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A Estimator based on IBS

For clarity of exposition, here we derive results for ÎBSm under a simple model that assumes no
genotyping error (a more general result that includes genotyping error can be found in Appendix
B, equation (B.9)). The simple model assumes that the IBD state at the t-th locus, IBDt, is

Bernoulli with relatedness parameter r ∈ [0, 1]. Given IBDt = 0, we assume that Y
(i)
t and Y

(j)
t

are independent Categorical variables with parameter (ft(g))g∈Gt . Given IBDt = 1, we assume

that Y
(i)
t follows a Categorical distribution with parameter (ft(g))g∈Gt and that Y

(j)
t = Y

(i)
t with

probability one.

A.1 Expectation of estimator based on IBS

In this section no assumptions are made about dependence between marker loci: equation (A.1)

holds under both independence and dependence. The expectation of the estimator ÎBSm conditional
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on the frequencies (ft(g))g∈Gt∀t = 1, . . . ,m is

E[ÎBSm] =
1

m

m∑
t=1

E [IBSt] ,

=
1

m

m∑
t=1

P (IBSt = 1 | IBDt = 1)P (IBDt = 1) + P (IBSt = 1 | IBDt = 0)P (IBDt = 0) ,

=
1

m

m∑
t=1

{r +

Kt∑
i=1

ft(gi)
2(1− r)},

= r + h̄m(1− r),

= h̄m + (1− h̄m)r, (A.1)

where h̄m = m−1
∑m
t=1

∑Kt

i=1 ft(gi)
2. Under different observation models, we would still ob-

tain E[ÎBSm] as a linear function of r; see second line above, where P (IBSt = 1 | IBDt = 1) and
P (IBSt = 1 | IBDt = 0) could be anything as long as these expressions do not involve r.

A.2 Convergence of estimator based on IBS

Here we work under the simplest setting: the measurements (Y
(i)
t , Y

(j)
t ) are independent across

t = 1, . . . ,m. In order to discuss convergence we need to imagine an asymptotic regime where
m→∞. We introduce an infinite sequence (ft(gi))t≥1, i = 1, . . . ,Kt, where each ft(g) is in (0, 1),

and we introduce h̄ = limm→∞m−1
∑m
t=1

∑Kt

i=1 ft(gi)
2, assuming the existence of that limit. To

show that ÎBSm is not consistent for r, we show that it is consistent for h̄ + (1 − h̄)r, which is

different to r unless r = 1. Thus we show that ÎBSm satisfies,

ÎBSm
P−−−−→

m→∞
h̄+ (1− h̄)r, (A.2)

where the arrow is interpreted as “convergence in probability”. Since E[ÎBSm] = h̄m+ (1− h̄m)r →
h̄+ (1− h̄)r as m→∞, we can establish (A.2) by showing that for every ε > 0

P
(
| ÎBSm − E

[
ÎBSm

]
|> ε

)
→ 0 as m→∞. (A.3)

We show equation (A.3) by use of Hoeffding’s inequality (see Chapter 4 in (Wasserman 2013)). Since

ÎBSm is an average of variables IBSt, which are bounded (IBSt ∈ {0, 1}) and assumed independent,
Hoeffding’s inequality yields

P
(
| ÎBSm − E

[
ÎBSm

]
|≥ ε

)
≤ 2 exp

(
−2mε2

)
. (A.4)

Since 2 exp
(
−2mε2

)
→ 0 as m→∞, equation (A.4) shows that equation (A.3) holds and therefore

that equation (A.2) holds. Note that consistency could also be established in the dependent case,
for instance via the application of a version of Hoeffding’s inequality for dependent processes.

Plots of ÎBSm for data simulated under the independence model (Figure A.1) numerically show

for r = 0 and 0.5 that ÎBSm concentrates on its expectation (equation (A.1)) as more and more
markers (m = 24, 96 and 192) are typed.
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Figure A.1: Distributions of ÎBSm between pairs of biallelic marker data simulated under the
independence model with different numbers of markers, m, and relatedness, r. Each distribution is
based on 1000 simulated pairs. The green vertical line marks h̄m + (1− h̄m)r which is a function of
the allele frequencies (equation 3, main text). Allele frequencies were sampled without replacement
from the Thai WGS dataset with probability proportional to minor allele frequency estimates.

A.3 Corrected estimator based on IBS

A corrected version of the estimator ÎBSm could be consistent for r (equation (A.7)) and is sim-
ilar to existing method of moments estimators (reviewed in Bink et al. (2008)), which generally
underperform compared to maximum likelihood estimators (Chapter 9 of Wasserman (2013)).

By rearranging equation (A.1),

r =
1

(1− h̄m)

(
E
[
ÎBSm

]
− h̄m

)
, (A.5)

we can propose the following corrected estimator of r,

ÎBS
(c)

m =
1

(1− h̄m)

(
ÎBSm − h̄m

)
, (A.6)
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whose expectation is precisely r. The corrected estimator ÎBS
(c)

m is consistent for r, with the same
reasoning as in Appendix A.2 assuming independent observations,

ÎBS
(c)

m =
1

(1− h̄m)

(
ÎBSm − h̄m

)
P−−−−→

m→∞

1

(1− h̄)
(h̄+ (1− h̄)r − h̄) = r. (A.7)

Figure A.2 shows a plot of equation (A.6) for different values of h̄m ∈ (0.5, 1). The range of

ÎBS
(c)

m includes negative values. Setting negative estimates to zero can considerably improve results
Bink et al. (2008), but can also introduce bias Huang et al. (2015). For the Plasmodium datasets

considered in the main text, Figure A.3 shows ÎBS
(c)

m estimates truncated to [0,1].
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Figure A.2: ÎBS
(c)

m as a function of ÎBSm for various h̄m (equation (A.6)).
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Figure A.3: ÎBS
(c)

m for several monoclonal Plasmodium datasets.
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B Model-based estimation of relatedness

B.1 Framework

In this section we describe models that relate the available data to the objects of interest, in a
self-contained presentation. The data comprise frequencies of alleles denoted by (ft(g))g∈Gt , and

allele indicators Y
(i)
t , where the index t denotes a locus on the genome, and the superscript (i)

refers to the i-th individual. The index t will run from 1 to m, the number of markers genotyped,
and we will be particularly interested in the impact of m and Kt on the precision of the estimators.
Note that m cannot be larger than L, the total length of the genome, which will create difficulties
in making sense of an asymptotic regime where m goes to infinity, as will be discussed below.

We will consider pairs of individuals, i and j, for which we want to estimate the relatedness
denoted by r and taking values in the interval [0, 1]. The models below might involve other param-
eters, and overall the vector of parameters is denoted by θ. We will make the first component of θ
represent the relatedness r, so that r = θ1.

For each pair of individuals, we introduce a sequence of latent binary variables denoted by
(IBDt) for identity-by-descent: IBDt = 1 indicates identity-by-descent at locus t. We view this
sequence as a two-state Markov chain. The case of independent variables for (IBDt) constitutes
a particular case. In any case, the relatedness r ∈ [0, 1] represents the marginal probability that
IBDt is equal to one, assumed to be identical for all t. While we do not observe (IBDt), we observe

Y
(i)
t and Y

(j)
t that are related to IBDt at locus t via an observation model, which can take into

account the presence of genotyping errors. Together, the specification of the latent process (IBDt)
and of the observation model fully describes a hidden Markov model, that can be used to estimate
r using the data. Complete model specification is deferred to Appendix B.3, after a description of
the general estimation procedure and some specific issues arising in the present case.

The estimation procedure is here based on the maximum likelihood approach. The likelihood
function can be written as

L1:m(θ) =

m∏
t=1

P(Y
(i)
t , Y

(j)
t |Yt−1, θ),

where Yt−1 represents all the observations from locus 1 to locus t− 1, with the convention that Y0
is the empty set. We can further write each “incremental likelihood term” as

P(Y
(i)
t , Y

(j)
t |Yt−1, θ) =

∑
IBDt∈{0,1}

P(Y
(i)
t , Y

(j)
t |IBDt, θ)P(IBDt|Yt−1, θ).

Since (IBDt) is a Markov chain, the forward algorithm (Rabiner 1989) can be used to evaluate each
incremental likelihood term for t = 1, . . . ,m, for a cost of the order of m operations given θ.

We write `1:m(θ) = logL1:m(θ), and `t(θ) = logP(Y
(i)
t , Y

(j)
t |Yt−1, θ). We denote the first and

second derivatives of `t(θ) by `′t(θ) (a vector) and `′′t (θ) (a matrix) respectively. We will use the
maximum likelihood estimator to approximate r, and we define it as

θ̂m = argmaxθ `1:m(θ).

We next review some asymptotic properties of the maximum likelihood estimator (MLE) and detail
how the present setting differs from the one usually considered in asymptotic studies.
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B.2 Distribution of the MLE

B.2.1 Standard asymptotic theory

We first recall what the usual asymptotic reasoning is for the distribution of the MLE in HMMs
(Douc and Moulines 2012), in informal terms.

The first step is to imagine that the variables indexed by t (such as IBDt, Y
(i)
t , Y

(j)
t , etc.) are

part of infinite sequences of variables indexed by t ≥ 1. This allows us to consider a regime where
the number of loci considered m can go to ∞. In Appendix B.2.2 we will discuss issues arising
when applying this asymptotic reasoning in the present context of genetic data.

We observe that the log-likelihood and its derivatives are sums of m terms. Dividing by m
yields averages, which might converge to limiting values as m grows large. For instance, the scaled
log-likelihood might satisfy

∀θ m−1`1:m(θ)
P−−−−→

m→∞
¯̀(θ),

where the arrow is to be interpreted as “convergence in probability”, the left hand side of it being
random if we consider the data to be random. Under some assumptions, the maximizer θ̂m of
θ 7→ m−1`1:m(θ) converges to the maximizer θ? of the limiting function θ 7→ ¯̀(θ). By the Taylor

expansion of `′1:m(θ̂m) at θ? we have

`′1:m(θ̂m) = `′1:m(θ?) + `′′1:m(θ?)(θ̂m − θ?) + rest. (B.1)

At the MLE θ̂m, the derivative of the log-likelihood cancels: `′1:m(θ̂m) = 0, at least if the MLE is
in the interior of the parameter space; extra care is required when the MLE is on the boundary
of the parameter space, which occurs in the present setting where r̂m can be exactly zero or one.
Therefore we obtain

0 ≈ `′1:m(θ?) + `′′1:m(θ?)(θ̂m − θ?),

⇔ (θ̂m − θ?) ≈ −`′′1:m(θ?)−1`′1:m(θ?), (B.2)

⇔
√
m(θ̂m − θ?) ≈

(
−m−1`′′1:m(θ?)

)−1
m−1/2`′1:m(θ?), (B.3)

where ⇔ means “equivalently”.
We will rely on the two following convergence results (see Chapter 13 in Douc et al. (2014)),

m−1/2`′1:m(θ?)
d−−−−→

m→∞
N (0, V ?) , (B.4)

−m−1`′′1:m(θ?)
P−−−−→

m→∞
J?, (B.5)

for some matrices V ?, J?, assumed to be both semi-definite positive and symmetric. The first line
above describes a convergence “in distribution” and can follow from a central limit theorem for
the first derivative of the log-likelihood. The second line can follow from a law of large numbers
applied to the second derivatives, as in Chapter 13 of Douc et al. (2014). We can combine these
two convergence results using Slutsky’s lemma to obtain the asymptotic normality of the MLE:

√
m(θ̂m − θ?)

d−−−−→
m→∞

N
(
0, (J?)−1V ?(J?)−1

)
. (B.6)

This key result can be used for sample size determination and for the construction of confidence
intervals, provided that we can approximate θ?, V ? and J? based on data. The asymptotic variance
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(J?)−1V ?(J?)−1 is sometimes called the sandwich formula, and can be estimated based on samples;
see Doucet and Shephard (2012) in the setting of hidden Markov models. If we assume that the
model is well-specified, i.e. that the data actually are generated from the model with the parameter
θ?, then it can be shown that J? = V ? under regularity conditions (Chapter 13 of Douc et al.
(2014)). In this case, the asymptotic variance in (B.6) simplifies to (J?)−1. The matrix J? is often
termed the Fisher Information Matrix at θ?.

We briefly discuss the numerical obtention of θ̂m = argmaxθ`1:m(θ). The log-likelihood function
θ 7→ `1:m(θ) can be plugged in a numerical optimizer, such as that implemented in the optim

function of R. Evaluations of the log-likelihood function require runs of the forward algorithm on
the data, for a cost of the order of m operations. Alternatively, one can also run an expectation-
maximization algorithm, which involves calculating expectations with respect to the distribution
of the latent process (IBDt) using the forward-backward algorithm (Cappé et al. 2005), also called
Baum-Welch in the context of HMMs (Rabiner 1989). If the parameter is small-dimensional, e.g.
one or two-dimensional, a simple way of approximating the MLE consists in evaluating the likelihood
(using the forward algorithm) on a grid of parameter values, and selecting the parameter associated
with the highest likelihood.

The matrix J? can be estimated by −m−1`′′1:m(θ̂m), itself computed via numerical differentiation

of the log-likelihood function at θ̂m. The estimation of V ? is more complicated and has been the
topic of a rich literature in time series analysis; see for instance Doucet and Shephard (2012) and
references therein.

B.2.2 Applicability of the standard asymptotic theory

The law of large numbers and central limit theorems usually employed to carry out the above
reasoning, i.e. to establish (B.4) and (B.5) leading to the asymptotic normality of the MLE in
(B.6), might not be meaningful in the present context. Indeed they usually apply to stationary
processes observed over increasingly long periods of time. In such asymptotic setting, one eventually
observes a realization of a stationary stochastic process over an infinitely long time horizon, which
is enough to learn the invariant distribution of the process. We refer to this setting as standard
asymptotics. Recall that our primary object of interest is the parameter r, which characterizes
indeed the invariant distribution of the Markov chain (IBDt).

In the present setting where data comprise genetic sequences, increasing m means considering
more loci on the genome. The m considered loci are located within the genome whose length is,
however, fixed. Therefore increasing m amounts to increasing the subsampling frequency at which
data are observed. In other words it decreases the distance between successive observed loci. We
refer to this as subsampling asymptotics. To see where this differs from standard asymptotics,
consider a simpler context where (IBDt) would not be hidden but directly observed. In the limit
m→∞ in subsampling asymptotics, we would observe a continuous trajectory of (IBDt), switching
from state 0 to state 1 and back again, over a fixed interval. The maximum likelihood estimate
of r for such a model would be the proportion of time that the trajectory would spend in state 1
(Bladt and Sørensen 2005). However this would not be exactly equal to r, even if the trajectory was
sampled from the Markov model given r, because the fully-observed realization of (IBDt) would
still be of a finite length; this is well-known, see (Hill and Weir 2011) on the impact of the genome
length on relatedness estimates under Mendelian sampling. On the other hand, in the standard
asymptotics m→∞ we would observe an infinitely long trajectory of the Markov chain, for which
the maximum likelihood estimator of the transition matrix is consistent. The difference between
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the two regimes is illustrated in Figure B.1.
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Figure B.1: Two different ways of increasing m: in the top row, m refers to the length of the
observation period, while the observations are separated by one unit of time. In the bottom row,
the length of the observation interval is fixed to one, and the observations are placed at distance
1/m of one another; thus an increase in m means that successive observations are closer to one
another, but the length of the observation period is fixed.

The difference in asymptotic regimes has consequences on the estimability of r. In the subsam-
pling asymptotics, it is impossible to arbitrarily decrease the error of r̂m by increasing m: there
is only so much information that can be gathered about r by increasing the number of loci under
consideration; hence the distinction between expected IBD and realised IBD in (Speed and Balding
2015). A result such as the asymptotic normality with a

√
m rate of convergence, as in (B.6), is

in fact unlikely to hold. The numerical experiments indeed suggest that the root mean squared
error associated with r̂m does not decrease beyond a certain point, no matter how large m is. The
subsampling asymptotic regime has been formally studied with various applications to financial
econometrics (Aı̈t-Sahalia 2002; Barndorff-Nielsen et al. 2006), but we are not aware of similar
results for hidden Markov models such as the ones considered here.

Despite the standard asymptotic results not holding, we do observe that the distribution of r̂m is
approximately Normal for m large enough (Figure B.2). This can be partially explained by the fact
that normality of the MLE depends entirely on the log-likelihood being approximately quadratic
(Geyer 2013), which itself does not have to follow from standard asymptotic arguments. Since the
log-likelihood function is observed to be approximately quadratic providing r̂m is not close to the
boundaries (Figure B.3), we can still quantify the precision of the MLE by considering the second
derivative of the log-likelihood at its maximum. Thus we will rely on the Fisher Information Matrix
as a proxy for the precision of the MLE, in particular for the study of the effect of Kt in Appendix
B.3.4.
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Figure B.2: Empirical distributions of r̂m for different numbers of markers, m. Each distribution
is based on 500 estimates of r given data simulated and analyzed under the HMM with r = 0.5,
k = 8, Kt = 2 ∀t = 1 . . . ,m and ε = 0.001.
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Figure B.3: The log-likelihoods of r for different k (left column) and k for different r (right column)
for three different example sample pairs from the Colombian dataset: a sample pair with minimum
r̂m (top row, m = 248), a sample pair with maximum r̂m (middle row, m = 246), and a sample
pair with r̂m ≈ 0.5 (bottom row, m = 245). Differences in m are due to missing genotype calls

in the data. Vertical black dashed lines mark r̂m (left column) and k̂m (right column). Black

dashed function lines show the log-likelihood of r̂m given k̂m (left column) and of k̂m given r̂m
(right column). Coloured function lines show the log-likelihood of r̂m given values of k 6= k̂m (left

column) and of k̂m given values of r 6= r̂m (right column). Where the likelihood of k given r̂m is

flat, the numerical optimizer, optim, returns the initial value 8 as k̂m.
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B.3 Models

We now describe a Markov chain model for (IBDt), followed by observation models for Y
(t)
i and

Y
(t)
j given IBDt.

B.3.1 Hidden Markov model

We write the transition probabilities of (IBDt) at a locus t,

A(t) =

(
a00(t) a01(t)
a10(t) a11(t)

)
=

(
1− r(1− exp(−kρdt)) r(1− exp(−kρdt))

(1− r)(1− exp(−kρdt)) 1− (1− r)(1− exp(−kρdt))

)
.

In the above, aj`(t) refers to the probability of IBDt = ` given that IBDt−1 = j.
In the above expression, the relatedness is denoted by r; dt denotes a genetic distance in base

pairs (bp) between loci t−1 and t; k > 0 parametrizes the switching rate of the Markov chain and ρ
is the recombination rate, assumed fixed across both haploid genotypes with value 7.4×10−7M bp−1

for P. falciparum parasites (Miles et al. 2016).
We can check that, if P(IBDt−1 = 1) = r, then

P(IBDt = 1) = P(IBDt−1 = 1)a11(t) + P(IBDt−1 = 0)a01(t) = r,

and thus the invariant marginal distribution of the chain is given by P(IBDt = 1) = r.
The above transition probabilities are at the core of many HMMs of relatedness (e.g. Leutenegger

et al. (2003), where k×ρ = a and genetic distance dt = tk is measured in cM, plus many subsequent
models (see (Brown et al. 2012)), including Schaffner et al. (2018), where r = π1 and 1− r = π2.

We can check that, as the distance increases to infinity, the probabilities in A(t) simplify and
correspond to the independence Bernoulli model where IBDt is equal to one with probability r,
independently for each locus t. In other words, if loci are distant enough, we expect the HMM and
the independence model to give similar results. This will happen in particular when m is small and
when the loci under consideration are well-spread across the genome.

B.3.2 Observation model

The observations Y
(i)
t , Y

(j)
t are related to (IBDt) only through IBDt at locus t. The observation

model introduces some true genotypes G
(i)
t , G

(j)
t given IBDt, and then some genotyping error model

defining the distribution of Y
(i)
t , Y

(j)
t given G

(i)
t , G

(j)
t .

First, the variables G
(i)
t , G

(j)
t given IBDt are defined as follows. If IBDt = 0, then G

(i)
t is inde-

pendent of G
(j)
t and both follow a Categorical distribution: for a set of values G = {g(1), . . . , g(Kt)}

and probabilities {ft(g)} for g ∈ G, we have P(G
(i)
t = g) = ft(g), and likewise for G

(j)
t . If there are

only two types (e.g. the case for biallelic SNPs) then it is a Bernoulli distribution. If IBDt = 1,

then P(G
(i)
t = g) = ft(g) and G

(j)
t = G

(i)
t with probability one. Overall we can write the model as

P(G
(i)
t = g(i), G

(j)
t = g(j)|IBDt = 0) = ft(g

(i))ft(g
(j))

P(G
(i)
t = g(i), G

(j)
t = g(j)|IBDt = 1) = ft(g

(i))1(g(i) = g(j)).

Next, we assume that genotyping errors occur independently for both individuals. This differs
to the typical ‘all-or-none’ diploid setting (e.g. (Leutenegger et al. 2003; Brown et al. 2012)), since

12



haploid genotypes in monoclonal parasite samples are genotyped separately. If they occur, we do

not observe Y
(i)
t = G

(i)
t but instead we observe another genotype taken uniformly among the other

possible values (by assumption); and likewise for the other individual j. This can be written

P(Y
(i)
t = g(i)|G(i)

t = g) =

{
1− (Kt − 1)ε if g(i) = g,

ε if g(i) 6= g.

In the above expression Kt refers to the number of possibilities, which could be different for different
loci t, and ε refers to a parameter such that the error rate is (Kt−1)ε. This is suited to microsatellites
in the sense that the error rate scales with Kt (Hoffman and Amos 2005). For biallelic SNPs, it
amounts to a simple miscall.

Overall we can thus think of the observation model as the combination of a model for (Y
(i)
t , Y

(j)
t )

given (G
(i)
t , G

(j)
t ) and a model for (G

(i)
t , G

(j)
t ) given IBDt. We can integrate G

(i)
t , G

(j)
t out to obtain

directly the probabilities of (Y
(i)
t , Y

(j)
t ) given IBDt:

P(Y
(i)
t = g(i), Y

(j)
t = g(j)|IBDt) (B.7)

=
∑
g,g′∈G

P(Y
(i)
t = g(i)|G(i)

t = g)P(Y
(j)
t = g(j)|G(j)

t = g′)P(G
(i)
t = g,G

(j)
t = g′|IBDt). (B.8)

The cost of evaluating this expression is quadratic in the cardinality of G.
This observation model is the same (besides notation) as that for within-population samples

under the HMM of hmmIBD (Schaffner et al. 2018) and, if Kt = 2, the same as that of isoRe-
late (Henden et al. 2018). Mutations do not feature in it. However, any that do occur can be
absorbed as errors, as they are considered to be in Wang (2004). That said, it does not take into
account microsatellite mutations in the sense that they scale with both motif size and repeat num-
ber (McDew-White et al. 2019), nor their inherent ordinal nature or the bias with regards to their
amplification (Messerli et al. 2017). Bespoke adaptations could be made for specific data types.

Digression: expection of fraction IBS considering error Equation (B.8) means that

P(Y
(i)
t = Y

(j)
t |IBDt = 1) = (1− (Kt − 1)ε)2 + ε2(Kt − 1),

P(Y
(i)
t = Y

(j)
t |IBDt = 0) = (1− (Kt − 1)ε)2ht + ε2(Kt − 2 + ht) + 2ε(1− (Kt − 1)ε)(1− ht),

where ht =
∑
g∈G ft(g)2. Consequently, under the present observation model,

E[ÎBSm] =
1

m

m∑
t=1

{
r
(
(1− (Kt − 1)ε)2 + ε2(Kt − 1)

)
+

(1− r)
(
(1− (Kt − 1)ε)2ht + ε2(Kt − 2 + ht) + 2ε(1− (Kt − 1)ε)(1− ht)

)}
,

= r
(
(1− (Kt − 1)ε)2 + ε2(Kt − 1)

)
+

(1− r)
(
(1− (Kt − 1)ε)2h̄m + ε2(Kr − 2 + h̄m) + 2ε(1− (Kt − 1)ε)(1− h̄m)

)
, (B.9)

where h̄m =
1

m

∑m
t=1 ht. Equation (B.9) reduces to (A.1) when ε = 0.
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B.3.3 The likelihood under the independence model

This model assumes independent random variables IBDt across loci t ∈ {1, . . . ,m}. It is a particular
case of the above HMM when all dt =∞. Given a relatedness parameter r ∈ [0, 1], IBDt is assumed
Bernoulli with parameter r. Next, we define an observation model: given IBDt = 0, we assume

that Y
(i)
t and Y

(j)
t are independent Categorical variables with parameter ft(g). Given IBDt = 1,

we assume that Y
(i)
t follows a Categorical distribution with parameter ft(g) and that Y

(j)
t = Y

(i)
t

with probability one. This defines the observation model. The associated likelihood at locus t is

P
(
Y

(i)
t = g(i), Y

(j)
t = g(j)|r

)
=

∑
IBDt∈{0,1}

P
(
Y

(i)
t = g(i), Y

(j)
t = g(j)|IBDt

)
P (IBDt | r) .

At this point we can define, for all t,

at =
∑
g,g′∈G

{
1(g(i) = g)(1− (Kt − 1)ε) + 1(g(i) 6= g)ε

}
×

{
1(g(j) = g′)(1− (Kt − 1)ε) + 1(g(j) 6= g′)ε

}
×

{ft(g)1(g = g′)} ,

bt =
∑
g,g′∈G

{
1(g(i) = g)(1− (Kt − 1)ε) + 1(g(i) 6= g)ε

}
×

{
1(g(j) = g′)(1− (Kt − 1)ε) + 1(g(j) 6= g′)ε

}
×

{ft(g)ft(g
′)} ,

so that the likelihood reads Lt(r) = atr + bt(1− r).
The full log-likelihood can be simply written as

`1:m(r) =

m∑
t=1

`t(r) =

m∑
t=1

log {atr + bt(1− r)} .

The gradient of the log-likelihood reads

`′1:m(r) =
m∑
t=1

`′t(r) =

m∑
t=1

{
at − bt

atr + bt(1− r)

}
.

The second-order derivative of the log-likelihood reads

`′′1:m(r) =

m∑
t=1

`′′t (r) = −
m∑
t=1

{
(at − bt)2

(atr + bt(1− r))2

}
. (B.10)

Since both numerator and denominator of each term are positive, `′′1:m(r) is strictly negative for all
r ∈ (0, 1), and thus the function r 7→ `1:m(r) is concave on (0, 1).

For the HMM model, the form of the likelihood is not explicit, but the likelihood function can
still be computed via the forward algorithm (Rabiner 1989). In terms of the computational efforts
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involved in obtaining the MLEs, optimizing the likelihood for the independence model is faster (see
Figure B.4). Overall, optimizing the log-likelihood in both models comes at a comparable cost,
scaling linearly in m in both cases.
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Figure B.4: Computational time and convergence averaged over 500 simulated pairs under the
HMM and the independence model. Computation time scales linearly with m.

B.3.4 Maximizing Fisher information

We focus on a single locus t, which we suppress from the notation. Let us denote the log-likelihood
by ` and recall the formula

logP
(
Y (i), Y (j); r

)
= `(r) = log (ar + b(1− r)) , `′′(r) = − (a− b)2

(ar + b(1− r))2
.

Assume there is no genotyping error for simplicity. Then a = f(Y (i))1(Y (i) = Y (j)) and b =
f(Y (i))f(Y (j)). From there the Fisher Information Matrix (FIM) is obtained as

FIM = E [−`′′(r)] =
∑

y(i),y(j)

(
f(y(i))1(y(i) = y(j))− f(y(i))f(y(j))

)2
f(y(i))1(y(i) = y(j))r + f(y(i))f(y(j))(1− r)

.

It is a function of r and of the allele frequencies. The FIM is proportional to the inverse of the
asymptotic variance of the MLE, thus if we want precise estimators of r, we want a large FIM. This
leads to the idea of maximizing FIM with respect to f for all r, to see which allele frequencies lead
to the most accurate estimation of r. We can split the sum into the case for which y(i) = y(j) and

15



the case for which y(i) 6= y(j); for simplicity we denote f(y(i)) by fi, which leads to

FIM(f, r) =

K∑
i=1

f2i (1− fi)2

fir + f2i (1− r)
+

K∑
i=1

K∑
j 6=i

f2i f
2
j

fifj(1− r)
,

=

K∑
i=1

fi (1− fi)2

r + fi(1− r)
+

K∑
i=1

K∑
j 6=i

fifj
(1− r)

,

where we recall that K denotes the number of possible alleles. We note that
∑
j 6=i fj = 1 − fi

because
∑K
i=1 fi = 1, therefore we obtain

K∑
i=1

K∑
j 6=i

fifj
(1− r)

=

K∑
i=1

fi(1− fi)
(1− r)

=
1

1− r
−
∑K
i=1 f

2
i

1− r
,

and thus the simpler form for the FIM:

FIM(f, r) =
1

1− r
+

K∑
i=1

{
fi (1− fi)2

r + fi(1− r)
− f2i

1− r

}
.

The notation FIM(f, r) reflects our consideration of the FIM as a function of f and r. We now
wonder how to maximize FIM over the vector f = (f1, . . . , fK), for any r. This is a constrained
and nonlinear optimization problem since f has to be made of non-negative entries and sums to
one (thus f is in the simplex of dimension K). We restrict our attention to r ∈ (0, 1), that is
r 6= 0 and r 6= 1, since the interpretation of FIM as a measure of the precision of the maximum
likelihood estimator is only valid when r is away from the boundaries of the parameter space [0, 1].
For r ∈ (0, 1), the function f 7→ FIM(f, r) is finite and continuous, on the simplex which is a
compact set, thus it attains a maximum according to the extreme value theorem.

After plotting the contours of the function FIM on the simplex and for different values of r (and
perhaps noticing that f 7→ FIM(f, r) is symmetric with respect to the center of the simplex), we
gather that the maximizer might be f? = (K−1, . . . ,K−1), irrespective of the value of r. We now
prove that this is indeed the case. We do so by considering an f such that f1 < f2. We will see
that we can increase FIM(f, r) by modifying f as follows: define f̃ as f̃1 = f1 + ε, f̃2 = f2 − ε
and f̃j = fj for all j ∈ {3, . . . ,K} (if K ≥ 3). We will see that there exists an ε > 0 such that

FIM(f̃ , r) > FIM(f, r). Since this holds for all f with a pair of non-equal entries, we will be able
to conclude that the unique maximizer of FIM is f? = (K−1, . . . ,K−1).

So let us consider f with f1 < f2. We start by noting that, for all x ∈ (0, 1),

ψ(x+ ε) :=
(x+ ε) (1− (x+ ε))

2

r + (x+ ε)(1− r)
− (x+ ε)2

1− r

can be expanded as ε→ 0 as

x (1− x)
2

r + x(1− r)
+ ε

{
1− x

r + (1− r)x

(
1− 3x− (1− r)x(1− x)

r + (1− r)x

)}
+O

(
ε2
)
− (x+ 2εx+ ε2)

1− r

=ψ(x) + ε

{
1− x

r + (1− r)x

(
1− 3x− (1− r)x(1− x)

r + (1− r)x

)
− 2x

1− r

}
+O

(
ε2
)
,
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where O(ε2) refers to terms which behave as ε2 when ε→ 0 and thus are negligible in front of the
term in ε. From this we deduce that ψ(x+ ε)− ψ(x) = εh(x) +O(ε2) with

h(x) :=
1− x

r + (1− r)x

(
1− 3x− (1− r)x(1− x)

r + (1− r)x

)
− 2x

1− r
.

We now show that x 7→ h(x) is decreasing in x over [0, 1]. We do so by bruteforce differentiation,
yielding

d

dx
h(x) = − 2r

(1− r) (r + (1− r)x)
3 .

We see that the above expression is strictly negative for all r and x so that x 7→ h(x) is strictly
decreasing.

The fact that x 7→ h(x) is strictly decreasing allows us to conclude the proof. Indeed, combined
with the assumption f1 < f2, we have h(f1) > h(f2). Therefore,

FIM(f̃ , r)− FIM(f, r) = ψ(f1 + ε)− ψ(f1) + ψ(f2 − ε)− ψ(f2)

= ε (h(f1)− h(f2)) +O(ε2),

from which we deduce that there is an ε > 0 small enough so that FIM(f̃ , r) − FIM(f, r) > 0.
To summarize, if f is such that one of its components is strictly greater than another component,
then we can increase the objective function FIM. We deduce that the function f 7→ FIM(f, r) is
uniquely maximized at f? = (K−1, . . . ,K−1), for which no component is greater than another one.
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C Comparable studies

Dataset/s and citation/s: study goal/s Related analyses and comparable results

Colombia (Echeverry et al. 2013):
The goal of (Echeverry et al. 2013) was
to characterise the population struc-
ture of Colombian P. falciparum para-
sites ahead clinical trials of antimalarial
drugs and genotype-phenotype associa-
tion studies.

Among a suite of different genetic analyses, the fraction IBS (called
“proportion of alleles shared (ps)” in (Echeverry et al. 2013)) was
calculated for all monoclonal parasite sample pairs. The overall
distribution of the fraction IBS was not summarized directly (frac-
tions IBS were used to cluster parasites into multilocus genotypes
(MLGs), which in turn were used to calculate genotypic richness, a
measure of the proportion of unique MLGs). However, in the dis-
cussion of (Echeverry et al. 2013) expected heterozygosities (HEs)
of four populations identified from the data using STRUCTRUE
(Pritchard et al. 2000) were reported: 0.25, 0.21, 0.27, 0.34. The
maximum of these numbers is the same as 1− h̄mmax = 0.34 for the
Colombian dataset (Table 1, main text).

Thailand 93-SNP (Nkhoma et al.
2013; Taylor et al. 2017): The goals
of (Nkhoma et al. 2013) and (Tay-
lor et al. 2017) were to explore pop-
ulation genetic correlates of P. falci-
parum transmission decline, and sig-
nal of P. falciparum genetic connec-
tivity, respectively, on the Thailand-
Myanmar border.

Among a suite of different genetic analyses in (Nkhoma et al. 2013),
the “number of alleles shared (ps)” was calculated for all monoclonal
parasite pairs and used as in (Echeverry et al. 2013). HEs compa-
rable to 1− h̄mmax = 0.42 (Table 1, main text) were reported: 0.427
and 0.429 for early and late time periods respectively. Distributions
of IBD-based estimates reported in (Taylor et al. 2017) (Figure Q S2
Text) are comparable to those reported here. They were calculated
using hmmIBD (Schaffner et al. 2018).

Thailand WGS (Cerqueira et al.
2017; Taylor et al. 2017): The goal
of (Cerqueira et al. 2017) was to iden-
tify genetic signals of antimalarial drug
resistance using longitudinal genomic
surveillance. The goal of (Taylor et al.
2017) is stated above. Both studies
estimated IBD-based relatedness using
hmmIBD (Schaffner et al. 2018).

IBD between sample pairs was used to assess the impact of recent
shared ancestry on the identifiablity of variants under drug selection
(Cerqueira et al. 2017). It was deemed modest besides in 2014
(distributions were plotted, but they are not directly comparable
to those reported here due to time partitions and omission of zero
valued estimates). Distributions of IBD-based estimates reported
in (Taylor et al. 2017) (Figure Q S2 Text) are comparable to those
reported here.

Thailand MS (Taylor et al. 2018):
The goal of (Taylor et al. 2018) was
to infer the state (relapse, reinfection
or recrudescence) of recurrent P. vivax
infections on the Thailand-Myanmar
border.

Although this study uses the concept of IBD to infer states, es-
timates of r were not directly generated: within an intermediate
step of a genetic model, the probability of the data given a pro-
posed genetic relationship (stranger, sibling or clone) is calculated
by summing over IBD states. There is thus no direct comparator
for the results reported here.

The Gambia (Omedo et al.
2017a), Kilifi (Omedo et al.
2017a) and Western Kenya
(Omedo et al. 2017b): These
datasets derive from two studies whose
goals were to characterise the spatial
genetic structure of P. falciparum
parasites collected at a sub-national
scale in select sites in East and West
Africa.

Among a suite of different genetic analyses, SNP differences were
calculated for all parasite sample pairs. SNP differences were used
to explore within-site spatial-temporal trends in parasite relatedness
and to summarise within-site parasite diversity. In Western Kenya,
15.272 of 83 SNPs (reported fraction 0.184) were different on aver-
age. In the Gambia, 2.867 of 33 SNPs (derived fraction 0.087) were
different on average. In Kilifi, 3.229 of the same 33 SNPs (derived
fraction 0.098) were different on average. Values of 1 − h̄mmax =
0.27, 0.22, 0.13 for Western Kenya, The Gambia and Kilifi (Table 1,
main text) are not comparable because they are based on different
data (59, 31 and 127 SNPs, respectively) due to different SNP and
sample filters described in main text.

Table C.1: A summary of how primary analyses of Plasmodium monoclonal datasets compare with
analyses reported here. For full details of sample collection and data generation see citations above
and references therein. For additional steps taken to process the data for current use see main text.
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Study goal and citation Comparable result
Relatedness inference for close relatives using
poor quality samples (Natesh et al. 2018)

100 SNPs identified individuals and close rel-
atives

Parentage inference in diploids using likeli-
hood ratio test and numeric approximation
of false positive and negative rates for differ-
ent numbers of loci and genotyping error rates
(Anderson and Garza 2006)

60-100 SNPs sufficient

Parentage and sibship inference in diploids
(Baetscher et al. 2018) using method of (An-
derson and Garza 2006)

96 microhaplotype loci

Ancestry assignment and coefficient inference
in diploids via inverse expected Fisher infor-
mation matrix (Rosenberg et al. 2003)

4-125,000 biallelic SNPs, depending on allele
frequencies and required precision

Relatedness inference in diploids using a vari-
ety of estimators and sub-sampling of empiri-
cal data on 86 MSs, each with 2 to 19 alleles
(Bink et al. 2008)

“In this study a set of 34 polymorphic loci
seemed to be a good balance between perfor-
mance of estimators and marker genotyping
costs”

Relatedness inference in autopolyploids using
a variety of estimators and simulation (Huang
et al. 2015)

Approximately 200 markers, each with 10 al-
leles, for 95% confidence interval of r ± 0.05
around diploids

Joint parentage and sibship inference of poly-
ploids whose genotypes are transformed into
“pseudodiploid-dominant genotypes” to en-
able application of likelihood methods de-
signed for diploids, using both simulated and
empiric data (Wang and Scribner 2014)

10-20 MSs each having 10 alleles

Connectivity between malaria parasite popu-
lations based on relatedness between mono-
clonal P. falciparum parasite samples (Taylor
et al. 2017)

96 SNPs sufficient to recover comparable
spatio-temporal trends to those obtained us-
ing WGS, assessed by sub-sampling data

Joint sibship inference in diploids and haplo-
diploids using maximum likelihood methods
and simulation (Wang 2004)

approx. 6-10 markers each with 10 alleles, or
approx. 30-40 biallelic markers, depending on
family size and error inclusion

Relatedness inference for zebra finch and pigs
reviewed in (Speed and Balding 2015)

More than 771 SNPs (for zebra finch) and 2000
SNPs (for pigs)

Table C.2: A non-exhaustive selection of studies in which numbers of loci for relatedness and
associated inference are reported. Most of the above studies assume independence between markers.
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