

Figure S5 The slope of FlincG3 fluorescence in the ASER cell body changes in response to 50 mM NaCl step changes and depends on the receptor guanylyl cyclase GCY-22.
(A) FlincG3 fluorescence in the ASER cell body decreases in response to a 50 to 0 mM NaCl downstep and stops decreasing in response to a 0 to 50 mM NaCl upstep in wildtype animals. The slopes of FlincG3 fluorescence for the first 50 to 0 mM NaCl downstep between wild-type and gcy-22(tm2364) animals are different ($\mathrm{n}=17$ (first set, blue; wildtype), $\mathrm{n}=23$ (fifth set, green; gcy-22); permutation test $\mathrm{p}<0.00001$). In wild-type animals, the slopes in response to the first 50 to 0 mM NaCl downstep are also different from those exposed to the switch control ($\mathrm{n}=17$ (first set, blue; wild-type), $\mathrm{n}=11$ (third set, pink; switch
control); permutation test $\mathrm{p}<0.00001$). The slopes of the first 50 to 0 mM NaCl downstep and 0 to 50 mM NaCl upstep are different in wild-type animals ($\mathrm{n}=17$; first pair, blue; permutation test $\mathrm{p}<0.00001$). By contrast, the slopes of the first 50 to 0 mM NaCl downstep and 0 to 50 mM NaCl upstep are not different in wild-type animals exposed to switch control and gcy-22 animals ($n=11$; second pair, pink and $n=23$; third pair, green, respectively). Regression analysis was applied to the data for the first 50 to 0 mM NaCl downstep. $\mathrm{R}^{2}=0.99, \mathrm{R}^{2}=0.04$ and $\mathrm{R}^{2}=0.15$ for wild-type, gcy-22 (tm2364) and wildtype switch control, respectively. Individual dots are the slopes calculated for each animal. $\mathrm{sc}=$ switch control. Horizontal bars indicate mean; vertical error bars indicate \pm SD. See Materials and Methods for details of statistical analysis. (B) FlincG3 fluorescence in the ASER cell body increases in response to the second, third and fourth 0 to 50 mM NaCl upstep in wild-type animals. The slopes for the second 0 to 50 mM NaCl upstep between wild-type and gcy-22(tm2364) animals are different ($\mathrm{n}=17$ (first set, blue; wild-type), $\mathrm{n}=23$ (third set, green; gcy-22); permutation test $\mathrm{p}<0.05$). In wild-type animals, the slopes in response to the second 0 to 50 mM NaCl upstep are also different from those of the switch control ($\mathrm{n}=17$ (first set, blue; wild-type), $\mathrm{n}=11$ (second set, pink; switch control); permutation test $\mathrm{p}<0.0001$). The difference in slopes for the third and fourth 0 to 50 mM NaCl upstep between wild-type and gcy-22(tm2364) animals is also significant (n = 17 (fourth set, blue; wild-type for third upstep and seventh set, blue; wild-type for fourth upstep), $\mathrm{n}=23$ (sixth set, green; gcy-22 for third upstep and ninth set, green; gcy-22 for fourth upstep); permutation test $p<0.05$ for third upstep and $p<0.01$ for fourth upstep). In wild-type animals, the slope values in response to the third and fourth 0 to 50 mM NaCl
upstep are also different from those of the switch control ($n=17$ (fourth set, blue; wild-type for third upstep and seventh set, blue; wild-type for fourth upstep), $\mathrm{n}=11$ (fifth set, pink; switch control for third upstep and eighth set, pink; switch control for fourth upstep); permutation test $\mathrm{p}<0.01$). Individual dots are the slopes calculated for each animal. $\mathrm{sc}=$ switch control. Horizontal bars indicate mean; vertical error bars indicate \pm SD . See Materials and Methods for details of statistical analysis.

