
 1 

 1 

Figure S1. IUPred “long” and “short” estimators of intrinsic structural disorder disagree on the relation 2 

between GC content and the intrinsic structural disorder of junk polypeptides and novel functional 3 

polypeptides under a random-sequence model. (A) Contour plot of the predicted average of IUPred 4 

“long” disorder among novFPs (identical to fig. 2B). (B) Contour plot of the predicted average IUPred 5 

“short” disorder among novFPs. (C) The predicted mean and standard deviation of IUPred “long” 6 

disorder among JPs as functions of the GC content (identical to fig. 2D). (D) The predicted mean and 7 

standard deviation of IUPred “short” disorder among JPs as functions of the GC content. Hatched areas 8 
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indicate impossible percentages of ISD, i.e. outside the 0%-100% interval. The landscapes in panels A 9 

and B can be understood as the results of applying equation 2 to the curves in panels C and D, 10 

respectively. As a result, the vertical “slice” of a landscape at a given GC content is a straight line 11 

whose intercept and slope are respectively the mean and standard deviation associated with this GC 12 

content in the corresponding bottom panel. The curve obtained by taking a horizontal “slice” where 13 

there is no birth bias (𝛿 = 0) corresponds to the relation between the mean of the property among JPs, 14 

i.e. the solid blue curve in the corresponding bottom panel. Since the vertical distance between contour 15 

lines is inversely proportional to the vertical slope of the landscape, it is inversely proportional to the 16 

standard deviation of the property among JPs, i.e. the dashed red curve in the corresponding bottom 17 

panel. 18 

 19 

SUPPLEMENTARY METHODS 20 

 21 

Applying the Radon-Nikodým theorem to de novo gene birth 22 

 23 

This section explains why our framework fits the general setting of the branch of mathematics called 24 

measure theory and its sub-branch, probability theory. We introduce some concepts from these theories 25 

to clarify why the Radon-Nikodým theorem can be used to compare JPs and novFPs. 26 

 27 

Given a set Ω, measure theory provides the basic notions required to develop a self-consistent concept 28 

of the “measure” or “size” of subsets of Ω (such as length, area, volume or probability). It is not always 29 

possible to consistently define a measure for all subsets of Ω, so that we must choose certain subsets 30 

that form a structure called a 𝜎-field (or 𝜎-algebra). A 𝜎-field on Ω is a set ℱ whose elements are 31 
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subsets of Ω that meet certain conditions. The consequences of these conditions are that both Ω and the 32 

empty set ∅ are elements of ℱ, and the combination of arbitrary elements of ℱ through a finite or 33 

infinite sequence of standard set operations (union, intersection, complementation, difference and 34 

symmetric difference) always produces an element of ℱ (Vestrup 2003a). 35 

 36 

In our framework, the elements of Ω are all the possible polypeptides that are distinct in terms of 37 

sequence and/or cis-regulation, and the elements of ℱ are classes of polypeptides. Since the sequence 38 

and cis-regulatory properties of a polypeptide are determined by a finite DNA sequence containing its 39 

ORF, the set Ω is discrete or “countable”, i.e. it is not larger than the set of all whole numbers (Komjáth 40 

and Totik 2006). Because of this, we can choose ℱ to be the set of all subsets of Ω, which would cause 41 

complications if  Ω was a continuum (Vestrup 2003b). Nevertheless, we will continue the explanations 42 

in the context of an arbitrary 𝜎-field because that is how the Radon-Nikodým theorem is formulated. 43 

 44 

A measure 𝜇 defined on a 𝜎-field ℱ of subsets of Ω is a function that assigns a number to each element 45 

of ℱ. If 𝑆 is an element of ℱ, then  𝜇(𝑆) denotes the number that 𝜇 assigns to 𝑆. To meet the definition 46 

of a measure, 𝜇 must also satisfy three other conditions: 1) 𝜇(𝑆) ≥ 0 for each 𝑆 ∈ ℱ, 2) 𝜇 ∅ = 0, 47 

where ∅ is the empty set, and 3) for any finite or infinite sequence 𝑆!, 𝑆!, 𝑆!,… of non-overlapping 48 

elements of ℱ, their union 𝑆 = 𝑆! ∪ 𝑆! ∪ 𝑆!… satisfies 𝜇 𝑆 = 𝜇 𝑆! + 𝜇 𝑆! + 𝜇 𝑆! +⋯ (Vestrup 49 

2003c). The triple (Ω,ℱ, 𝜇) is called a measure space. If a measure 𝑃 defined on ℱ also satisfies 50 

𝑃 Ω = 1, then 𝑃 is called a probability measure and (Ω,ℱ,𝑃) is called a probability space, and they 51 

are studied by probability theory. 52 

 53 

In our framework, we define two probability measures: 𝑃, which represents a time average of JPs, and 54 
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𝑃!, which represents novFPs that functionalize in the time period considered. These measures are 55 

defined on the same 𝜎-field ℱ; they assign numbers to the same classes of polypeptides. Given 𝑆, a 56 

subset of Ω which is an element of ℱ, the number 𝑃(𝑆) is the ratio of the time-averaged number of JPs 57 

that belong to 𝑆 to the time-averaged total number of JPs. We can see that 𝑃 meets the three 58 

requirements that define a measure: the ratio is never negative (𝑃(𝑆) ≥ 0), the empty set contains no 59 

JPs (𝑃 ∅ = 0) and the ratio assigned to the union of several non-overlapping classes of polypeptides 60 

is the sum of their individual ratios (the numerators add up and the denominator is a constant). 𝑃 is a 61 

probability measure since 𝑃 Ω = 1, i.e. the time-averaged number of JPs that belong to Ω is precisely 62 

the time-averaged total number of JPs. 𝑃! is also a probability measure: we define 𝑃!(𝑆) as the 63 

proportion of novFPs that belong to 𝑆. Proportions are never negative (𝑃!(𝑆) ≥ 0), the empty set 64 

contains no novFPs (𝑃! ∅ = 0), the proportion of novFPs belonging to the union of several non-65 

overlapping classes is the sum of the proportions belonging to each class, and the proportion of novFPs 66 

belonging to the whole set Ω is 𝑃! Ω = 1. 67 

 68 

Measure theory defines the notion of the integral, with respect to a measure and over a specific subset 69 

of Ω, of a numerical function. We use such functions to represent polypeptide properties such as length 70 

and intrinsic disorder, and their integrals determine their averages among polypeptides. A function 𝑓 71 

defined on the set Ω is a function that assigns a number 𝑓(𝜔) to each element 𝜔 of Ω. Given a measure 72 

space  (Ω,ℱ, 𝜇), a function 𝑓 on Ω must have a property called ℱ ℬ∗-measurability in order for its 73 

integral to be well-defined. 𝑓 is said to be ℱ ℬ∗-measurable if, for every real number 𝑥, there is an 74 

element of  ℱ (called 𝑓!!( 𝑥,+∞ )) that is exactly the set of all elements 𝜔 of Ω which satisfy 75 

𝑓 𝜔 > 𝑥 (Vestrup 2003d). Given an ℱ ℬ∗-measurable function 𝑓and a subset 𝑆 of Ω which is an 76 

element of ℱ, the integral of 𝑓 over 𝑆 with respect to 𝜇 is a number denoted by 𝑓  ! 𝑑𝜇. Given a 77 
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probability space (Ω,ℱ,𝑃), the conditional average of 𝑓 “knowing” 𝑆 is given (Çinlar 2011) by: 78 

𝐸 𝑓 𝑆 =
1

𝑃(𝑆) 𝑓
  

!
𝑑𝑃 

In particular, the (unconditional) average of 𝑓 is given by: 79 

𝐸 𝑓 = 𝐸 𝑓 Ω =
1

𝑃(Ω) 𝑓
  

!
𝑑𝑃 = 𝑓

  

!
𝑑𝑃 

 80 

Given two measures 𝜇 and 𝜐 defined on the same 𝜎-field ℱ of subsets of Ω, 𝜐 is said to be absolutely 81 

continuous with respect to 𝜇 if every element 𝑆 of ℱ which satisfies 𝜇 𝑆 = 0 also satisfies 𝜐 𝑆 = 0. 82 

This relationship between 𝜇 and 𝜐 is also denoted by 𝜐 ≪ 𝜇 (Vestrup 2003e). In our framework, the 83 

measure 𝑃 represents a time average of JPs and 𝑃! represents novFPs that functionalize in the time 84 

period considered. This implies that for each novFP represented in the measure 𝑃!, the JP that it was 85 

immediately before functionalization is represented in the measure 𝑃. These two polypeptides are 86 

identical because of our definition of novFPs, so they belong to exactly the same subsets of Ω. 87 

Therefore, if a subset 𝑆 of Ω is an element of ℱ and never contains any JPs (𝑃 𝑆 = 0), then no novFPs 88 

emerge in this subset (𝑃! 𝑆 = 0). Thus, we have 𝑃! ≪ 𝑃. 89 

 90 

The Radon-Nikodým theorem for finite measures states that given two measures 𝜇 and 𝜐 on ℱ which 91 

are both finite (𝜇 Ω  and 𝜐 Ω  are finite numbers) and which satisfy 𝜐 ≪ 𝜇, there exists a finite-valued 92 

nonnegative ℱ ℬ∗-measurable function 𝑓on Ω which summarizes the relationship between 𝜇 and 𝜐. 93 

Specifically, 𝜐 can be constructed by integrating 𝑓 with respect to 𝜇; for each element 𝑆 of ℱ, we have 94 

𝜐 𝑆 = 𝑓  𝑑𝜇  
!  (Vestrup 2003e). In our framework, this theorem applies to the measures 𝑃 and 𝑃! 95 

since they are both finite (𝑃 Ω = 𝑃! Ω = 1) and 𝑃! ≪ 𝑃. Therefore, there exists a finite-valued 96 

nonnegative ℱ ℬ∗-measurable function 𝑟 on Ω (a polypeptide property) such that for each element 𝑆 of 97 
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ℱ, we have 𝑃! 𝑆 = 𝑟  𝑑𝑃  
! . Because of the definition of the conditional average (Çinlar 2011), we 98 

have 𝑃! 𝑆 = 𝑃(𝑆)×𝐸 𝑟 𝑆  and thus: 99 

𝐸 𝑟 𝑆 =
𝑃! 𝑆
𝑃(𝑆)  

where 𝐸 𝑟 𝑆  is the average of 𝑟 among JPs that belong to the class 𝑆. This provides an interpretation 100 

of the polypeptide property 𝑟: its average among JPs that belong to a given class of polypeptides (𝑆) is 101 

the ratio of the frequency of this class among novFPs (𝑃! 𝑆 ) to its frequency among JPs (𝑃 𝑆 ). Since 102 

a class of polypeptides may be arbitrarily small and may even contain only one JP, the value of 𝑟 for a 103 

single polypeptide is the factor by which its frequency changes from JPs to novFPs. We can deduce 104 

from the above equation that the average of 𝑟 among JPs is 𝐸 𝑟 = 1, since: 105 

𝐸 𝑟 = 𝐸 𝑟 Ω =
𝑃! Ω
𝑃(Ω) =

1
1 = 1 

 106 

The function 𝑓 defined from two measures 𝜐 ≪ 𝜇 by the Radon-Nikodým theorem has a useful 107 

property: for every ℱ ℬ∗-measurable function 𝑔, its integral with respect to 𝜐 over any element 𝑆 of ℱ 108 

is given by 𝑔  𝑑𝜐  
! = 𝑓𝑔  𝑑𝜇  

!  (Vestrup 2003e). In our framework, this property translates to 109 

𝑞  𝑑𝑃!
  
! = 𝑞𝑟  𝑑𝑃  

!  for any polypeptide property 𝑞. By the definition of the conditional average 110 

(Çinlar 2011), we thus have: 111 

𝑃!(𝑆)×𝐸! 𝑞 𝑆 = 𝑃(𝑆)×𝐸 𝑞𝑟 𝑆  

𝐸! 𝑞 𝑆 =
𝑃(𝑆)
𝑃!(𝑆)

×𝐸 𝑞𝑟 𝑆  

𝐸! 𝑞 𝑆 =
𝐸 𝑞𝑟 𝑆
𝐸 𝑟 𝑆  

where 𝐸! 𝑞 𝑆  is the average of 𝑞 among novFPs that belong to 𝑆. If we choose 𝑆 = Ω and use the fact 112 

that 𝐸 𝑟 = 1, we obtain: 113 
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𝐸!(𝑞) = 𝐸(𝑞𝑟) 

which shows how the relationship between 𝑞 and 𝑟 among JPs determines the average of 𝑞 among 114 

novFPs. From this equation, our main mathematical results can be derived using the universal 115 

properties of averages, variances, covariances, etc. without further need for the basic concepts of 116 

measure theory. 117 

 118 

Interpreting the coskewness of three variables 119 

 120 

To facilitate the interpretation of the coskewness of three variables 𝑐𝑜𝑠𝑘 𝑥,𝑦, 𝑧 = ! !"!#!$
! ! ! ! ! !

, where 121 

𝛥𝑥 = 𝑥 − 𝐸(𝑥) , consider the standard score 𝑍 𝑥 = !"
! !

 which has a mean of 0 and a variance of 1. 122 

𝑐𝑜𝑠𝑘 𝑞, 𝜆, 𝑓  =  𝐸 𝑍 𝑞 𝑍 𝜆 𝑍 𝑓  

Since 𝐸 𝑥  𝑦 = 𝐸 𝑥 ×𝐸 𝑦 + 𝑐𝑜𝑣(𝑥,𝑦) , we obtain: 123 

𝑐𝑜𝑠𝑘 𝑞, 𝜆, 𝑓  = 𝐸 𝑍 𝑞 ×  𝐸 𝑍 𝜆 𝑍 𝑓 + 𝑐𝑜𝑣 𝑍 𝑞 ,𝑍 𝜆 𝑍 𝑓  

Because 𝐸 𝑍 𝑞 = 0  , we obtain: 124 

𝑐𝑜𝑠𝑘 𝑞, 𝜆, 𝑓  = 𝑐𝑜𝑣 𝑍 𝑞 ,𝑍 𝜆 𝑍 𝑓  

Because of the definition of coskewness, its value does not change when we swap any two of the three 125 

variables: 126 

𝑐𝑜𝑠𝑘 𝑞, 𝜆, 𝑓  = 𝑐𝑜𝑣 𝑍 𝑞 ,𝑍 𝜆 𝑍 𝑓 = 𝑐𝑜𝑣 𝑍 𝜆 ,𝑍 𝑞 𝑍 𝑓 = 𝑐𝑜𝑣 𝑍 𝑓 ,𝑍 𝜆 𝑍 𝑞  

 127 

Now consider the fact that 𝐸 𝑍 𝑥 𝑍(𝑦) = 𝑐𝑜𝑣 𝑍 𝑥 ,𝑍(𝑦) = 𝜌(𝑥,𝑦). Put in words, the Pearson 128 

correlation coefficient is the mean of the product of the standard scores of two variables, while 129 

coskewness is the covariance of this same product with the standard score of a third variable. 130 
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Therefore, roughly speaking, coskewness is a measure of how any of the three variables linearly affects 131 

the correlation between the two others. 132 

 133 
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