32 chains and 2.5 million Markov Chain Monte Carlo [MCMC] generations, with average 
standard deviation of split frequencies descending to ≈ 0.01 – 0.02 for most generations), 
exporting a 50% majority rule tree (Figure S1). This analysis also supports taking the 23 
putative type I keratins (plus bfsp2 as already mentioned) as the complete list of zebrafish type I 
keratins, the six putative type II keratins as the complete list of zebrafish type II keratins, and  
not including T.K.A., T.K.G., or krt222 in either list (including them instead as other keratins / 

intermediate filament proteins). 
 
Figure 5, File S5, and gene sets of special interest. The gene sets contributing to Figure 5 
and File S5 were determined as follows. The 23 type I and six type II keratins were from the 
previous section (without bfsp2 as a type I keratin). The cell surface proteins, transcription 
factors, and actin binding proteins were each determined by all those genes associated to  
a single MF GO term in the GO inferential closure as described in an earlier section of this  
File, the term being GO:0004888 “transmembrane signaling receptor activity”, GO:0003700  
“DNA-binding transcription factor activity”, or GO:0003779 “actin binding”, respectively  
(resulting in 1,346 and 773 and 350 genes). Term choice was based on what terms are actually 
used in quantity in the extracted inferential closure, in a compromise between the biological 
function of the term being too general for what was desired vs. having unreasonably few genes 
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associated. In the master Excel workbook deposited with NCBI GEO, reporting of the GO-term 
based gene sets extends to genes on alternate chromosomes. 
 
For File S5 and Figure 5, the GO-term based gene sets were intersected with the genes in  
the union of all flows except NNN before plotting (resulting in 291, 183, and 127 genes for  
cell surface proteins, transcription factors, and actin binding proteins, respectively); for type I 
and type II keratins, all genes were retained. In Figure 5, as described in main text Methods, 
only the top 20 genes (as ordered as described there) in each GO-term based gene set are 
shown. In both Figure 5 and File S5, genes are clustered by Manhattan (L1) distance on vectors 
of mean-subtracted normalized transformed counts ∈ R12 (that is, rows of the 12 condition 
values that get transformed to colors in the mean-subtracted colorbar) with average linkage  
and optimal swiveling to minimize sum of adjacent leaf distances. 
 

 
 

     
 
Colors for the mean expression colorbar were chosen after inspection of the histogram above  
of mean expression over all 31,901 genes, using black for effectively unexpressed genes and 
grays for poorly-expressed genes, reserving rainbow colors for genes non-negligibly expressed. 
Similarly, colors for the mean-subtracted colorbar were chosen after inspection of the histo-
grams above of mean-subtracted values, using hue to indicate above vs. below mean and  
white to very desaturated colors for insignificant differences, reserving increasingly saturated 
colors for increasing differences. 
 
Comparison to de la Garza et al. (2013). The data found available from the de la Garza et al. 
(2013) study (“DLG”) was the periderm profile (DLG Supplemental Table S1, giving 1,369 
Ensembl ENSDART transcript accessions / names and, for each, a single linear scale summary 
microarray expression value for each of GFP+ and GFP–, along with a binary [boldface] 
indication of whether the transcript was considered to be from a transcription factor or not); the 
dnIrf6-inhibited profile (DLG Supplemental Table S2, giving 385 ENSDART accessions  /  names);  
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and the profile that is the intersection of the first two (DLG Supplemental Table S3, giving 92 
ENSDART accessions / names, with the set of accessions indeed exactly those common to the 
periderm and dnIrf6-inhibited profiles). The only archival Ensembl release (https://ensembl.org/ 
info/website/archives/index.html) still online that contains all 1,662 ENSDARTs in the union  
of the profiles (the “DLG Ts”) is release 54 from 2009 based on the Zv8 zebrafish genome. 
(“090505_Zv7_EXPR_HX12”, the name of the NimbleGen chip layout used by DLG, suggests Zv7,  
but the Ensembl archive no longer contains any release based on that genome.) Our study  
is based on Ensembl release 92 (GRCz11). Below, we use “Ens54T/G” and “Ens92T/G” to  
refer to the ENSDART/G transcripts/genes of the two releases, and interpret DLG Ts as a 
subset of Ens54Ts. The DLG Ts represent 1,659 distinct Ens54Gs (the “DLG Gs”), and only 
~75.0% (1,244) of DLG G serials (without model version number suffix) still exist as Ens92Gs.  
Using Ensembl’s web ID History Converter (https://ensembl.org/Danio_rerio/Tools/IDMapper) 
maps only slightly higher DLG Gs (~76.5%: 1,269) to at least one Ens92G (falling to ~75.4% for 
those mapping to a single Ens92G, with two mapping to the same single Ens92G). 
 
As the precise rules for Ensembl’s maintenance and mapping of ENSDARG/T stable identifiers 
are somewhat mysterious, and as ≈75% mappability from DLG Gs to Ens92Gs was suspected 
low, we used cDNA sequence similarity to establish a new mapping from Ens54Gs to Ens92Gs, 
as follows. (Mapping based on cDNA alignments is reasonable as the original assignments of 
microarray probes to ENSDARTs are likely to have been based on sequence identity/similarity.) 
We started with the cDNA nucleotide sequences for 28,717 Ens54Ts covering 24,233 Ens54Gs 
and 51,745 Ens92Ts covering 25,906 Ens92Gs obtained after removal of sequences residing 
on alternate chromosomes from Ensembl FTP files 
 

 ftp://ftp.ensembl.org/pub/release-54/fasta/danio_rerio/cdna/Danio_rerio.Zv8.54.cdna.all.fa.gz 
 ftp://ftp.ensembl.org/pub/release-92/fasta/danio_rerio/cdna/Danio_rerio.GRCz11.cdna.all.fa.gz 
 

(FASTA entry titles in these files include ENSDART and G serial numbers, and chromosome/ 
scaffold names. Ignoring model version number suffixes, here only 13,826 T and 16,180  
[≈two-thirds] G serials are in both releases. Also note that here Ensembl 92 has ~7% more Gs 
over Ensembl 54, but ~80% more Ts; as we desire one-to-one relationships where possible,  
we focus on mapping gene identifiers rather than transcript identifiers.) BLASTN 2.2.26 was run 
twice, once to align Ens54T cDNAs to Ens92T cDNAs (obtaining ≈0.8M alignments), and once 
in the reciprocal direction (≈1.6M alignments; both runs with E-value threshold 10–5, DUST 
filtering, 11-mer words, two-stranded search, and up to 99 hits per query). In each direction,  
for each distinct Ens54G–Ens92G pair, only a single alignment of top bitscore was retained 
(“Filter 1”, dropping number of alignments to ≈218k and ≈455k). Histograms over query-side Gs 
with more than one remaining alignment of ratio of next-to-top–to–top bitscore were examined. 
 

 
 
In each direction, for each query-side G, only alignments with bitscore ≥ 95% of the top bitscore 
were kept (“Filter 2”). For the Ens54T-to-Ens92T direction, ~27k alignments involving 23,746 
Ens54Gs survive, and 22,881 Ens54Gs have only a single alignment; for the Ens92T-to-Ens54T 
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direction, ~29k alignments involving 24,359 Ens92Gs survive, and 22,132 Ens92Gs have only a 
single alignment. 
 
Before final acceptance of a particular Ens54G–Ens92G pairing, it is reasonable to require a 
minimum on the percentages (“coverages”) of all nucleotides on each side (Ensembl 54 and 92) 
that are actually aligned in the supporting transcript–transcript cDNA–cDNA alignment, and that 
the supporting alignment be of a minimum nucleotide percent identity. Aided by examination of 
histograms, thresholds of ≥ 30% coverage on each side and ≥ 93% identity were selected, and 
alignments failing either or both of these criteria were dropped (“Filter 3”). 
 

 
 

Interestingly, not all of the 16,180 G serial numbers that have at least one Ens54T with a cDNA 
and at least one Ens92T with a cDNA have an alignment (e.g., after Filter 1) in both directions 
(74 are missing at least one direction), or an alignment with high coverages (as apparent from 
the histograms below). Hence, as numerical identity of G serial number does not always imply  
a high degree of cDNA sequence similarity between some cross-release pair of transcripts  
for the nominal single gene, we decided to not treat G or T serials that happen to exist in both 
releases as special in any way — instead, for such, each side’s instance is taken to operate 
independently of the other side’s and is filtered/processed just as generic instances of its side. 
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After Filter 3, the Ens54T-to-Ens92T direction involves 20,299 Ens54Gs (19,706 with a single 
alignment) and the reverse direction involves 19,797 Ens92Gs (18,492 with a single alignment). 
There are 19,897 Ens54G–Ens92G pairs (involving 19,130 Ens54Gs and 18,722 Ens92Gs)  
that have an alignment passing all filters in both directions (our overall strategy being one of 
“reciprocal near-best hits”); form the undirected bipartite graph with these pairs as edges  
(using distinct vertices for serial numbers that happen to exist in both releases). Of the 18,388 
connected components of this graph, 18,360 (involving 19,020 Ens54Gs and 18,600 Ens92Gs) 
are complete bipartite, with 17,673 being just a single Ens54G incident to a single Ens92G, i.e., 
Ens54G : Ens92G 1 : 1. The other complete bipartite components are variously n : 1 with n = 2 to 5; 
1 : m with m  = 2 to 18; or n : m with n = 2 to 9 and m  = 2 to 8. The 28 non-complete components 
involve 2 to 19 Ens54Gs each (total 110) and 2 to 35 Ens92Gs each (total 122). We accept the 
complete bipartite connected components as our mapping between Ens54Gs and Ens92Gs: 
within every such component, we consider every Ens54G in it to map to every Ens92G in it,  
and every Ens92G in it to map to every Ens54G in it, and these to be our only mappings.  
(As our primary focus here is to enable basic comparison of our study with DLG, we do not try 
to, e.g., recover additional mappings from the non-complete bipartite connected components,  
or try to resolve n : m components with n > 1 and / or m > 1 in more detail.) 
 
We finally convert each DLG T to an Ens54G and apply our mapping to Ens92Gs, thereby 
retaining higher numbers of genes than converting by either retaining only unchanged serial 
numbers, or by using the Ensembl ID History Converter, while also guaranteeing a minimal 
degree of cDNA sequence similarity: 
 

Profile 1 : 1 (n ≥ 2) : 1 1 : (m  ≥ 2) (n ≥ 2) : (m  ≥ 2) Unmapped Total DLG Ts 
periderm 1,128 ~82% 26 ~2% 10 ~1% 2 ~0.1% 203 ~15% 1,369. 
dnIrf6-inhibited 333 ~86% 13 ~3% 4 ~1% 0 ~0.0% 35 ~09% 385. 
intersection 85 ~92% 2 ~2% 1 ~1% 0 ~0.0% 4 ~04% 92. 
union 1,376 ~83% 37 ~2% 13 ~1% 2 ~0.1% 234 ~14% 1,662. 

 
With our goal being transition to Ens92Gs, we focus on the (n  ≥  1) : 1 mappings, and take  
this opportunity to resolve DLG Ts that collide by being isoforms of the same Ens54G and/or 
mapping to the same Ens92G as follows: 
 
 DLG T 

ENSDART# 
 
Profiles 

Ens54G 
ENSDARG# 

Ens92G 
ENSDARG# 

 
Resolution 

      
(1a) 00000074125 dnIrf6-in. 00000002172 00000002172 
(1b) 00000114915 dnIrf6-in. 00000078356 00000002172 

Drop (1b) as, all else equal, prefer unchanged 
serial #s (and (1a) cDNA has better alignment) 

      
(2a) 00000109977 periderm 00000075638 00000087584 
(2b) 00000111361 periderm 00000079218 00000087584 

Drop (2b) as microarray expr. is higher in (2a) 
(with similar expr. ratio) + (2a) cDNA aligns better 

      
(3a) 00000027701 all three 00000036834 00000090268 
(3b) 00000066620 periderm 00000036834 00000090268 

Drop (3b) as microarray expression is much 
higher in (3a) (but similar GFP+/GFP– ratio) 

      
(4a) 00000106367 periderm 00000071790 00000094736 
(4b) 00000106595 periderm 00000071790 00000094736 

Drop (4a) as microarray expression is higher  
in (4b) (but with similar GFP+/GFP– ratio) 

      
(5a) 00000056398 dnIrf6-in. 00000033485 00000103254 
(5b) 00000090984 dnIrf6-in. 00000067766 00000103254 

Drop (5b) as no microarray expr. available, but 
choices in same profiles and (5a) aligns better 

      
(6a) 00000105024 dnIrf6-in. 00000036832 (multiple) 
(6b) 00000105036 all three 00000036832 (multiple) 

Drop (6a) (multiple Ens92Gs, so already will  
not use these DLG Ts, but (6b) has very high 

     microarray expr. whereas (6a) expr. unknown). 
 
We thus arrive at our final conversions of the DLG profiles (where surviving DLG Ts, Ens54Gs, 
and Ens92Gs for the union of the profiles are in 1:1:1 correspondence), and the periderm, 
dnIrf6-inhibited, and intersection profiles now contain 1,151; 344; and 87 Ens92Gs, respectively. 
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File S7 gathers mapping details, the converted profiles, and selected data for mapped Ens92Gs 
from the master Microsoft Excel workbook included in our NCBI GEO submission (GSE132304), 
as well as the distributions of our flow classifications across the converted profiles (including 
comparisons of these to the flow frequencies over our whole Ensembl 92 analysis), these  
being briefly discussed in the main text. We close this document by examining the microarray 
expression values (available only in the periderm profile), as these are not discussed elsewhere. 
 

 
 

The microarray expression values / probes are from a much earlier timepoint than our study,  
are based on different technology (hybridization vs. counting), and are being interpreted 
indirectly (via our mapping procedure described above) across a decade of zebrafish genome 
assembly and gene modeling changes. Hence, we do not expect tight correspondence  
of expression levels, but there are, nevertheless, highly non-random isotonic correlations 
between the microarray values and our study, as seen below. 
 

 



Skin transcriptomes in zebrafish embryos File S1 page 18 of 19 

 

 
 

 
 
(RNA-Seq replicate names are abbreviated following (#) earlier in this document.) All of our  
skin-related RNA-Seq replicates (M, B, P) are monotonically closer to the microarray GFP+ 
periderm expression than any of our non-skin replicates (C, c), with the closest being P5[1]  
and P5[2], our earliest periderm replicates. Monotonic correspondence of our RNA-Seq to GFP– 
microarray expression is, perhaps unsurprisingly, not as strong (being limited to genes DLG 
determined as enriched in periderm), with C2[2], M2[2] — the closest replicates — being from 
our closest timepoint. Using our per-condition normal distribution model means instead of TPMs 
produces similar comparisons (not shown), and with RNA-Seq M2 the best overall condition 
matching the available microarray GFP– expression. 
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It remains to compare microarray GFP+/GFP– expression ratios to our 36 RNA-Seq contrasts 
listed in paragraph (#) earlier in this document. 
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Fittingly, the monotonically closest RNA-Seq contrast to the microarray GFP+/GFP– expression 
ratios is M2/C2, our skin-to-nonskin ratio at our closest timepoint to the microarray study. ∎ 


