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Constant rates yield unstable copy numbers for a model describing mtDNA genetic and network dynamics

We explored a simpler network system than the one presented in the Main Text, but found that it produced instability in mtDNA copy
numbers, which we regard as biologically undesirable. Consider the following set of Poisson processes for singleton (s) and fused ( f )
species

s + s
γ−→ f + f (S1)

s + f
γ−→ f + f (S2)

f
β−→ s (S3)

s
αρ−→ s + s (S4)

f
αρ−→ f + f (S5)

s
ηρ−→ ∅ (S6)

f
ρ−→ ∅ (S7)

where Eq. (S1)-(S3) are analogous to Eq. (1)-(3) where mutant species are neglected. Eq. (S4) and (S5) are simple birth processes with
a shared constant rate αρ. Eq. (S6) and (S7) are simple death processes with rates ηρ and ρ respectively. The parameter ρ is shared
amongst all of the birth and death reactions in Eqs. (S4)–(S7). ρ represents the intuitive assumption that, in order for a stable population
size to exist, birth should balance death. However, for the network to have any effect at all, singletons should be at an increased risk of
mitophagy relative to fused species. We represent the increased risk of singleton mitophagy with the parameter η. Since additional
death is introduced into the system when η > 1, we include the parameter α > 1 as an increased global biogenesis rate to balance the
increased mitophagy of singletons.

We may write the above system as a set of ordinary differential equations

ds
dt

= −γs2 − γ f s + β f + αρs− ηρs (S8)

d f
dt

= γs2 + γ f s− β f + αρ f − ρ f (S9)

where we have enforced the stochastic reaction rate to be equivalent to the deterministic reaction rate, and hence the s2 term is
proportional to γ rather than 2γ (justification of this is presented below, see Eq. (S20)). In Figure S1 we see that the system displays a
trivial steady state at s = f = 0 and a non-trivial steady state. Computing the eigenvalues of the Jacobian matrix at the non-trivial
steady state indicates that it is a saddle node, and therefore unstable. Initial copy numbers which are too small tend towards extinction
with time, and initial copy numbers which are too large tend towards a copy number explosion. This simple example suggests that a
system of this form with constant reaction rates is unstable, and therefore biologically unlikely to exist under reasonable circumstances.
We hence consider analogous biochemical reaction networks with a replication rate which is a function of state, to prevent extinction
and divergence of the total population size.

Conversion of a chemical reaction network into ordinary differential equations

The following section outlines the steps in converting a set of chemical reactions into a set of ordinary differential equations (ODEs). In
particular, we pay special attention to the fact that the rate of a chemical reaction with a stochastic treatment is not always equivalent to
the rate in a deterministic treatment (Wilkinson 2011), as we will explain below. This subtlety is sometimes overlooked in the literature.
This section draws on a number of standard texts (Gillespie 1976; Van Kampen 1992; Gillespie 2007; Wilkinson 2011) as well as (Grima
2010). We hope this harmonized treatment will be of help as a future reference.

Consider a general chemical system consisting of N distinct chemical species (Xi) interacting via R chemical reactions, where the jth

reaction is of the form

s1jX1 + · · ·+ sNjXN
k̂ j−→ r1jX1 + · · ·+ rNjXN (S10)

where sij and rij are stoichiometric coefficients. We define k̂j as the microscopic rate for this reaction. The dimensionality of this
parameter will vary depending upon the stoichiometric coefficients sij. k̂j may be loosely interpreted as setting the characteristic
timescale (i.e. the cross section (Wilkinson 2011)) of reaction j.

The chemical master equation (CME) describes the dynamics of the joint distribution of the state of the system and time, moving
forwards through time. Defining the state of the system as x = (x1, . . . , xN)T , where xi is the copy number of the ith species, allows us
to write the CME as (Grima 2010)

∂P(x, t|x0, t0)

∂t
= Ω

R

∑
j=1

(
N

∏
i=1

E
−Sij

i − 1

)
f̂ j(x, Ω)P(x, t|x0, t0) (S11)

where Ω is the volume of the compartment in which the reactions occur (also known as the system size), Sij = rij − sij is the

stoichiometry matrix, and E
−Sij

i is referred to as the step operator and is defined through the relation E
−Sij

i (g(x)) = g(x1, . . . , xi −
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Sij, . . . , xN), for any function of state g(x). f̂ j(x, Ω) is the microscopic rate function of reaction j, which in general depends on both the
state and the system size. A factor of Ω is explicitly included in this definition of the chemical master equation so that our treatment is
compatible with Van Kampen’s system size expansion (Van Kampen 1992). As a consequence of this, the probability that, given the
current state x, the jth reaction occurs in the time interval [t, t + dt) somewhere in Ω (Gillespie 2007) is

âj(x, Ω)dt := Ω f̂ j(x, Ω)dt. (S12)

âj(x, Ω) is termed the propensity function (or “hazard”) and is of particular relevance in the stochastic simulation algorithm (Gillespie
1976), since âj(x, Ω)/ ∑j âj(x, Ω) determines the probability that the jth reaction occurs next.

For the microscopic rate function, we may write

f̂ j(x, Ω) = k̂j

N

∏
i=1

Ω−sij

(
xi
sij

)
. (S13)

This equation counts the number of available combinations of reacting molecules (Gillespie 1976; Wilkinson 2011), whilst taking into
account scaling with system size (Grima 2010).

We also introduce the deterministic rate equation (generally considered to be the macroscopic analogue of the CME) which is
defined as (Van Kampen 1992; Grima 2010)

dφi
dt

=
R

∑
j=1

Sij f̃ j(φ) (S14)

where φ = (φ1, . . . , φN)T is the vector of macroscopic concentrations (of dimensions molecules per unit volume) and f̃ j(φ) is the
macroscopic rate function satisfying

f̃ j(φ) = k̃j

N

∏
i=1

φ
sij

i (S15)

where k̃j is the macroscopic rate for the jth reaction. We distinguish between k̂j and k̃j, respectively the rate constants for the discrete
and continuous pictures, although this distinction is sometimes not emphasized in the literature (Grima 2010; Grima et al. 2011;
Van Kampen 1992). The physical meaning of k̃j is not immediately obvious: we argue that this parameter only gains physical meaning
through the following procedure.

As stated by Wilkinson (2011), if we intend for the microscopic description in Eq. (S11) to correspond to the macroscopic description
in Eq. (S14), the rate of consumption/production of particles for every reaction must be the same in the deterministic limit of the
stochastic system (the conditions for which we define below). Therefore, we apply the following constraint in the limit of large copy
numbers

lim
xi→∞

f̂ j(x, Ω) = f̃ j(φ) ∀ i, j. (S16)

In applying this constraint on all species i and all reactions j, we may derive a general relationship between k̂j and k̃j

lim
xi→∞

k̂j

N

∏
i=1

Ω−sij
xi!

sij!(xi − sij)!
= k̃j

N

∏
i=1

φ
sij

i . (S17)

We can make two approximations to generate a more convenient relationship between the microscopic and macroscopic rates. Firstly,
we assume that

xi ≈ Ωφi. (S18)

This is a small noise approximation, since it is often assumed that xi = Ωφi + Ω1/2ξi, where ξi is a noise term (Van Kampen 1992). If ξi
is small then xi ≈ Ωφi is a valid approximation. Secondly, we assume that

xi(xi − 1) . . . (xi − sij + 1) ≈ x
sij

i . (S19)

This is a large copy number approximation: in the case of e.g. a bimolecular reaction (2Xi → ∗) with sij = 2, the approximation is of
the form xi(xi − 1) ≈ x2

i or xi ≈ xi − 1. By applying Eq. (S19) to the factor of xi! in Eq. (S17), the factor of (xi − sij)! cancels from the

left-hand side. Simplifying using Eq. (S18), φ
sij

i cancels from both sides and we arrive at the important relationship

k̃j ≈ k̂j

N

∏
i=1

1
sij!

. (S20)

With Eq. (S14), Eq. (S15) and Eq. (S20) one may therefore write down a set of ODEs for an arbitrary chemical reaction network, with
constant reaction rates, in terms of the microscopic rates k̂j. This equation highlights that for reactions with sij ≥ 2, k̃j 6= k̂j, as is the
case for bimolecular reactions of the form 2Xi → ∗ (see Eq. (1) and Eq. (S1)).

Importantly, if the microscopic rate function is a function of state then k̂ = k̂(x) and k̃ = k̃(φ) ≈ k̃(x/Ω). In this case, Eq. (S20) still
applies since the above argument assumed nothing about the particular forms of k̂ and k̃. However, additional factors of Ω−1 are
induced by applying Eq. (S18), which may carry through to the individual parameters of k̃(φ). A demonstration of this is given in the
following section.
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Deriving an ODE description of the mitochondrial network system

In this section we show how to derive an ODE description of the network system described in Eq. (1)-Eq. (9) in the Main Text. In
accordance with the notation in the previous section, we will redefine all of the rates in Eq. (1)-Eq. (10) with a hat notation (â, for a
general rate parameter a), to reflect that these are stochastic rates. Deterministic rates will be denoted with a tilde (ã). Our aim will be
to write a set of ODEs in terms of the stochastic rates, â, for which we are able to estimate values.

We will begin by considering the fusion network equations Eq. (1) and Eq. (2). For clarity, we rewrite Eq. (1) to allow the reaction to
proceed with some arbitrary rate ρ̂:

XS + XS
ρ̂−→ XF + XF, (S21)

where X denotes either a wild-type (W) or mutant (M). We will subsequently fix ρ̂ to the rate of all other fusion reactions γ̂. We do this
because Eq. (1) is a bimolecular reaction involving one species: a fundamentally different reaction to bimolecular reactions involving
two species, as we will now see.

Since ρ̂, γ̂ = const, we may use Eq. (S20), resulting in the deterministic rates

ρ̃ =
ρ̂

2
(S22)

γ̃ = γ̂ (S23)

for Eq. (S21) and Eq. (2) respectively. If we then enforce the microscopic rates to be equal for both of these fusion reactions, i.e. ρ̂ = γ̂,
then ρ̃ = γ̂/2. All other fusion reactions have γ̃ = γ̂ by application of Eq. (S20). Application of Eq. (S20) to the fission reaction in
Eq. (3) shows that β̂ = β̃.

For Eq. (4), we have chosen a λ̂ which is not a constant, but a function of the copy numbers of the chemical species (λ̂ = λ̂(x)
where x = (ws, w f , ms, m f ), see Eq. (10)). As pointed out in the previous section, care must be taken in writing down the deterministic
analogue of λ̂. Applying Eq. (S20), we have

µ̂ + b̂(κ̂ − (ws + w f + δ̂ms + δ̂m f )) = µ̃ + b̃(κ̃ − (φws + φw f + δ̃φms + δ̃φm f )). (S24)

Applying Eq. (S18) and equating individual terms, we arrive at

µ̂ = µ̃ (S25)

b̂ws = b̃
ws

Ω
=⇒ b̂ = b̃/Ω (S26)

b̂k̂ = b̃k̃ =⇒ k̂ = k̃Ω (S27)

b̂δ̂ms = b̃δ̃φms =⇒ δ̂ = δ̃. (S28)

In this study, we let Ω = 1 so the above 4 parameters are identical to their deterministic counterparts. Hence, by application of
Eq. (S14), we arrive at the following set of ODEs

dφws

dt
= −2 · γ̂

2
φ2

ws
− γ̂φws φw f + β̂φw f − (µ̂ + b̂(κ̂ − (φws + φw f + δ̂φms + δ̂φm f )))φws − µ̂φws − γ̂φm f φws − γ̂φws φms (S29)

dφms

dt
= −2 · γ̂

2
φ2

ms
− γ̂φms φm f + β̂φm f − (µ̂ + b̂(κ̂ − (φws + φw f + δ̂φms + δ̂φm f )))φms − µ̂φms − γ̂φw f φms − γ̂φws φms (S30)

dφw f

dt
= 2 · γ̂

2
φ2

ws
+ γ̂φws φw f − β̂φw f + (µ̂ + b̂(κ̂ − (φws + φw f + δ̂φms + δ̂φm f )))(2φws + φw f ) + γ̂φm f φws + γ̂φws φms (S31)

dφm f

dt
= 2 · γ̂

2
φ2

ms
+ γ̂φms φm f − β̂φm f + (µ̂ + b̂(κ̂ − (φws + φw f + δ̂φms + δ̂φm f )))(2φms + φm f ) + γ̂φw f φms + γ̂φws φms . (S32)

The steady state solution of this system of ODEs may be calculated, but its form is complex. For notational simplicity, we will drop
the hat notation. Defining

x1 = (b2(β2 + 2β(γκ + 3µ) + γ2κ2 + µ2 + 2γµ(κ + 2(δ− 1)φms )) + 2bγµ(−β + µ + γ(κ − 2δφms + 2φms )) + γ2µ2)1/2 (S33)

the non-trivial, physically-realizable, component of the steady state may be parametrized in terms of φms and written as

φws = −(βb2κ + b2γκ2 + b2κµ + 2b2δµφms + β2b + βbγκ + 5βbµ + 3bγκµ− βγµ + 2bµ2 − 2bγδµφms − 2bγµφms − x1(bκ+

β + 2µ) + 2γµ2 + 2γ2µφms )/(2µ(b− γ)2)
(S34)
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φw f = (b3(β2κ + β(γκ(κ + (δ− 1)φms ) + µ(3κ + δφms )) + φms (γ
2(δ− 1)κ2 − δµ2 + γµ((2δ− 3)κ + 2(δ− 1)δφms ))) + b2(β3 + β2(6µ + γ

(κ + (δ− 1)φms )) + β(5µ2 + γ2δκφms + γ2κ(−φms ) + 6γδµφms − 8γµφms − κx1)+

φms (2γ2µ(δκ + δ2(−φms ) + φms ) + γ((6δ− 5)µ2 − (δ− 1)κx1)− δµx1))− b(β(γ2µ(−(κ + (4− 3

δ)φms )) + γ(2µ2 + (δ− 1)φms x1) + 3µx1) + γµφms (γ(δ− 2)µ + γ2(κ − 2(δ− 1)φms ) + (δ− 3)x1)+

β2(2γµ + x1)) + γµ(β− γφms )(γµ + x1))/(2bµ(b− γ)2(β + γ(δ− 1)φms ))

(S35)

φm f = (φms (−bβ + bγκ + bµ− 2bγδφms + 2bγφms + γµ + x1))/(2b(β + γ(δ− 1)φms )). (S36)

Since the steady state is parametrized by φms , the steady state is therefore a line.

Proof of heteroplasmy relation for linear feedback control

In this section we show that Eq. (13) holds for the system described by Eq. (1)-Eq. (9) given the replication rate in Eq. (10) using the
Kramers-Moyal expansion under conditions of large copy number and fast network churn (to be defined below); the approach used
here is similar to Constable et al. (2016). Here, we draw together elements from the literature to provide a coherent derivation; we
therefore hope that the following exposition may provide clarity for a wider audience.

Kramers-Moyal expansion of the chemical master equation for large copy numbers Customarily, the Kramers-Moyal expansion is formed
using a continuous-space notation (Gardiner 1985), so we will initially proceed in this way. Following the treatment by Gardiner
(1985), we begin by re-writing the chemical master equation Eq. (S11) (CME) as

∂P(x, t)
∂t

=
∫ ∞

−∞
dx′

[
T(x|x′)P(x′, t)− T(x′|x)P(x, t)

]
(S37)

where we have set Ω = 1. T(x|x′) is the transition rate from state x′ → x, and the dependence upon the initial condition has been
suppressed for notational convenience. We now proceed by expanding the CME. The multivariate Kramers-Moyal expansion may be
written as

∂P(x, t)
∂t

≈
∫ ∞

−∞

(
−∇

(
T(x′|x)P(x)

)T · (x′ − x) +
1
2
(x′ − x)T ·H · (x′ − x)

)
dx′ (S38)

where H(x) is the Hessian matrix of T(x′|x)P(x)

H :=




∂2

∂x2
1

. . . ∂2

∂x1∂xN

...
...

∂2

∂xN ∂x1
. . . ∂2

∂x2
N




T(x′|x)P(x) (S39)

(see (Gardiner 1985) for a proof of this in the univariate case).
A transition to each possible neighbouring state x′ corresponds to some reaction j which moves the state from x→ x′. Since we

know the influence of each reaction on state x through the constant stoichiometry matrix Sij, and that the propensity of a reaction does
not depend upon x′ itself (see Eq. (S13)), we may transition from a notation involving x and x′ into a notation involving x and j. We
may therefore define Tj(x) := T(x′|x) ≡ f̂ j(x) (see Eq. (S13)), and let H(x)→ Hj(x).

We now make a large copy number assumption in order to simplify Tj(x). To take a large copy number limit, we assume that

xi! ≈ x
sij

i (xi − sij)! resulting in

Tj(x) ≈ k̂j

N

∏
i=1

x
sij

i
sij!

. (S40)

This approximation is exact when sij = 0, 1, but inexact when sij ≥ 2. For example, if we consider the second-order bimolecular
reaction in Eq. (1), Eq. (S40) is equivalent to assuming w2

s ≈ ws(ws − 1); consequently, a factor of 1/(sij!) = 1/2 arises in Tj(x) as a
combinatorial factor from stochastic considerations.

Fokker-Planck equation for chemical reaction networks We now wish to re-write Eq. (S38) as a Fokker-Planck equation. Since the integral
in Eq. (S38) is over x′, and every x′ corresponds to a reaction j, we may interpret the integral in Eq. (S38) as a sum over all reactions, i.e.∫

dx′ → ∑R
j=1. Hence, for the jth reaction, [(x′ − x)]i = Sij. With these observations, we may write the first integral of Eq. (S38) as

∫ ∞

−∞
−∇(T(x′|x)P(x))T · (x′ − x)dx′ =

∫ ∞

−∞
−∇(Tj(x)P(x, t))T · (x′ − x)dx′

= −
R

∑
j=1

N

∑
i=1

∂

∂xi
(Tj(x)P(x, t))Sij

= −
N

∑
i=1

∂

∂xi
AiP(x, t) (S41)
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where
A := S · T. (S42)

A is a vector of length N, [S]ij := rij − sij is the N × R stoichiometry matrix Eq. (S10), and T is the vector of transition rates, of length
R (for which we have taken a large copy number approximation in Eq. (S40)). To re-write the second integral of Eq. (S38), we write an
element of the Hessian Hj in Eq. (S39) as

Hjlm =
∂2

∂xl∂xm
Tj(x)P(x, t) (S43)

where j = 1, . . . , R and l, m = 1, . . . , N. Thus, we may write

∫ ∞

−∞

1
2
(x′ − x)T ·Hj · (x′ − x)dx′ =

1
2

R

∑
j=1

N

∑
l=1

N

∑
m=1

Sl j HjlmSmj

=
1
2

R

∑
j=1

N

∑
l=1

N

∑
m=1

Sl j
∂2

∂xl∂xm
TjP(x, t)Smj

=
1
2

N

∑
l=1

N

∑
m=1

∂2

∂xl∂xm




R

∑
j=1

Sl jTjSmj


 P(x, t)

=
1
2

N

∑
i,m=1

∂2

∂xi∂xm
BimP(x, t) (S44)

where
B := S ·Diag(T) · ST . (S45)

B is an N × N matrix, and Diag(Y) is a diagonal matrix whose main diagonal is the vector Y. We may therefore re-write Eq. (S38) as a
Fokker-Planck equation for the state vector x of the form

∂P(x, t)
∂t

≈ −
N

∑
i=1

∂

∂xi
[Ai(x)P(x, t)] +

1
2

N

∑
i,m=1

∂2

∂xi∂xm
[Bim(x)P(x)]. (S46)

Fokker-Planck equation for an arbitrary function of state We now wish to make a change of variables in Eq. (S46) to write down a
Fokker-Planck equation for an arbitrary scalar function of state x (which we will later set to be heteroplasmy). To do this, we wish
to make use of Itô’s formula, which allows a change of variables for an SDE. In general, the Fokker-Planck equation in Eq. (S46) is
equivalent (Jacobs 2010) to the following Itô stochastic differential equation (SDE)

dx = A dt + G dW (S47)

where GGT ≡ B (where G is an N × R matrix) and dW is a vector of independent Wiener increments of length R, and a Wiener
increment dW satisfies ∫ t

0
dW := W(t), P(W, t) ≡ 1√

2πt
e−W2/(2t). (S48)

Itô’s formula states that, for an arbitrary function h(x, t) where x satisfies Eq. (S47), we may write the following SDE

dh(x, t) =
{

∂h
∂t

+ (∇h)T A +
1
2

Tr
[
GTHh(x)G

]}
dt + (∇h)TG dW, (S49)

where Hh(x) is the Hessian matrix of h(x, t) (see Eq. (S39), where T(x′|x)P(x) should be replaced with h(x, t)). Given the form of B in
Eq. (S45) we let

G = S ·Diag(
√

T), (S50)

which satisfies GGT ≡ B.
For convenience, we may also perform the transformation purely at the level of Fokker-Planck equations. Let h(x, t) satisfy the

general Fokker-Planck equation
∂P(h, t)

∂t
= − ∂

∂h
[Ã(h, t)P(h, t)] +

1
2

∂2

∂h2 [B̃(h, t)P(h, t)] (S51)

for scalar functions Ã(h, t) and B̃(h, t). Using the cyclic property of the trace in Eq. (S49), we may identify

Ã =
∂h
∂t

+ (∇h)T A +
1
2

Tr [BHh(x)] (S52)

where Tr is the trace operator. Also, from Eq. (S49),

B̃ = [(∇h)TG][(∇h)TG]T = (∇h)TB(∇h). (S53)

Hence, using Eq. (S51), Eq. (S52) and Eq. (S53), we may write down a Fokker-Planck equation for an arbitrary function of state in terms
of A and B.
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An SDE for heteroplasmy forced onto the steady state line in the high-churn limit It has been demonstrated that SDE descriptions of
stochastic systems which possess a globally-attracting line of steady states may be formed in the long-time limit by forcing the state
variables onto the steady state line (Constable et al. 2016; Parsons and Rogers 2017). Such descriptions may be formed in terms of a
parameter which traces out the position on the steady state line, hence reducing a high-dimensional problem into a single dimension
(Constable et al. 2016; Parsons and Rogers 2017). In our case, heteroplasmy is a suitable parameter to trace out the position on the
steady state line. We seek to use similar reasoning to verify Eq. (13). In what follows, we will assume that x(t = 0) = xss, where xss is
the state which is the solution of A = 0 (which is equivalent to finding the steady state solution of the deterministic rate equation in
Eq. (S14) due to our assumption of large copy numbers and Ω = 1), so that we may neglect any deterministic transient dynamics.

Inspection of the steady state of the ODE description of our system reveals that the set of steady state solutions forms a line (see
Eqs. (S34)–(S36)). Inspection of the steady state solution reveals that the steady state depends on the fusion (γ) and fission (β) rates.
Mitochondrial network dynamics occur on a much faster timescale than the replication and degradation of mtDNA: the former
occurring on the timescale of minutes (Twig et al. 2008) whereas the latter is hours or days (Johnston and Jones 2016). We seek to use
this separation of timescales to arrive at a simple form for V(h). We redefine the fusion and fission rates such that

γ → Mγ

β → Mβ (S54)

where M is a constant which determines the magnitude of the fusion and fission rates, which we call the “network churn”.
We now wish to use heteroplasmy

h(x, t) = h(x) := (ms + m f )/(ws + w f + ms + m f ), (S55)

as our choice for the function of state in the Fokker-Planck equation in Eq. (S51). We will first compute the diffusion term B̃ for
heteroplasmy using Eq. (S53). If we constrain the state x to be forced onto the steady state line xss (as per (Constable et al. 2016; Parsons
and Rogers 2017)) in the high-churn limit, then upon defining

θ :=
√

b2(β + γκ)2 − 2bγµ (β− γκ + 2γ(δ− 1)ms) + γ2µ2 (S56)

we have

lim
M→∞

(
B̃
∣∣
x=xss

)
= (16b2γ2µms(β + γ(δ− 1)ms)

2(b2(β3 + 2β2γ(δ− 1)ms + βγ2(κ2 + (1− 2δ)κms + (δ− 1)(2δ− 1)m2
s )

+γ3κms((δ− 1)ms − κ)) + b(−β2(2γµ + θ) + βγ(κ(2γµ + θ) + ms(γ(5− 4δ)µ− 2(δ− 1)θ))+

γ2ms((δ− 1)ms(3γµ + θ)− κ(2γµ + θ))) + γµ(γµ + θ)(β− γms)))/(β3(b(γ(κ − 2δms + 2ms)− β) + γµ + θ)4).

(S57)

Eq. (S57) is difficult to understand. In order to perform further simplification, we make an ansatz for the form of B̃ (B̃An) and seek
to determine whether our ansatz is equivalent to the derived form of B̃ under the constraints defined on the left-hand side of Eq. (S57).
Our ansatz takes the form

B̃An := lim
M→∞

(
2µh(1− h)

n(x)
· fs(x)

∣∣∣∣
x=xss

)
(S58)

where fs(x) := (ws +ms)/(ws +w f +ms +m f ) and n(x) := ws +w f +ms +m f . Notice that this ansatz is more general than Eq. (S57),
since it has no explicit dependence upon the parameters of the control law assumed in Eq. (10), and only explicitly depends upon
functions of state x.

Upon substituting the steady state xss into the ansatz in Eq. (S58) and taking the high-churn limit, we find that

B̃An = −(ms(β + γ(δ− 1)ms)(b(β + γκ)− γµ + θ)(b(β + γκ) + γµ− θ)(b(ms(2βδ− β + γκ)− 2βκ) + ms(θ − γµ)))

/(2bβ3(κ − δms + ms)
2(b(γ(κ − 2δms + 2ms)− β) + γµ + θ)).

(S59)

After some algebra (see GitHub repository for Mathematica notebook), it can be shown that Eq. (S57) and Eq. (S59) are equivalent, i.e.

B̃An ≡ lim
M→∞

(
B̃
∣∣
x=xss

)
. (S60)

As such, we may use B̃ and B̃An interchangeably in the limit of high network churn. Furthermore, it can be shown after some algebra
that the drift of heteroplasmy when forced onto the steady state line is 0, i.e.

Ã
∣∣
x=xss

≡ 0. (S61)

A similar result is shown in (Constable et al. 2016) ((Equation S59) therein). Substituting h(x, t) = h, Ã and B̃ into the Fokker-Planck
equation for an arbitrary function of state Eq. (S51), we have

∂P(h, t)
∂t

=
1
2

∂2

∂h2

[(
2µh(1− h)

n(x)
· fs(x)

)∣∣∣∣
x=xss(h)

P(h, t)

]
(S62)
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which is equivalent to the following SDE for heteroplasmy

dh =

√
2µh(1− h) fs(x)

n(x)

∣∣∣∣∣
x=xss(h)

dW (S63)

in the limit of large network churn, large copy numbers, and a second-order truncation of the Kramers-Moyal expansion. Although
the state has been forced onto the steady state, stochastic fluctuations mean that trajectories may move along the line of steady states,
so the diffusion coefficient is not constant in general. We may calculate the new value of xss(h) for every displacement due to Wiener
noise in h, and substitute into fs(x) and n(x) to determine the diffusion coefficient at the next time step.

However, for sufficiently short times, and large copy numbers (i.e. low diffusivity of h), we may assume that the diffusion coefficient
in Eq. (S63) may be approximated as constant. Since the general solution of the SDE

dy =
√

B dW (S64)

for B = const is
y ∼ N (y|y0, Bt) (S65)

where N (y|y0, σ2) is a Gaussian distribution on y with mean y0 and variance σ2, and y0 = y(t = 0). Since we have assumed that the
state is initialised at x(t = 0) = xss, there are no deterministic transient dynamics, so we may write

V(h) ≈ 2µt
n(x)

h(x)(1− h(x)) fs(x)
∣∣∣∣
x=xss

, (S66)

where V returns variance of a random variable. In this equation, we take x = xss = const, since we have assumed a low-diffusion limit.
We observe that this equation is of precisely the same form as (Equation 12) of Johnston and Jones (2016), except with an additional
proportionality factor of fs induced by the inclusion of a mitochondrial network.

Heteroplasmy variance relations for alternative model structures and modes of genetic mtDNA control

Here we explore the implications of alternative model structures upon Eq. (S63). Firstly, we may consider replacing Eq. (4) with

XS
λ−→ XS + XS. (S67)

This corresponds to the case where replication coincides with fission, see (Lewis et al. 2016). Repeating the calculation in the previous
section also results in Eq. (S63), so the result is robust to the particular choice of mtDNA replication reaction (see GitHub repository for
Mathematica notebook).

Secondly, we may explore the impact of allowing non-zero mtDNA degradation of fused species. This could correspond to
autophagy-independent degradation of mtDNA, for example via the exonuclease activity of POLG (Medeiros et al. 2018). To encode
this, we may add the following additional reaction

XF
ξµ−→ ∅ (S68)

where 0 ≤ ξ ≤ 1. We were not able to make analogous analytical progress in this instance. However, numerical investigation
(Figure S3E) revealed that the following ansatz was able to predict heteroplasmy variance dynamics

V(h) ≈ 2µt
n(x)

h(x)(1− h(x))( fs(x) + ξ(1− fs(x)))
∣∣∣∣
x=xss

. (S69)

In other words, allowing degradation of fused species results in a linear correction to our heteroplasmy variance formula in Eq. (13). If
fused species are susceptible to degradation at the same rate as unfused species (ξ = 1), then V(h) loses fs dependence entirely and
the mitochondrial network has no influence over heteroplasmy dynamics.

We also explored various different forms of λ(x) and µ(x), which we label A-G after (Johnston and Jones 2016), and X-Z for several
newly-considered functional forms, see Table S3 and Figure S4A-I. Control D of (Johnston and Jones 2016) involves no feedback, which
we do not explore – see Figure S1, and the discussion surrounding Eq. (S1). The argument presented in the previous section requires
the steady state solution of the system to be solvable, since we require the explicit form of xss in Eq. (S57), Eq. (S59) and Eq. (S61). For
controls B, C, E, F, G, Y and Z in Table S3, the steady states are solvable and similar arguments to the above can be applied (see the
GitHub repository for Mathematica notebooks). Controls B, C, E, F all satisfy Eq. (S63); this can be shown numerically for controls A
and X. However, controls G, Y and Z satisfy

dh =

√
2µh(1− h)

n(x)

∣∣∣∣∣
x=xss(h)

dW. (S70)

Notably, Eq. (S70) does not depend on fs, unlike Eq. (S63) (see GitHub repository for Mathematica notebooks). This is because control
of copy number occurs in the degradation rate, rather than the replication rate, for controls G, Y and Z. A modified version of a Moran
process (presented below) can provide intuition for why the diffusion rate of heteroplasmy variance depends on the network state
when the population is controlled through replication, and does not depend on network state when the population is controlled
through degradation.
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Choice of nominal parametrization

In this section we discuss our choice of nominal parametrization for the network system in Eq. (1)-Eq. (9), given the replication rate in
Eq. (10). We will first discuss our choice of network parameters.

Cagalinec et al. (2013) found that the average fission rate in cortical neurons is 0.023±0.003 fissions/mitochondria/min. Assuming
that this value is representative of the fission rate in general, and converting this to units of per day, we may write the mitochondrial
fission rate as β = 33.12 day−1.

The dimensions of β are day−1 and not mitochondrion−1 day−1. This is because if the propensity (see Eq. (S12), where Ω = 1) of
e.g. Eq. (3) is âfis,w = βw f then the mean time to the next event is 1/(βw f ); therefore the dimension of β is per unit time and copy
numbers are pure numbers, i.e. dimensionless. Similar reasoning constrains the dimension of the fusion rate, see below.

Evaluation of the fusion rate is more involved, since fusion involves two different chemical species coming together to react
whereas fission may be considered as spontaneous. Furthermore, there are 7 different fusion reactions whereas there are only 2 fission
reactions. For simplicity, assume that all species have a steady-state copy number of xi = 250 (resulting in a total copy number of
1000, heteroplasmy of 0.5 and 50% of mitochondria existing in the fused state). Neglecting subtleties relating to bimolecular reactions
involving one species (see Eq. (S20)), each fusion reaction proceeds at rate âfus,j ≈ γx2

i . Since there are 7 fusion reactions (Eq. (1),
Eq. (2), Eq. (7)-Eq. (9)), the total fusion propensity is âfus ≈ 7γx2

i . Similarly, the total fission propensity is âfis = β(w f + m f ) = 2βxi.
Since we expect macroscopic proportions of both fused and fissioned species in many physiological settings, we may equate the fusion
and fission propensities, âfus = âfis, and rearrange for the fusion rate γ to yield γ = 2βxi/(7x2

i ) ≈ 3.8× 10−2 day−1. The orders of
magnitude difference between β and γ stems from the observation that fusion propensity depends on the square of copy number
whereas the fission propensity depends on copy number linearly.

Given the network parameters, we then explored appropriate parametrizations for the genetic parameters: the mitophagy rate (µ)
and the parameters of the linear feedback control (κ, b and δ, see Eq. (10)). mtDNA half-life is observed to be highly variable: in mice
this can be between 10-100 days (Burgstaller et al. 2014a). For consistency with another recent study investigating the relationship
between network dynamics and heteroplasmy, we use an mtDNA half-life of 30 days (Tam et al. 2015).

The parameter δ in the replication feedback control (see Eq. (10)) may be interpreted as the “strength of sensing of mutant mtDNA”
in the feedback control (Hoitzing et al. 2017). Assuming that fluctuations in copy number of mutants and wild-type molecules are
sensed identically (as may be the case for e.g. non-coding mtDNA mutations) we may reasonably assume a model of δ = 1 as the
simplest case of a neutral mutation (although δ 6= 1 still defines a neutral model, since both mutant and wild-type alleles experience the
same replication and degradation rates per molecule, see Eqs.(4)–(6)).

We are finally left with setting the parameters κ and b in the linear feedback control Eq. (10). In the absence of a network state
and mutants, κ is precisely equal to the steady state copy number, since the degradation rate equals the replication rate when κ = w.
However, the presence of a network means that a subpopulation of mtDNAs (namely the fused species) are immune to death, resulting
in κ no longer being equivalent to the steady state copy number. The parameter b may be interpreted as the feedback control strength,
which determines the extent to which the replication rate changes given a unit change in copy number.

Given a particular value of b, we may search for a κ which gives a total steady state copy number (n) which is closest to some target
value (e.g. 1000 as a typical total mtDNA copy number per cell in human fibroblasts (Kukat et al. 2011)). We swept a range of different
values of b and found that, for values of b smaller than a critical value (b∗), a κ could not be found whose deterministic steady state
was sufficiently close to n = 1000. This result is intuitive because in the limit of b→ 0, λ = const. From the analysis above we have
shown that constant genetic rates (µ, λ) result in unstable copy numbers, and therefore a sufficiently small value of b is not expected to
yield a stable non-trivial steady state solution. We chose b ≈ b∗, and the corresponding κ, such that the steady state copy number is
controlled as weakly as possible given the model structure.

Rate renormalization

In Eqs. (1)–(10) we have neglected reactions such as

XF + XF → XF + XF (S71)

because they do not change the number of molecules in our state vector x = (ws, w f , ms, m f ). One may ask whether neglecting such
reactions means that it is necessary to renormalize the fission-fusion rates which were estimated in the preceding section. In estimating
the nominal parametrization above, we began by using a literature value for the mitochondrial fission rate, and then matched the fusion
rate such that the summed hazard of a fusion event approximately balanced the fission rate. This matching procedure is reasonable,
since we observe a mixture of fused and fissioned mitochondria under physiological conditions: choosing a fusion rate which is vastly
different results in either a hyperfused or fragmented network. We must therefore only justify the fission rate. Eq. (3) assumes that a
fission reaction always results in a singleton, and a singleton is by definition a molecule which is susceptible to mitophagy (see Eq. (6)).
Therefore, if fission reactions always result in mitochondria containing single mtDNAs which are susceptible to mitophagy, then we
expect our model to match well to true physiological rates. If, on the other hand, fission reactions between large components of the
network which are too large to be degraded are common, then renormalization of β by the fraction of fission events which result in a
sufficiently small mitochondrion would be necessary, which would in turn renormalize γ through our matching procedure. We are
not aware of experimental measurements of the fraction of fission events which result in mitochondria which contain a particular
number of mtDNAs. Such an experiment, combined with the distribution of mitochondrial sizes which are susceptible to mitophagy,
would allow us to validate our approach. Despite this, the robustness of our results over approximately 4 orders of magnitude for the
fission-fusion rate (Figure S4A-I) provides some indication that our results are likely to hold in physiological regions of parameter
space.
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A modified Moran process may account for the alternative forms of heteroplasmy variance dynamics under different
models of genetic mtDNA control

We sought to gain insight into why control of population size through the replication rate (λ = λ(x), µ = const) results in heteroplasmy
variance depending on the fraction of unfused mitochondria (see Eq. (13)), whereas control of population size through the degradation
rate (µ = µ(x), λ = const) results in heteroplasmy variance becoming independent of network state, where

V(h) ≈ 2λt
n(x)

h(x)(1− h(x))
∣∣∣∣
x=xss

. (S72)

We will proceed by considering an analogous Moran process to the set of reactions presented in Eqs. (1) (9).
First, consider a haploid biallelic Moran process consisting of wild-types and mutants, in a population of fixed size n. At each step

in discrete time, a member of the population is chosen for birth, and another for death. Let mt denote the copies of mutants at time t.
Then,

P(mt+1 = j|mt = i) =





i(n− i)/n2 if j = i± 1
i2/n2 + (n− i)2/n2 if j = i
0 otherwise.

(S73)

It follows that
E(mt+1|mt) = mt. (S74)

Defining ht := mt/n then from Eq. (S73)
V(mt+1|mt) = 2ht(1− ht) (S75)

and therefore

V
( mt+1

n

∣∣∣mt

)
= V(ht+1|mt) =

2
n2 ht(1− ht). (S76)

Suppose that, instead of the process occurring with discrete time, instead the process occurs with continuous time, where each
event is a simultaneous birth and death, and is modelled as a Poisson process. Suppose that events occur at a rate µ per capita. The
waiting time between successive events (τ) is an exponential random variable with rate µN. Hence the expected waiting time between
successive events is

E(τ) =
1

µn
. (S77)

If we take the ratio of Eq. (S76) and Eq. (S77), we have

V(ht+τ |mt)

E(τ)
=

2µht(1− ht)

n
. (S78)

Heuristically, one could interpret Eq. (S78) as a ratio of differentials as follows. If we were to suppose that n were large enough such
that E(τ) is very small, and ht is approximately constant (h0) after a small number of events, then

∆V(h)
∆τ

≈ V(ht+τ |mt)

E(τ)
=⇒ dV(h)

dt
≈ 2µh0(1− h0)

n
=⇒ V(h, t) ≈ 2µh0(1− h0)

n
t (S79)

where we have replaced the inter-event time τ with physical time t. This result is analogous to Eq. (S72) and Eq. (12) of Johnston and
Jones (2016), and agrees with simulation (Figure S6A).

Now consider the modified Moran process in Figure S6B, which we refer to as a “protected” Moran process. Let 0 < fs ≤ 1 be the
fraction of individuals susceptible to death, which is a constant. n fsht and n fs(1− ht) mutants and wild-types are randomly chosen to
be susceptible to death, respectively, where n is large. In this continuous-time model, the inter-event time is τ ∼ Exponential(Γ) where
Γ will be defined below. Then an individual from the susceptible population is chosen for death, and any individual is allowed to be
born. The birth and death events occur simultaneously in time.

Again, using t as an integer counter of events, we have

P(mt+1 = j|mt = i) =





n fsht
n fs

n(1−ht)
N if j = i− 1

n fs(1−ht)
n fs

nht
N if j = i + 1

n fsht
n fs

nht
N +

n fs(1−ht)
n fs

n(1−ht)
n if j = i

0 otherwise

(S80)

=





ht(1− ht) if j = i± 1
h2

t + (1− ht)
2 if j = i

0 otherwise
(S81)

which is equivalent to the definition of a Moran process in Eq. (S73), meaning that Eq. (S76) applies to the protected Moran process as
well.
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We consider two heuristic arguments for choosing the inter-event rate Γ, where the inter-event time τ ∼ Exponential(Γ). Firstly, if
the death rate per capita is constant (µ), then the rate at which a death event occurs in the system (Γdeath) is proportional to the number
of individuals which are susceptible to death: Γdeath = µn fs. If we assume that the overall birth rate is matched to the overall death
rate so that population size is maintained, as is the case when λ = λ(x) in the network system, then the overall birth rate (Γbirth) must
also be Γbirth = µn fs. Hence,

Γ = Γbirth + Γdeath = 2µn fs (S82)

where µ is a proportionality constant. Since, for a Moran event to occur, both a birth and a death event must occur, time effectively
runs twice as fast in a Moran model relative to a comparable chemical reaction network model. We therefore rescale time by taking
µ→ µ/2, and thus

Γ = µn fs. (S83)

As a result, E(τ) = 1/(µn fs) and therefore, using Eq. (S76) and the reasoning in Eq. (S79),

∆V(h)
∆τ

≈ V(ht+τ |mt)

E(τ)
=⇒ dV(h)

dt
≈ 2µ fsh0(1− h0)

n
=⇒ V(h) ≈ 2µ fsh0(1− h0)

n
t. (S84)

This is analogous to when λ = λ(x) and µ = const in the network system. Hence, when λ = λ(x) and µ = const, the absence of death in
the fused subpopulation means the timescale of the system (being the time to the next death event) is proportional to fs. This argument is only
a heuristic, since the Moran process is defined such that birth and death events occur simultaneously and therefore do not possess
separate propensities (Γbirth and Γdeath).

The second case we consider is when each individual has a constant rate of birth, hence Γbirth ∝ n. Then the death rate is chosen
such that Γbirth = Γdeath. In this case Γ = λn, where λ is a proportionality constant. The same argument from Eq. (S77) to Eq. (S79)
may be applied, with an appropriate rescaling of time, and we arrive at Eq. (S72). This is analogous to when µ = µ(x) and λ = const
in the network system. Hence, when µ = µ(x) and λ = const, the presence of a constant birth rate in the entire population means the timescale
of the system (being the time to the next birth event) is independent of fs.
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Table S1 Key predictions from our mathematical models.

The following results hold for our neutral genetic model of a post-mitotic cell, with a simple model of mitochondrial network
dynamics:

1. The rate of increase of heteroplasmy variance is proportional to the fraction of unfused mitochondria, but independent of the
absolute magnitude of fission-fusion rates, due to a rescaling of time by the mitochondrial network (Eq.(13), Eq.(S63), Figure
2E-H).

2. The rate of accumulation of de novo mutations increases as the fraction of unfused mitochondria increases, due to a rescaling of
time by the mitochondrial network (Figure 3B-D)

3. When fusion is selective, intermediate fusion-fission ratios are optimal for reducing mean heteroplasmy (Figure 4A)

4. When mitophagy is selective, complete fission is optimal for reducing mean heteroplasmy (Figure 4B)

Figure S1 Phase portrait for an ODE representation of a network system with constant rates. The system displays two steady
states: a trivial steady state at s + f = 0, and a non-trivial steady state. At a steady state, both time derivatives in Eq. (S8) and
Eq. (S9) vanish. Trajectories (blue) show the evolution of the system up to t = 1000. The direction and magnitude of the derivative
at points in space are shown by red arrows. Trajectories can be seen either decaying to s = f = 0 or tending to infinity. γ = 0.01656,
β = 33.12, ρ = 0.023, η = 1.1, α = 1.04.
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Table S2 Nominal parametrization for network system. Dimensions of parameters are derived using individual terms in
Eqs. (S29)–(S32); copy numbers of particular species are pure numbers and therefore dimensionless. Since we have chosen a sys-
tem size of Ω = 1 throughout, we set the dimension of volume to 1. See Choice of nominal parametrization for further details of
parameter justification.

Parameter Description Value Dimensions Remarks

β Fission rate 33.12 day−1 For cortical neurons, see (Caga-
linec et al. 2013)

γ Fusion rate 3.79× 10−2 day−1 Approximately balances fission

µ Mitophagy rate 0.023 day−1 From (Tam et al. 2015)

δ Mutant feedback sensitivity 1 dimensionless Potentially appropriate for e.g.
non-coding mtDNA mutations

b Feedback control strength 1.24× 10−5 day−1 Chosen as the weakest control
strength which has a non-trivial
steady state and total copy num-
ber of 1000

κ Steady state copy number pa-
rameter

11.7 dimensionless See remark for b

Figure S2 Deterministic treatment of network system. (A) Deterministic dynamics of total copy number under linear feedback
control, which is controlled to a particular steady state value (see Figure 2A&B). (B) Defining a knock-down (KD) factor (k−1 =
0.1, 0.2 . . . , 1.0), the fission rate was rescaled to β → β/k (red) and the fusion rate to γ → γ/k (blue), causing a linear increase and
decrease in total copy number respectively under a deterministic treatment (see Figure 2A&B).

Mitochondrial networks and genetics 13



Figure S3 Stochastic treatment of network system. (A) Copy number variance for stochastic simulations initially increases, since
all stochastic simulations begin with the same initial condition, but then plateaus since the steady state line is globally attracting
(see Figure 2C&D). (B) Error in Eq. (13) in a sweep over the feedback control strength, b. Dotted line denotes a 5% error accord-
ing to Eq. (12). (C) V(h) profile for the parametrization with the largest error in (B). (D) Sweeps of the network rate magnitude
(see Figure 2H). Heteroplasmy variance is approximately independent of absolute network rates over a broad range of network
magnitudes. (E) Allowing fused species to be degraded with relative rate ξ (Eq. (S68)), stochastic simulations for heteroplasmy vari-
ance (markers) and Eq. (S69) (lines) are shown. Fused species degradation induces a linear correction to the heteroplasmy variance
formula.
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Figure S4 Parameter sweeps of network fission-fusion rates for replication-based and degradation-based control modes show
robustness of two heteroplasmy variance formulae respectively. (A-I) Error in Eq. (13) (ansatz) and Eq. (S72) (ansatz indep net-
work) for sweeps of the fusion and fission rates for the corresponding feedback control functions in Table S3. Equations are accurate
to at least 5% (blue regions) across large regions of parameter space, for many control laws. Fusion and fission rates are redefined
as γ → γ0 MR and β → β0 M where M and R denote the magnitude and ratio of the network rates, and γ0, β0 denote the nominal
parametrizations of the fusion and fission rates respectively. Summary statistics for 104 realizations, with initial condition h = 0.3
and evaluated at t = 500 days. Errors in V(h) (see Eq. (12)) smaller than 5% are truncated and are shown as blue. Parametrizations
where a deterministic steady state could not be found for an initial condition of h = 0.3 are shown in grey. Inset figures, where
present, display the probability of fixation at h = 0. Where insets are not present, the probability of fixation is negligible. (A-F)
When λ = λ(x) and P(h = 0) is low, Eq. (13) performs well in the high-churn limit. (G-I) When µ = µ(x) and P(h = 0) is low,
Eq. (S72) performs well in the high-churn limit.
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Table S3 Nominal parametrizations for the alternative feedback control functions explored. Nominal parametrizations for the
feedback controls in Fig. S4. In all cases, the nominal fission and fusion rates were β = 33.12, γ = 0.038 respectively.

Interpretation Replication rate Degradation rate Note

Linear feedback (see Figure 2,
S2, S3, S4A)

µ + b(κ − wT − δmT); see Ta-
ble S2

µ; see Table S2 Control E in (Johnston and
Jones, 2016) and GitHub repos-
itory

Relaxed replication (see Figure
S4B)

αµ(wopt − wT − δmT)/(wT +
mT); α = 1, wopt = 1000,
δ = 1

µ; µ = 0.023 Control A in (Johnston and
Jones, 2016) and GitHub repos-
itory

Differential control for target
population (see Figure S4C)

α(wopt − wT) µ; µ = 0.023 Control B in (Johnston and
Jones, 2016) and GitHub repos-
itory

Ratiometric control for target
population (see Figure S4D)

α(wopt/wT − 1); α = 1,
wopt = 1000

µ; µ = 0.023 Control C in (Johnston and
Jones, 2016) and GitHub repos-
itory

Production independent of
wild-type (see Figure S4E)

α/wT ; α = 5 µ; µ = 0.023 Control F in (Johnston and
Jones, 2016) and GitHub repos-
itory

General linear feedback (see
Figure S4F)

µ + b(κ − δ1ws − δ2w f −
δ3ms − δ4m f ); see Table S2,
δ1 = 0.8, δ2 = 1.0, δ3 = 0.2,
δ4 = 0.3

µ; see Table S2 Control X in GitHub reposi-
tory

Ratiometric control through
degradation (see Figure S4G)

λ; λ = 0.023 µwT/wopt; µ = 0.023; wopt =
200

Control G in (Johnston and
Jones, 2016) and GitHub repos-
itory

Linear feedback in degrada-
tion (see Figure S4H)

λ; λ = 0.023 µ + b(wT + δmT − κ); µ =
0.023, b = 10−4, κ = 1000,
δ = 1

Control Y in GitHub reposi-
tory

Differential control for target
population in degradation (see
Figure S4I)

λ; λ = 0.023 α(wT − wopt); α = 1, wopt =
1000

Control Z in GitHub reposi-
tory
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Figure S5 Ansatz predicts heteroplasmy variance for linear feedback control in a fast mtDNA turnover regime when fixation
probability is low. Stochastic simulations of the linear feedback control network system with an mtDNA half-life of 2 days, cor-
responding to µ = ln(2)/2. (A) The mean copy number, and (B) the mean heteroplasmy show qualitatively similar dynamics to
the nominal parametrisation presented (see Fig. 2C&D ). (C) Eq.(13) predicts V(h) accurately up to approximately 250 days, where
the Eq.(13) begins to overestimate the variance. (D) The over-estimation of heteroplasmy variance coincides with an increase in
the probability of fixation at h = 0. Parameters apart from µ were chosen according to the protocol outlined in Choice of nominal
parametrization, with 104 repeats. κ = 101.6, b = 2.07× 10−4, for all other parameters see Table S2.

x

Iterate

= wild-type

= mutant

= protected 
   from death

= susceptible
   to death

Wait for time

Death from 
suscetible 
population, birth 
from any individual

A B

Choose mutants
and wild-
types to be susceptible
to death

Figure S6 Exploration of analogous Moran processes. (A) The original biallelic Moran process satisfies Eq. (S72), where h0 is the
initial heteroplasmy, which is equivalent to E(h). (B) The “protected” Moran process. The population size is constrained to be
fixed to some large constant, n. There exist two alleles, mutants (black circle) and wild-types (white circles). hn fs mutant and (1−
h)n fs wild-type molecules are susceptible to death, the rest are protected from death (denoted by a bar). An exponential random
variable is drawn as the waiting time to the next event (see A modified Moran process may account for the alternative forms of
heteroplasmy variance dynamics under different models of genetic mtDNA control for discussion of the form of the rate Γ). Time is
incremented by the waiting time, then a death event occurs from the susceptible population and a birth event from any individual
simultaneously. The same individual is allowed to be chosen for both birth and death. The process is then repeated iteratively.
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Figure S7 A deterministic parameter sweep of fusion selectivity and the relative fusion rate for mitochondrial quality control.
An ODE treatment allows smaller heteroplasmy changes to be probed without the need to resort to an infeasible number of stochas-
tic simulations. Displaying the relative change in heteroplasmy (∆h) after t = 1000 days. We observe that a reduction in hetero-
plasmy is achieved at intermediate fusion rates at all non-zero fusion selectivities investigated. Grey denotes a change which is
smaller than floating point precision.
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Table S4 Comparison of previous models with our model of mitochondrial genetic/network dynamics. Each of the key differ-
ences with our model is enumerated, and has a corresponding comment; see Discussion.

Model Key assumptions Key differences Comments

(Tam et al. 2013, 2015)

• Cell consists of 16 sub-
compartments

• Fission/fusion induces
migration between
subcompartments

1. Slower fission-fusion dy-
namics result in larger
rate of increase in V(h)

2. Fast fission-fusion rates
cause E(h) to increase

1. Limiting to regimes
where fission-fusion is
fast, likely results in
loss of rate magnitude
sensitivity

2. Could be explained by
spatial effects which we
neglect here

(Mouli et al. 2009)

• Fission follows fusion
• Mitochondria consist of

multiple units
• Sigmoidal relationship be-

tween number of func-
tional units per mitochon-
drion and activity

1. When fusion is selective,
higher fusion rates are op-
timal

2. When mitophagy is selec-
tive, intermediate fusion
rates are optimal

1. The optimal fusion rate
is an order of magnitude
lower than the highest fu-
sion rate considered

2. Non-linearity be-
tween function, intra-
mitochondrial hetero-
plasmy, and network
state, may result in
intermediate fusion
optimality
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