Joint estimates of heterozygosity and runs of homozygosity for modern and ancient samples

Supplementary Material
Gabriel Renaud, Kristian Hanghøj, Thorfinn Sand Korneliussen, Eske Willerslev and Ludovic Orlando

Contents

1 Supplementary Results 1
1.1 Simulated data 1
1.1.1 Local estimates of heterozygosity 1
1.1.2 Global estimates of heterozygosity 8
1.1.2.1 ROHan 8
1.1.2.2 ATLAS 14
1.1.2.3 ANGSD 20
1.1.3 Ignoring deamination from the computation 30
1.1.4 Incorrectly inferring deamination rates 32
1.1.5 Error in inferring deamination rates 34
1.1.6 Simulating multiple libraries with different damage rates 38
1.1.7 Different window sizes 40
1.1.8 High sequencing error rate 43
1.1.9 Identifying runs of homozygosity 46
1.1.9.1 ROHan 48
1.1.9.2 PLINK 54
1.1.9.3 BCFtools/RoH 54
1.2 Empirical data 61
1.2.1 Humans 61
1.2.2 Horses 67

1 Supplementary Results

1.1 Simulated data

1.1.1 Local estimates of heterozygosity

ROHan local h estimates at $\mathrm{Ne}=3000$ at 3 X

Figure 1: Comparison between the simulated local rates of heterozygosity versus the predicted one on windows of $1 \mathrm{Mbp}, N_{e}=3000$, a coverage of 3 X using A) no aDNA damage B) low rates of single-stranded damage from Ust'-Ishim C) high rates of double-stranded damage patterns from ATP2 D) medium rates of double-stranded damage from LaBraña. The red dot represents the maximum-likelihood point estimate, the black whiskers represent the 95% confidence interval and the dark blue crosses represent the simulated value.

Figure 2: Comparison between the simulated local rates of heterozygosity versus the predicted one on windows of $1 \mathrm{Mbp}, N_{e}=9000$, a coverage of 3 X using A) no aDNA damage B) low rates of single-stranded damage from Ust'-Ishim C) high rates of double-stranded damage patterns from ATP2 D) medium rates of double-stranded damage from LaBraña. The red dot represents the maximum-likelihood point estimate, the black whiskers represent the 95% confidence interval and the dark blue crosses represent the simulated value.

ROHan local h estimates at $\mathrm{Ne}=3000$ at 5 X

Figure 3: Comparison between the simulated local rates of heterozygosity versus the predicted one on windows of $1 \mathrm{Mbp}, N_{e}=3000$, a coverage of 5 X using A) no aDNA damage B) low rates of single-stranded damage from Ust'-Ishim C) high rates of double-stranded damage patterns from ATP2 D) medium rates of double-stranded damage from LaBraña. The red dot represents the maximum-likelihood point estimate, the black whiskers represent the 95% confidence interval and the dark blue crosses represent the simulated value.

ROHan local h estimates at $\mathrm{Ne}=9000$ at 5 X

Figure 4: Comparison between the simulated local rates of heterozygosity versus the predicted one on windows of $1 \mathrm{Mbp}, N_{e}=9000$, a coverage of 5 X using A) no aDNA damage B) low rates of single-stranded damage from Ust'-Ishim C) high rates of double-stranded damage patterns from ATP2 D) medium rates of double-stranded damage from LaBraña. The red dot represents the maximum-likelihood point estimate, the black whiskers represent the 95% confidence interval and the dark blue crosses represent the simulated value.

ROHan local h estimates at $\mathrm{Ne}=3000$ at 9 X

Figure 5: Comparison between the simulated local rates of heterozygosity versus the predicted one on windows of $1 \mathrm{Mbp}, N_{e}=3000$, a coverage of 9 X using A) no aDNA damage B) low rates of single-stranded damage from Ust'-Ishim C) high rates of double-stranded damage patterns from ATP2 D) medium rates of double-stranded damage from LaBraña. The red dot represents the maximum-likelihood point estimate, the black whiskers represent the 95% confidence interval and the dark blue crosses represent the simulated value.

Figure 6: Comparison between the simulated local rates of heterozygosity versus the predicted one on windows of $1 \mathrm{Mbp}, N_{e}=9000$, a coverage of 9 X using A) no aDNA damage B) low rates of single-stranded damage from Ust'-Ishim C) high rates of double-stranded damage patterns from ATP2 D) medium rates of double-stranded damage from LaBraña. The red dot represents the maximum-likelihood point estimate, the black whiskers represent the 95% confidence interval and the dark blue crosses represent the simulated value.
1.1.2 Global estimates of heterozygosity
1.1.2.1 ROHan

ROHan θ estimates at $\mathrm{Ne}=3000$

Figure 7: Simulated versus predicted genome-wide θ by ROHan for a simulated chromosome of 15 Mbp and an effective population size of 3000 . The dotted line represented the simulated rate of heterozygosity. The different sub-panels represent different rates of simulated ancient DNA damage. A) no aDNA damage B) low rates of single-stranded damage from Ust'-Ishim C) high rates of double-stranded damage patterns from ATP2 D) medium rates of double-stranded damage from LaBraña.

ROHan θ estimates at $\mathrm{Ne}=5000$

Figure 8: Simulated versus predicted genome-wide θ by ROHan for a simulated chromosome of 15 Mbp and an effective population size of 5000 . The dotted line represented the simulated rate of heterozygosity. The different sub-panels represent different rates of simulated ancient DNA damage. A) no aDNA damage B) low rates of single-stranded damage from Ust'-Ishim C) high rates of double-stranded damage patterns from ATP2 D) medium rates of double-stranded damage from LaBraña.

ROHan θ estimates at $\mathrm{Ne}=7000$

Figure 9: Simulated versus predicted genome-wide θ by ROHan for a simulated chromosome of 15 Mbp and an effective population size of 7000 . The dotted line represented the simulated rate of heterozygosity. The different sub-panels represent different rates of simulated ancient DNA damage. A) no aDNA damage B) low rates of single-stranded damage from Ust'-Ishim C) high rates of double-stranded damage patterns from ATP2 D) medium rates of double-stranded damage from LaBraña.

ROHan θ estimates at $\mathrm{Ne}=9000$

Figure 10: Simulated versus predicted genome-wide θ by ROHan for a simulated chromosome of 15 Mbp and an effective population size of 9000 . The dotted line represented the simulated rate of heterozygosity. The different sub-panels represent different rates of simulated ancient DNA damage. A) no aDNA damage B) low rates of single-stranded damage from Ust'-Ishim C) high rates of double-stranded damage patterns from ATP2 D) medium rates of double-stranded damage from LaBraña.

ROHan θ estimates at $\mathrm{Ne}=12000$

Figure 11: Simulated versus predicted genome-wide θ by ROHan for a simulated chromosome of 15 Mbp and an effective population size of 12000 . The dotted line represented the simulated rate of heterozygosity. The different sub-panels represent different rates of simulated ancient DNA damage. A) no aDNA damage B) low rates of single-stranded damage from Ust'-Ishim C) high rates of double-stranded damage patterns from ATP2 D) medium rates of double-stranded damage from LaBraña.
1.1.2.2 ATLAS

ATLAS θ estimates at $\mathrm{Ne}=3000$

Figure 12: Simulated versus predicted genome-wide θ by ATLAS for a simulated chromosome of 15 Mbp and an effective population size of 3000 . The dotted line represented the simulated rate of heterozygosity. The different sub-panels represent different rates of simulated ancient DNA damage. A) no aDNA damage B) low rates of single-stranded damage from Ust'-Ishim C) high rates of double-stranded damage patterns from ATP2 D) medium rates of double-stranded damage from LaBraña.

ATLAS θ estimates at $\mathrm{Ne}=5000$

Figure 13: Simulated versus predicted genome-wide θ by ATLAS for a simulated chromosome of 15 Mbp and an effective population size of 5000 . The dotted line represented the simulated rate of heterozygosity. The different sub-panels represent different rates of simulated ancient DNA damage. A) no aDNA damage B) low rates of single-stranded damage from Ust'-Ishim C) high rates of double-stranded damage patterns from ATP2 D) medium rates of double-stranded damage from LaBraña.

ATLAS θ estimates at $\mathrm{Ne}=7000$

Figure 14: Simulated versus predicted genome-wide θ by ATLAS for a simulated chromosome of 15 Mbp and an effective population size of 7000 . The dotted line represented the simulated rate of heterozygosity. The different sub-panels represent different rates of simulated ancient DNA damage. A) no aDNA damage B) low rates of single-stranded damage from Ust'-Ishim C) high rates of double-stranded damage patterns from ATP2 D) medium rates of double-stranded damage from LaBraña.

ATLAS θ estimates at $\mathrm{Ne}=9000$

Figure 15: Simulated versus predicted genome-wide θ by ATLAS for a simulated chromosome of 15 Mbp and an effective population size of 9000 . The dotted line represented the simulated rate of heterozygosity. The different sub-panels represent different rates of simulated ancient DNA damage. A) no aDNA damage B) low rates of single-stranded damage from Ust'-Ishim C) high rates of double-stranded damage patterns from ATP2 D) medium rates of double-stranded damage from LaBraña.

Figure 16: Simulated versus predicted genome-wide θ by ATLAS for a simulated chromosome of 15 Mbp and an effective population size of 12000 . The dotted line represented the simulated rate of heterozygosity. The different sub-panels represent different rates of simulated ancient DNA damage. A) no aDNA damage B) low rates of single-stranded damage from Ust'-Ishim C) high rates of double-stranded damage patterns from ATP2 D) medium rates of double-stranded damage from LaBraña.
1.1.2.3 ANGSD

ANGSD θ estimates at $\mathrm{Ne}=3000$

Figure 17: Simulated versus predicted genome-wide θ by ANGSD for a simulated chromosome of 15 Mbp and an effective population size of 3000 . The dotted line represented the simulated rate of heterozygosity. The different sub-panels represent different rates of simulated ancient DNA damage. A) no aDNA damage B) low rates of single-stranded damage from Ust'-Ishim C) high rates of double-stranded damage patterns from ATP2 D) medium rates of double-stranded damage from LaBraña.

ANGSD θ estimates at $\mathrm{Ne}=5000$

Figure 18: Simulated versus predicted genome-wide θ by ANGSD for a simulated chromosome of 15 Mbp and an effective population size of 5000 . The dotted line represented the simulated rate of heterozygosity. The different sub-panels represent different rates of simulated ancient DNA damage. A) no aDNA damage B) low rates of single-stranded damage from Ust'-Ishim C) high rates of double-stranded damage patterns from ATP2 D) medium rates of double-stranded damage from LaBraña.

ANGSD θ estimates at $\mathrm{Ne}=7000$

Figure 19: Simulated versus predicted genome-wide θ by ANGSD for a simulated chromosome of 15 Mbp and an effective population size of 7000 . The dotted line represented the simulated rate of heterozygosity. The different sub-panels represent different rates of simulated ancient DNA damage. A) no aDNA damage B) low rates of single-stranded damage from Ust'-Ishim C) high rates of double-stranded damage patterns from ATP2 D) medium rates of double-stranded damage from LaBraña.

ANGSD θ estimates at $\mathrm{Ne}=9000$

Figure 20: Simulated versus predicted genome-wide θ by ANGSD for a simulated chromosome of 15 Mbp and an effective population size of 9000 . The dotted line represented the simulated rate of heterozygosity. The different sub-panels represent different rates of simulated ancient DNA damage. A) no aDNA damage B) low rates of single-stranded damage from Ust'-Ishim C) high rates of double-stranded damage patterns from ATP2 D) medium rates of double-stranded damage from LaBraña.

Figure 21: Simulated versus predicted genome-wide θ by ANGSD using transversions only for a simulated chromosome of 15 Mbp and an effective population size of 9000 . The dotted line represented the simulated rate of heterozygosity. The different sub-panels represent different rates of simulated ancient DNA damage. A) no aDNA damage B) low rates of single-stranded damage from Ust'-Ishim C) high rates of double-stranded damage patterns from ATP2 D) medium rates of double-stranded damage from LaBraña.

ANGSD θ estimates at $\mathrm{Ne}=9000$

Figure 22: Simulated versus predicted genome-wide θ by ANGSD using options "-tole $10 \mathrm{e}-12$ maxIter 200 " for a simulated chromosome of 15 Mbp and an effective population size of 9000 . The dotted line represented the simulated rate of heterozygosity. The different sub-panels represent different rates of simulated ancient DNA damage. A) no aDNA damage B) low rates of singlestranded damage from Ust'-Ishim C) high rates of double-stranded damage patterns from ATP2 D) medium rates of double-stranded damage from LaBraña.

Figure 23: Simulated versus predicted genome-wide θ by ANGSD using transversions and options "-tole $10 \mathrm{e}-12$-maxIter 200 " only for a simulated chromosome of 15 Mbp and an effective population size of 9000 . The dotted line represented the simulated rate of heterozygosity. The different subpanels represent different rates of simulated ancient DNA damage. A) no aDNA damage B) low rates of single-stranded damage from Ust'-Ishim C) high rates of double-stranded damage patterns from ATP2 D) medium rates of double-stranded damage from LaBraña.

ANGSD θ estimates at $\mathrm{Ne}=12000$

Figure 24: Simulated versus predicted genome-wide θ by ANGSD for a simulated chromosome of 15 Mbp and an effective population size of 12000 . The dotted line represented the simulated rate of heterozygosity. The different sub-panels represent different rates of simulated ancient DNA damage. A) no aDNA damage B) low rates of single-stranded damage from Ust'-Ishim C) high rates of double-stranded damage patterns from ATP2 D) medium rates of double-stranded damage from LaBraña.

Figure 25: Simulated versus predicted genome-wide θ by ANGSD when a certain subsampling of the data is performed. The length of the chromosome was subsampled as well as the coverage. The simulated values for $15 \mathrm{M}, 30 \mathrm{M}, 60 \mathrm{M}, 120 \mathrm{M}$ and 250 M are found in the upper portion followed by a subsampling of the coverage at 25X and finally, 10X.
1.1.3 Ignoring deamination from the computation

ROHan θ estimates while ignoring deamination at $\mathrm{Ne}=9000$

Figure 26: Simulated versus predicted genome-wide θ by ROHan while ignoring deamination in the computation for a simulated chromosome of 15 Mbp and an effective population size of 9000 . This was evaluated to verify whether ignoring the rates of deamination would have a significant impact. The dotted line represents the measured simulated rate of heterozygosity. The dotted line represented the simulated rate of heterozygosity. The different sub-panels represent different rates of simulated ancient DNA damage. A) no aDNA damage B) low rates of single-stranded damage from Ust'-Ishim C) high rates of double-stranded damage patterns from ATP2 D) medium rates of double-stranded damage from LaBraña.

1.1.4 Incorrectly inferring deamination rates

Effect of incorrectly estimating damage rates on the θ estimate

Figure 27: Simulated versus predicted genome-wide θ by ROHan if the incorrect deamination rates are supplied. On a dataset of 15 Mbp , a effective population of 9000 was used and the high damage rates from the ATP2 sample were applied. The measured rates of damage were multiplied by a factor (ranging from 0.3 to 1.8) and ROHan was supplied these incorrect rates of damage. The dotted line corresponds to the simulated rate of heterozygosity. As expected, our results show that an overestimate of deamination rates (factor >1.0) causes an underestimate of θ and an underestimate of deamination rates (factor <1.0) causes an overestimate of θ. However, our results show that underestimates ranging from 80% to 120% do not cause a significant error in the estimation of θ. While there is a certain robustness to incorrect estimates of damage, care should be taken while estimating those rates and programs to do so are provided with the software package. Namely, script to mask potentially polymorphic positions is provided and is evaluated on simulated data on page 1.1.5.
1.1.5 Error in inferring deamination rates

coverage	position from the 5 ' end											position from the 3' end										
	1	2	3	4	5	6	7	8	9	10	Rn	-1	-2	-3	-4	-5	-6	-7	-8	-9	-10	RMSD
1	0.57	0.52	0.54	0.51	0.51	0.50	0.49	0.51	0.46	0.50	0.07	0.54	0.54	0.52	0.50	0.50	0.52	0.51	0.50	0.49	0.51	0.07
2	0.74	0.70	0.71	0.69	0.68	0.67	0.68	0.68	0.66	0.67	0.04	0.73	0.73	0.72	0.71	0.71	0.72	0.72	0.71	0.69	0.70	0.04
3	0.81	0.78	0.78	0.77	0.76	0.76	0.76	0.76	0.74	0.75	0.03	0.81	0.82	0.81	0.80	0.80	0.80	0.80	0.81	0.79	0.79	0.03
4	0.85	0.82	0.81	0.80	0.80	0.79	0.80	0.80	0.78	0.79	0.03	0.84	0.86	0.85	0.84	0.84	0.85	0.84	0.85	0.83	0.84	0.02
5	0.86	0.84	0.83	0.82	0.81	0.81	0.82	0.82	0.80	0.81	0.02	0.86	0.88	0.86	0.86	0.86	0.86	0.86	0.87	0.85	0.86	0.02
6	0.87	0.84	0.84	0.83	0.83	0.82	0.82	0.82	0.81	0.82	0.02	0.87	0.89	0.88	0.87	0.87	0.88	0.87	0.88	0.87	0.88	0.02
7	0.87	0.84	0.84	0.83	0.83	0.83	0.83	0.82	0.81	0.82	0.02	0.88	0.89	0.88	0.87	0.87	0.88	0.88	0.88	0.87	0.88	0.02
8	0.87	0.84	0.84	0.83	0.83	0.83	0.82	0.82	0.81	0.82	0.02	0.88	0.89	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.87	0.02
9	0.87	0.84	0.84	0.83	0.83	0.83	0.82	0.82	0.81	0.81	0.02	0.88	0.89	0.88	0.87	0.88	0.88	0.87	0.88	0.88	0.87	0.02
10	0.87	0.84	0.84	0.83	0.83	0.83	0.82	0.82	0.81	0.81	0.02	0.88	0.89	0.88	0.88	0.88	0.88	0.87	0.88	0.88	0.87	0.02
11	0.87	0.84	0.84	0.83	0.83	0.83	0.82	0.82	0.82	0.82	0.02	0.89	0.89	0.88	0.87	0.88	0.88	0.87	0.88	0.88	0.87	0.02
12	0.87	0.84	0.84	0.83	0.83	0.83	0.82	0.83	0.82	0.82	0.02	0.89	0.89	0.88	0.87	0.88	0.88	0.87	0.87	0.88	0.87	0.02
13	0.87	0.84	0.84	0.83	0.83	0.83	0.81	0.83	0.81	0.82	0.02	0.88	0.89	0.88	0.87	0.88	0.88	0.87	0.87	0.88	0.87	0.02
14	0.87	0.84	0.84	0.83	0.83	0.83	0.81	0.82	0.81	0.81	0.02	0.88	0.89	0.88	0.87	0.88	0.88	0.87	0.88	0.88	0.87	0.02
15	0.86	0.84	0.84	0.82	0.82	0.83	0.81	0.82	0.81	0.81	0.02	0.88	0.89	0.88	0.86	0.88	0.87	0.87	0.88	0.87	0.87	0.02
16	0.86	0.84	0.83	0.82	0.82	0.82	0.80	0.82	0.81	0.81	0.02	0.88	0.89	0.87	0.86	0.87	0.87	0.87	0.87	0.88	0.86	0.02
17	0.86	0.84	0.83	0.82	0.82	0.82	0.80	0.82	0.81	0.81	0.02	0.88	0.89	0.87	0.86	0.87	0.87	0.87	0.87	0.88	0.86	0.02
18	0.86	0.84	0.83	0.82	0.82	0.82	0.80	0.81	0.81	0.80	0.02	0.88	0.89	0.87	0.86	0.87	0.87	0.86	0.87	0.87	0.86	0.02
19	0.86	0.84	0.83	0.82	0.82	0.81	0.80	0.81	0.81	0.80	0.03	0.88	0.89	0.87	0.86	0.87	0.87	0.87	0.87	0.87	0.86	0.02
20	0.86	0.84	0.83	0.82	0.82	0.81	0.80	0.81	0.81	0.80	0.02	0.88	0.89	0.87	0.86	0.87	0.87	0.86	0.87	0.87	0.87	0.02
21	0.86	0.84	0.84	0.82	0.82	0.82	0.80	0.80	0.80	0.80	0.02	0.88	0.89	0.87	0.86	0.87	0.87	0.87	0.87	0.87	0.87	0.02
22	0.86	0.84	0.83	0.82	0.82	0.82	0.80	0.81	0.80	0.80	0.02	0.88	0.89	0.87	0.86	0.87	0.87	0.87	0.87	0.87	0.87	0.02
23	0.86	0.84	0.83	0.82	0.82	0.82	0.80	0.80	0.80	0.80	0.02	0.88	0.89	0.87	0.86	0.87	0.87	0.87	0.87	0.87	0.87	0.02
24	0.86	0.84	0.84	0.82	0.82	0.82	0.80	0.81	0.80	0.80	0.02	0.88	0.89	0.87	0.86	0.87	0.87	0.87	0.87	0.87	0.87	0.02
25	0.86	0.84	0.84	0.82	0.83	0.82	0.80	0.80	0.80	0.80	0.02	0.88	0.89	0.87	0.86	0.87	0.87	0.87	0.87	0.87	0.87	0.02
26	0.86	0.84	0.83	0.82	0.83	0.82	0.80	0.80	0.79	0.79	0.02	0.88	0.89	0.87	0.86	0.87	0.86	0.87	0.87	0.87	0.87	0.02
27	0.86	0.84	0.83	0.82	0.82	0.82	0.81	0.81	0.79	0.80	0.02	0.88	0.89	0.87	0.86	0.87	0.86	0.87	0.88	0.87	0.88	0.02

[^0]| coverage | position from the 5' end | | | | | | | | | | | position from the 3' end | | | | | | | | | | |
| :---: |
| | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | RMSD | -1 | -2 | -3 | -4 | -5 | -6 | -7 | -8 | -9 | -10 | RMSD |
| 1 | 0.66 | 0.63 | 0.64 | 0.62 | 0.62 | 0.61 | 61 | 0.63 | 0.59 | 0.62 | 0.05 | 0.61 | 0.61 | 0.59 | 0.58 | 0.57 | 0.61 | 0.59 | 57 | 0.5 | 0.58 | 0.05 |
| 2 | 0.86 | 0.84 | 0.85 | 0.8 | 0.83 | 0.83 | 0.84 | 0.85 | 0.8 | 0.84 | 0.02 | 0.8 | 0.83 | 0.82 | 0.8 | 0.81 | 0.84 | 0.83 | 0.81 | 0.80 | 0.80 | . 02 |
| 3 | 0.95 | 0.93 | 0.93 | 0.94 | 0.92 | 0.93 | 0.94 | 0.94 | 0.93 | 0.94 | 0.01 | 0.92 | 0.92 | 0.93 | 0.93 | 0.92 | 0.93 | 0.93 | 0.92 | 0.92 | 0.91 | 0.01 |
| 4 | 0.99 | 0.98 | 0.97 | 0.98 | 0.97 | 0.97 | 0.98 | 0.99 | 0.99 | 0.99 | 0.00 | 0.96 | 0.97 | 0.97 | 0.98 | 0.96 | 0.98 | 0.97 | 0.97 | 0.96 | 0.95 | 0.00 |
| 5 | 1.01 | 1.00 | 0.99 | 1.00 | 0.99 | 0.99 | 1.02 | 1.01 | 1.01 | 1.02 | 0.00 | 0.98 | 0.99 | 0.99 | 0.99 | 0.99 | 1.00 | 0.99 | 0.99 | 0.98 | 0.98 | . 00 |
| 6 | 1.02 | 1.01 | 1.00 | 1.01 | 1.01 | 1.01 | 1.02 | 1.02 | 1.02 | 1.02 | 0.00 | 1.00 | 1.00 | 1.01 | 1.01 | 1.00 | 1.02 | 1.00 | 1.00 | 1.00 | 1.00 | 0.00 |
| 7 | 1.02 | 1.01 | 1.00 | 1.01 | 1.01 | 1.02 | 1.02 | 1.02 | 1.02 | 1.02 | 0.00 | 1.00 | 1.00 | 1.01 | 1.01 | 1.00 | 1.02 | 1.01 | 1.00 | 1.01 | 1.00 | 0.00 |
| 8 | 1.02 | 1.01 | 00 | 1.01 | 01 | . 02 | 1.02 | 1.02 | . 02 | 1.03 | 0.00 | 1.01 | 1.00 | 1.02 | 1.01 | 1.01 | 1.02 | 1.01 | 1.0 | 1.01 | 0.99 | 0.00 |
| 9 | 1.02 | 1.01 | 1.00 | 1.01 | 1.01 | 1.02 | 1.02 | 1.02 | 1.03 | 1.02 | 0.00 | 1.01 | 1.00 | 1.01 | 1.01 | 1.01 | 1.02 | 1.01 | 1.00 | 1.02 | 1.00 | 0.00 |
| 10 | 1.02 | 1.00 | 1.01 | 1.01 | 1.01 | 1.02 | 1.01 | 1.02 | 1.03 | 1.02 | 0.00 | 1.01 | 1.00 | 1.01 | 1.01 | 1.01 | 1.02 | 1.01 | 1.00 | 1.01 | 1.00 | 0.00 |
| 11 | 1.01 | 1.01 | 1.01 | 1.01 | 1.01 | 1.02 | 1.01 | 1.02 | 1.03 | 1.02 | 0.00 | 1.01 | 1.01 | 1.01 | 1.01 | 1.01 | 1.02 | 1.01 | 1.00 | 1.02 | 0.99 | 0.00 |
| 12 | 1.01 | 1.01 | 1.01 | , 01 | 1.01 | 1.02 | 1.01 | . 03 | 1.03 | . 02 | . 00 | . 01 | 1.01 | 1.01 | 1.01 | 1.01 | 1.0 | 1.01 | 1.00 | 1.0 | 99 | 0.00 |
| 13 | 1.01 | 1.01 | 1.00 | 1.01 | 1.01 | 1.02 | 1.01 | 1.03 | 1.03 | 1.03 | 0.00 | 1.01 | 1.01 | 1.01 | 1.00 | 1.01 | 1.02 | 1.01 | 1.00 | 1.02 | 99 | 0.00 |
| 14 | 1.01 | 1.01 | 1.00 | 1.00 | 1.00 | 1.02 | 1.01 | 1.02 | 1.02 | 1.02 | 0.00 | 1.01 | 1.00 | 1.01 | 1.00 | 1.01 | 1.02 | 1.01 | 1.00 | 1.01 | 0.99 | 0.00 |
| 15 | 1.01 | 1.00 | 1.00 | 1.00 | 1.00 | 1.01 | 1.00 | 1.02 | 1.02 | 1.02 | 0.00 | 1.01 | 1.00 | 1.01 | 1.00 | 1.01 | 1.01 | 1.00 | 1.00 | 1.01 | 0.99 | 0.00 |
| 16 | 1. | 1.00 | 1.00 | 1.00 | 1.00 | 1.01 | 0.99 | 1.01 | 1.02 | 1.02 | 0.00 | . 00 | 1.01 | 1.00 | 1.00 | 1.00 | 1.01 | 1.0 | 1.0 | 1.01 | 0.99 | 0.00 |
| 17 | 1.00 | 1.00 | 1.00 | 99 | 1.00 | . 01 | 99 | 1.01 | 1.03 | 1.02 | 0.0 | . 00 | 1.00 | 1.00 | 1.00 | 1.0 | 1.01 | 1.00 | 0.99 | 1.01 | 0.98 | 0.00 |
| 18 | 1.00 | 1.00 | 1.00 | 0.99 | 1.00 | 1.01 | 0.99 | 1.01 | 1.03 | 1.01 | 0.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.01 | 1.00 | 1.00 | 1.00 | 0.98 | 0.00 |
| 19 | , 0 | 1.00 | 1.00 | 0.99 | 0.99 | 1.00 | 0.99 | 1.00 | 1.02 | 1.00 | 0.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.99 | 1.01 | 1.00 | 0.99 | 1.00 | 0.99 | . 00 |
| 20 | 1.00 | 1.00 | 1.00 | 0.99 | 0.99 | 1.00 | 0.99 | 1.00 | 1.02 | 1.00 | 0.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.01 | 1.00 | 0.99 | 1.00 | 0.99 | 0.00 |
| 21 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.99 | 1.00 | 1.01 | 1.00 | 0.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.99 | 0.00 |
| 22 | , | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.99 | 1.00 | 1.01 | 1.00 | 0.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.01 | 1.00 | 0.99 | 1.00 | 0.99 | 0.00 |
| 23 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.99 | 1.00 | 1.01 | 1.00 | 0.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.01 | 1.00 | 0.99 | 1.00 | 0.99 | 0.00 |
| 24 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.01 | 1.00 | 0.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.99 | 0.00 |
| 25 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.01 | 1.00 | 0.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.99 | 0.00 |
| 26 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.00 |

[^1]| coverage | $\theta \times 10^{4}$ | $\theta_{\text {low }} \times$
 10^{4} | $\theta_{\text {high }} \times$
 10^{4} |
| :--- | :--- | :--- | :--- |
| 1 | 47.65 | 41.20 | 50.00 |
| 2 | 32.08 | 20.12 | 39.67 |
| 3 | 8.75 | 2.65 | 16.97 |
| 4 | 6.13 | 2.46 | 10.69 |
| 5 | 6.38 | 2.90 | 10.10 |
| 6 | 6.06 | 3.43 | 9.37 |
| 6 | 5.99 | 4.05 | 8.66 |
| 7 | 6.14 | 4.30 | 8.24 |
| 8 | 5.90 | 4.43 | 8.06 |
| 9 | 5.92 | 4.31 | 8.18 |
| 10 | 6.06 | 4.41 | 8.43 |
| 11 | 6.15 | 4.13 | 7.94 |
| 12 | 5.78 | 4.39 | 8.54 |
| 13 | 6.00 | 4.21 | 8.62 |
| 14 | 6.53 | 4.11 | 8.55 |
| 15 | 5.91 | 3.75 | 8.19 |
| 16 | 5.91 | 4.41 | 8.05 |
| 17 | 6.13 | 4.28 | 7.87 |
| 18 | 5.93 | 4.54 | 7.45 |
| 18 | 6.04 | 4.50 | 8.51 |
| 19 | 5.81 | 4.66 | 7.73 |
| 20 | 6.13 | 4.44 | 8.11 |
| 21 | 6.07 | 4.38 | 8.47 |
| 22 | 6.21 | 4.54 | 7.98 |
| 23 | 5.98 | 4.36 | 7.65 |
| 24 | 6.20 | 4.40 | 7.92 |
| 25 | 6.19 | 4.41 | 7.76 |
| 26 | 6.15 | 4.58 | 8.13 |
| 27 | 6.08 | 4.21 | 8.26 |

Table 3: Predicted θ using ROHan on simulated sample of 15 M using an effective population size of 9000 . The aDNA damage was simulated using the high rates of misincorporations from the ATP2 sample. The simulated θ for this dataset was of 6.19 segregating sites per 10^{4}. Damage patterns were evaluated using a script provided with the software package which masks potentially polymorphic sites. The underestimate in estimating aDNA damage seen at coverage 1X-3X (see Supplementary Table 3) causes overestimates. Currently, our method cannot estimate substitutions due to aDNA damage highly deaminated samples at 1X-3X while masking potentially polymorphic positions.
1.1.6 Simulating multiple libraries with different damage rates

Estimate of θ at various coverage for $\mathrm{Ne}=9000$

with a mixed library

Figure 28: Simulated versus predicted genome-wide θ by ROHan for a simulated dataset which was composed of a $50 \% / 50 \%$ blend of a highly deaminated library from the ATP2 sample and a non-deaminated one. Damage rates were evaluated on this new dataset and were intermediate between the damage rates of the 2 original datasets.

1.1.7 Different window sizes

Figure 29: Effect of using different windows for the estimation of local heterozygosity on the estimate for the genome-wide estimate of θ. No aDNA damage was added and an effective population size of 3000 was used. The dotted line represented the simulated rate of heterozygosity. The different sub-panels represent different window sizes A) 1 kbp B) 2.5 kbp C) 5 kbp D$) 1 \mathrm{Mbp}$.

Figure 30: Effect of using different windows for the estimation of local heterozygosity on the estimate for the genome-wide estimate of θ. No aDNA damage was added and an effective population size of 9000 was used. The dotted line represented the simulated rate of heterozygosity. The different sub-panels represent different window sizes A) 1 kbp B) 2.5 kbp C) 5 kbp D$) 1 \mathrm{Mbp}$.

1.1.8 High sequencing error rate

Figure 31: Robustness of our methodology for inferring heterozygosity rates to a substantial increase in sequencing errors. We increased the amount of simulated sequencing errors 10 -fold to reach a probability of error of 1.6% (please refer to Appendix Table 1). The amount of ancient DNA damage was the same as in previous sections: A) no simulated damage due to deamination B) damage levels from the Ust'-Ishim sample, which contains a low rate of misincorporations and followed patterns corresponding to a single-stranded library building protocol C) damage levels from the APT2 sample, which contains a high rate of misincorporations and followed patterns corresponding to a double-stranded library building protocol D) damage levels from the LaBraña sample, which contains a medium rate of misincorporations and followed patterns corresponding to a double-stranded library building protocol.

ANGSD θ estimates at $\mathrm{Ne}=9000$ with high rate of sequencing errors

Figure 32: Robustness of ANGSD θ estimate to a substantial increase in sequencing errors without any additional simulated deamination. We increased the amount of simulated sequencing errors 10 -fold to reach a probability of error of 1.6% (please refer to Appendix Table 11). The results for this dataset without additional sequencing errors is found in Supplementary Figure 20A).

1.1.9 Identifying runs of homozygosity

Figure 33: Presence or absence of segregating sites on the simulated chromosomes using windows of A) 1 kbp B) 2.5 kbp C$) 5 \mathrm{kbp}$ using the inbreeding scenario 1 (inbreeding between siblings). For the evaluation of BCFtools/RoH, the lineages between the 16 chromosomes to form the grand-parents chromosomes and the 1000 chromosomes which provide allele frequencies is at 0 years.
1.1.9.1 ROHan

Figure 34: ROHan's accuracy in predicting the percentage of genomic regions in an ROH for a chromosome of 250 Mbp using A) inbreeding scenario 1 (inbreeding between siblings) B) inbreeding scenario 2 (inbreeding between a grandparent and a grandchild) C) using inbreeding scenario 3 (inbreeding between first cousins). As coverage increases, the greater the accuracy in predicting ROHs. ROHan was used with a window of 1 Mbp for the local heterozygosity estimates. The different dotted lines represent the measured percentage of genomic windows in an ROH at different genomic window sizes. The blue dots represent the maximum-likelihood point estimate, the black whiskers represent the 95% confidence interval.

Posterior HMM decoding using ROHan at coverage:0.9X

Figure 35: Posterior decoding using ROHan at different window sizes for the computation of local heterozygosity. The average simulated coverage was of 0.9 X . The window sizes were A) 100kbp B) 250 kbp C) 500 kbp D) 1 Mbp . Please refer to Supplementary Figure 33 for the distribution of the segregating sites on the chromosome.

Figure 36: Posterior decoding using ROHan at different window sizes for the computation of local heterozygosity. The average simulated coverage was of 2.1 X . The window sizes were A) 100kbp B) 250 kbp C) 500 kbp D) 1 Mbp . Please refer to Supplementary Figure 33 for the distribution of the segregating sites on the chromosome.

Figure 37: Posterior decoding using ROHan at different window sizes for the computation of local heterozygosity. The average simulated coverage was of 3.0 X . The window sizes were A) 100 kbp B) 250 kbp C) 500 kbp D) 1 Mbp . Please refer to Supplementary Figure 33 for the distribution of the segregating sites on the chromosome.

Figure 38: Posterior decoding using ROHan at different window sizes for the computation of local heterozygosity. The average simulated coverage was of 5.1 X . The window sizes were A) 100 kbp B) 250 kbp C) 500 kbp D) 1 Mbp . Please refer to Supplementary Figure 33 for the distribution of the segregating sites on the chromosome.

Posterior HMM decoding using ROHan at coverage:9.9X

Figure 39: Posterior decoding using ROHan at different window sizes for the computation of local heterozygosity. The average simulated coverage was of 9.9 X . The window sizes were A) 100 kbp B) 250 kbp C) 500 kbp D) 1 Mbp . Please refer to Supplementary Figure 33 for the distribution of the segregating sites on the chromosome.

Figure 40: Posterior decoding using ROHan at different window sizes for the computation of local heterozygosity. The average simulated coverage was of 15 X . The window sizes were A) 100kbp B) 250 kbp C) 500 kbp D) 1 Mbp . Please refer to Supplementary Figure 33 for the distribution of the segregating sites on the chromosome.

Figure 41: Posterior decoding using ROHan at different window sizes for the computation of local heterozygosity. The average simulated coverage was of 24.3 X . The window sizes were A) 100 kbp B) 250 kbp C) 500 kbp D) 1 Mbp . Please refer to Supplementary Figure 33 for the distribution of the segregating sites on the chromosome.

1.1.9.2 PLINK

1.1.9.3 BCFtools/RoH

Figure 42: Posterior decoding using PLINK at different levels of simulated coverage namely: A) 0.9X B) 2.1X C) 3.0X D) 5.1X E) 9.9X F) 15X G) 24.3 X . Please refer to Supplementary Figure 33 for the distribution of the segregating sites on the chromosome. The lineages of the 16 chromosomes to form the grand-parents' chromosomes and the 1000 chromosomes which provide the allele frequency were jointed at a time of 0 years.

Figure 43: Posterior decoding using BCFtools/RoH at different levels of simulated coverage namely: A) 0.9 X B) 2.1 X C) 3.0 X D) 5.1 X E) 9.9 X F) 15 X G) 24.3 X . Please refer to Supplementary Figure 33 for the distribution of the segregating sites on the chromosome. The lineages of the 16 chromosomes to form the grand-parents' chromosomes and the 1000 chromosomes which provide the allele frequency were jointed at a time of 0 years.

Figure 44: Presence or absence of segregating sites on the simulated chromosomes using windows of A) 1 kbp B) 2.5 kbp C) 5 kbp using the inbreeding scenario 1 (inbreeding between siblings). For the evaluation of BCFtools/RoH, the lineages of the 16 chromosomes to form the grand-parents' chromosomes and the 1000 chromosomes which provide the allele frequency were jointed at a time of 150 k years.

Figure 45: Posterior decoding using BCFtools/RoH at different levels of simulated coverage namely: A) 0.9 X B) 2.1 X C) 3.0 X D) 5.1 X E) 9.9 X F) 15 X G) 24.3 X . Please refer to Supplementary Figure 44 for the distribution of the segregating sites on the chromosome. The lineages of the 16 chromosomes to form the grand-parents' chromosomes and the 1000 chromosomes which provide the allele frequency were jointed at a time of 150 k years.

Figure 46: Presence or absence of segregating sites on the simulated chromosomes using windows of A) 1 kbp B) 2.5 kbp C) 5 kbp using the inbreeding scenario 1 (inbreeding between siblings). For the evaluation of BCFtools/RoH, the lineages of the 16 chromosomes to form the grand-parents' chromosomes and the 1000 chromosomes which provide the allele frequency were jointed at a time of 500 k years.

Posterior HMM decoding using BCFtools (lineages joined at:500k years)

Figure 47: Posterior decoding using BCFtools/RoH at different levels of simulated coverage namely: A) 0.9 X B) 2.1 X C) 3.0 X D) 5.1 X E) 9.9 X F) 15 X G) 24.3 X . Please refer to Supplementary Figure 46 for the distribution of the segregating sites on the chromosome. The lineages of the 16 chromosomes to form the grand-parents' chromosomes and the 1000 chromosomes which provide the allele frequency were jointed at a time of 500 k years.

1.2 Empirical data

1.2.1 Humans

ID	population	coverage	θ	$\theta_{\text {low }}$	$\theta_{\text {high }}$	ROH (\%)	SGDP θ
HG00707	Southern Han Chinese (CHS)	4.5	0.000713603	0.000545385	0.000924186	0	0.000792535
HG00708	Southern Han Chinese (CHS)	4.9	0.000759869	0.000607272	0.000915707	0	0.000792535
HG02364	Chinese Dai in Xishuangbanna,	7.1	0.000810391	0.00069312	0.000932023	0	$0.000793714-0.00082176$
HG02367	China (CDX)	7.2	0.000805949	0.000687336	0.000930138	0.138074	0.000793714-0.00082176
HG02085	Kinh in Ho Chi Minh City,	8.2	0.000840848	0.000732537	0.00094835	0	0.000806996-0.000828772
HG02086	Vietnam (KHV)	7.9	0.000859125	0.000751194	0.000977007	0	0.000806996-0.000828772
NA19068	Jap	9.2	0.000867054	0.000750137	0.000990337	0	0.000801412-0.000826611
NA19070	Jap	6.3	0.000961556	0.000819523	0.00110828	0	$0.000801412-0.000826611$
HG01974	Peruvians from Lima, Peru	11.0	0.000883585	0.000779036	0.000984885	0	
HG01976	(PEL)	11.0	0.000970756	0.000862864	0.00107667	0	0.00070688-0.000756678
HG03708	Punjabi from Lahore, Pakistan	7.1	0.000896297	0.000768666	0.00102456	0	
HG03709	(PJL)	7.6	0.00091677	0.000805633	0.00103292	0	
NA21137	Gujarati Indian from Houston,	12.7	0.00101854	0.000920601	0.0011136	0	$0.000863594{ }^{1}$
NA21141	Texas (GIH)	7.8	0.000909886	0.000799777	0.00102094	0.0690369	0.000863594
HG04225	Indian Telugu from the UK	6.7	0.000910065	0.000782637	0.00104459	0	0.000826589-0.000887523 ${ }^{2}$
HG04222	(ITU)	8.2	0.000924757	0.000818621	0.00103226	0.172592	.00082658-0.00088752
HG04171	Bengali from Bangladesh (BEB)	8.1	0.000927666	0.000815712	0.00104155	0	0.00088649-0.000887424
HG04173	Bengali from Bangladesh (BEB)	5.7	0.00114297	0.000979405	0.00131118	0	0.00088649-0.000887424
HG04038	Sri Lankan Tamil from the UK	5.4	0.00118858	0.000993661	0.00137724	0	
HG04039	(STU)	6.0	0.00117458	0.00101575	0.00133913	0	
HG03136	Esan	8.3	0.00123733	0.00111082	0.00135873	0	. 001
HG03139	Esan	7.3	0.00114978	0.00101661	0.00128663	0.0345185	, 001
HG02891	Gambian in Western Divisions	6.9	0.00117041	0.00102119	0.001323	0	
HG02895	in the Gambia (GWD)	5.9	0.00118227	0.00102562	0.00133952	0	
HG02537	African Caribbeans in Barbados	16.7	0.00123678	0.00113072	0.00134187	0	NA
HG02536	(ACB)	5.1	0.00133456	0.00113154	0.00153834	0	NA

Table 4: Comparison between the genome-wide θ obtained by ROHan on lower coverage samples from the 1000 Genomes project Phase III Genomes Project Consortium et al., 2015] data and the heterozygosity estimates obtained by the Simons Genome Diversity Project Mallick et al., 2016

Figure 48: Local estimate of heterozygosity and HMM posterior decoding for chromosomes 11 for the HG04222 individual.

Predicted θ for the Vindija sample at different levels of subsampling

Figure 49: Global estimate of θ for the Vindija 33.19 sample at different rate of subsampling . The deamination rates were evalutated using the script provided with the software where potentially polymorphic positions are masked.

coverage	position from the 5 ' end											position from the 3' end										
	1	2	3	4	5	6	7	8	9	10	Rmsd	-1	-2	-3	-4	-5	-6	-7	-8	-9	-10	MSD
1	0.77	0.73	0.73	0.76	0.76	0.74	0.75	0.75	0.70	0.71	0.03	0.81	0.75	0.74	0.74	0.75	0.73	0.72	0.72	0.71	0.69	0.03
2	0.91	0.90	0.90	0.93	0.93	0.93	0.94	0.92	0.89	0.89	0.01	0.94	0.92	0.92	0.91	0.92	0.90	0.90	0.89	0.91	0.87	0.01
3	0.96	0.96	0.97	0.99	1.01	1.00	0.99	0.98	0.96	0.95	0.01	0.97	0.98	0.98	0.98	0.98	0.99	0.96	0.97	0.98	0.95	0.00
4	0.98	0.99	1.00	1.02	1.03	1.02	1.01	1.00	0.99	0.97	0.00	0.99	1.00	1.01	1.00	1.01	1.04	0.99	1.01	1.01	0.98	0.00
5	0.98	1.00	1.01	1.03	1.04	1.03	1.02	1.02	1.00	1.00	0.00	1.00	1.00	1.01	1.01	1.03	1.04	1.00	1.02	1.03	1.01	0.00
6	0.99	1.01	1.02	1.03	1.05	1.03	1.02	1.02	1.00	1.00	0.00	1.00	1.01	1.01	1.02	1.03	1.04	1.00	1.02	1.03	1.00	0.00
7	0.99	1.01	1.03	1.03	1.05	1.03	1.02	1.01	1.01	0.99	0.00	1.00	1.01	1.01	1.02	1.03	1.04	1.00	1.04	1.04	1.01	0.00
8	0.99	1.01	1.02	1.03	1.04	1.02	1.01	1.01	1.01	1.01	0.00	1.00	1.01	1.01	1.02	1.03	1.03	1.00	1.03	1.03	1.01	0.00
9	0.99	1.01	1.02	1.03	1.05	1.03	1.01	1.01	1.00	1.00	0.00	1.01	1.01	1.01	1.02	1.03	1.02	1.00	1.02	1.03	1.00	0.00
10	1.00	1.01	1.02	1.02	1.04	1.03	1.02	1.01	1.00	1.00	0.00	1.00	1.01	1.01	1.02	1.02	1.02	1.01	1.02	1.03	1.00	0.00
11	0.99	1.01	1.02	1.02	1.04	1.03	1.02	1.01	1.00	1.00	0.00	1.01	1.01	1.01	1.02	1.02	1.02	1.00	1.04	1.02	0.98	0.00
12	0.99	1.01	1.02	1.03	1.04	1.03	1.01	1.02	1.00	1.00	0.00	1.01	1.01	1.01	1.02	1.02	1.02	1.00	1.03	1.02	0.99	0.00
13	0.99	1.00	1.02	1.02	1.04	1.03	1.02	1.01	1.00	1.00	0.00	1.01	1.01	1.01	1.02	1.01	1.01	1.00	1.03	1.02	0.99	0.00
14	0.99	1.00	1.01	1.02	1.04	1.03	1.02	1.01	1.00	1.00	0.00	1.00	1.01	1.01	1.02	1.02	1.01	1.00	1.02	1.02	1.00	0.00
15	0.99	1.00	1.01	1.01	1.03	1.02	1.02	1.01	1.01	0.99	0.00	1.00	1.01	1.01	1.02	1.01	1.01	1.00	1.01	1.01	1.00	0.00
16	1.00	1.00	1.01	1.01	1.03	1.02	1.01	1.01	1.00	0.99	0.00	1.01	1.01	1.01	1.02	1.01	1.01	0.99	1.01	1.01	0.99	0.00
17	1.00	1.00	1.00	1.01	1.02	1.01	1.00	1.01	1.00	0.99	0.00	1.00	1.00	1.00	1.01	1.00	1.01	1.00	1.01	1.01	0.99	0.00
18	1.00	1.00	1.00	1.01	1.02	1.01	1.00	1.00	0.99	1.00	0.00	1.00	1.00	1.00	1.01	0.99	1.01	1.00	1.01	1.01	0.99	0.00
19	1.00	1.00	1.00	1.00	1.01	1.01	0.99	1.01	0.99	1.00	0.00	1.00	1.00	1.00	1.00	0.99	1.01	1.00	1.01	1.01	0.99	0.00
20	1.00	1.00	1.00	1.00	1.01	1.00	0.99	1.00	0.99	1.00	0.00	1.00	1.00	1.00	1.00	0.99	1.00	1.00	1.01	1.00	0.99	0.00
21	1.00	1.00	1.00	1.00	1.01	1.00	0.99	1.00	0.99	1.00	0.00	1.00	1.00	1.00	1.00	0.99	1.00	1.00	1.00	1.01	1.00	0.00
22	1.00	1.00	1.00	1.00	1.00	1.00	0.99	1.00	0.99	1.00	0.00	1.00	1.00	1.00	1.00	0.99	1.00	1.00	1.01	1.00	0.99	0.00
23	1.00	1.00	1.00	1.00	1.00	1.00	0.99	1.00	1.00	1.00	0.00	1.00	1.00	1.00	1.00	0.99	1.00	1.00	1.00	1.00	1.00	0.00

[^2]

Figure 50: Global estimate of θ at a different rate of subsampling to simulate different depths of coverage for the following modern human individuals from the Simons Genome Diversity Project: A) Bergamo (LP6005441-DNA_B06) B) Czech (LP6005443-DNA_H05)C) Japanese (LP6005441DNA_G06) D) Karitiana (LP6005441-DNA_G06) and E) Yoruba (LP6005442-DNA_A02). As expected, the rate of heterozygosity is highest in the Yoruba followed by the Czech, Bergamo, Japanese and finally the Karitiana. Our estimates are on par with those reported in the original publication Mallick et al., 2016. Our subsampling reveals that our estimates are robust to a depth of 3-4X for these data.

1.2.2 Horses

Used ID	Full sample name	population	age	publication of origin
Arab_0237A	Arab_0237A_SAMN02439777	Arabian	modern	Metzger et al., 2014
ARUS_0222A	ARUS_0222A_CGG101397	Yakutian	200 yrs	Librado et al., 2015
ARUS_0223A	ARUS_0223A_Batagai	Wild horse from Batagai	5.2 k yrs	Librado et al., 2015
ARUS_0224A	ARUS_0224A_CGG10022	Wild horse from Taymyr	43 k yrs	Schubert et al., 2014
ARUS_0225A	ARUS_0225A_CGG10023	Wild horse from Taymyr	16k yrs	Schubert et al., 2014
Borly4_PAVH11	Borly4_PAVH11_CGG_018171	Pavlodar site (Kazakhstan)	5 k yrs	Gaunitz et al., 2018
Borly4_PAVH4	Borly4_PAVH4_CGG_018157	Pavlodar site (Kazakhstan)	5 k yrs	Gaunitz et al., 2018
Borly4_PAVH8	Borly4_PAVH8_CGG_018165	Pavlodar site (Kazakhstan)	5 k yrs	Gaunitz et al., 2018
Botai2	Botai2_CGG_1_018174	Botai Culture	5.5 k yrs	Gaunitz et al., 2018
Botai5	Botai5_CGG_018177	Botai Culture	5.5 k yrs	Gaunitz et al., 2018
Botai6	Botai6_CGG_018178	Botai Culture	5.5 k yrs	Gaunitz et al., 2018
Icel_0247A	Icel_0247A_IS074	Icelandic	modern	Jäderkvist et al., 2014
Icel_0144A	Icel_0144A_P5782	Icelandic	modern	Jäderkvist et al., 2014
Jeju_0275A	Jeju_0275A_SAMN01057172	Jeju Pony	modern	Kim et al., 2013
Mong_0215A	Mong_0215A_TG1111D2628	Mongolian	modern	Do et al., 2014
Mong_0153A	Mong_0153A_KB7754	Mongolian	modern	Der Sarkissian et al., 2015
Prze_0150A	Prze_0150A_KB3879	Przewalski	modern	Der Sarkissian et al., 2015
Prze_0151A	Prze_0151A_KB7674	Przewalski	modern	Der Sarkissian et al., 2015
Prze_0157A	Prze_0157A_SB293	Przewalski	modern	Der Sarkissian et al., 2015
Prze_0158A	Prze_0158A_SB339	Przewalski	modern	Der Sarkissian et al., 2015
Prze_0159A	Prze_0159A_SB4329	Przewalski	modern	Der Sarkissian et al., 2015
Prze_0160A	Prze_0160A_SB533	Przewalski	modern	Der Sarkissian et al., 2015
SCYT_I_Ch118	I_Ch118_CGG_1_016176	Scythian kurgan	2.3 k yrs	Librado et al., 2017
SCYT_E_Ch25	E_Ch25_CGG_1_016172	Scythian kurgan	2.3 k yrs	Librado et al., 2017
SCYT_F_Ch26	F_Ch26_CGG_1_016173	Scythian kurgan	2.3 k yrs	Librado et al., 2017
Shet_0249A	Shet_0249A_SPH020	Shetland Pony	modern	Frischknecht et al., 2015
Shet_0250A	Shet_0250A_SPH041	Shetland Pony	modern	Frischknecht et al., 2015
Stan_0081A	Stan_0081A_M5256	Standardbred	modern	Der Sarkissian et al., 2015
Thor_0290A	Thor_0290A_SAMN01047706	Thoroughbred	modern	Do et al., 2014
Thor_0145A	Thor_0145A_Twilight	Thoroughbred	modern	Wade et al., 2009
Yaku_0170A	Yaku_0170A_Yak8	Yakutian	modern	Librado et al., 2015
Yaku_0171A	Yaku_0171A_Yak9	Yakutian	modern	Librado et al., 2015
Yaku_0163A	Yaku_0163A_Yak1	Yakutian	modern	Librado et al., 2015

Table 6: Population of origin, coverage and inferred fraction of the genome to be an ROH for the different horse presented in the main manuscript.

Sample name	global θ estimate					
	accounting for deamination in modern		standard estimate			
	mid	low	high	mid	low	high
Prze_0150A_KB3879	0.00116396	0.00105745	0.00126795	0.00121625	0.00111703	0.00133975
Prze_0158A_SB339	0.00130449	0.00119473	0.0014413	0.00136348	0.00124967	0.00148758
Prze_0159A_SB4329	0.00137299	0.00123522	0.0015161	0.00151808	0.00137978	0.00165049
Prze_0160A_SB533	0.00108715	0.00097201	0.00120968	0.00123092	0.00111888	0.00134607
Icel_0144A_P5782	0.00132952	0.00110264	0.00158799	0.00167654	0.00154191	0.00181988
Thor_0145A_Twilight	0.00107117	0.000954924	0.0012049	0.00109072	0.000995605	0.00119876
Yaku_0163A_Yak1	0.00165856	0.00147891	0.00183537	0.0018521	0.00167155	0.00199765

Table 7: Effect of accounting for ancient DNA damage in modern samples. The θ was computed by disallowing ROHs to provide a global average.

References

[Der Sarkissian et al., 2015] Der Sarkissian, C., Ermini, L., Schubert, M., Yang, M. A., Librado, P., Fumagalli, M., Jónsson, H., Bar-Gal, G. K., Albrechtsen, A., Vieira, F. G., et al. (2015). Evolutionary genomics and conservation of the endangered Przewalski's horse. Current Biology, 25(19):2577-2583.
[Do et al., 2014] Do, K.-T., Kong, H.-S., Lee, J.-H., Lee, H.-K., Cho, B.-W., Kim, H.-S., Ahn, K., and Park, K.-D. (2014). Genomic characterization of the przewalski's horse inhabiting mongolian steppe by whole genome re-sequencing. Livestock Science, 167:86-91.
[Frischknecht et al., 2015] Frischknecht, M., Jagannathan, V., Plattet, P., Neuditschko, M., SignerHasler, H., Bachmann, I., Pacholewska, A., Drögemüller, C., Dietschi, E., Flury, C., et al. (2015). A non-synonymous HMGA2 variant decreases height in Shetland ponies and other small horses. PLoS ONE, 10(10): e 0140749.
[Gaunitz et al., 2018] Gaunitz, C., Fages, A., Hanghøj, K., Albrechtsen, A., Khan, N., Schubert, M., Seguin-Orlando, A., Owens, I. J., Felkel, S., Bignon-Lau, O., et al. (2018). Ancient genomes revisit the ancestry of domestic and Przewalski's horses. Science, 360(6384):111-114.
[Genomes Project Consortium et al., 2015] Genomes Project Consortium, . et al. (2015). A global reference for human genetic variation. Nature, 526(7571):68.
[Jäderkvist et al., 2014] Jäderkvist, K., Andersson, L., Johansson, A., Árnason, T., Mikko, S., Eriksson, S., Andersson, L., and Lindgren, G. (2014). The DMRT3 'Gait keeper' mutation affects performance of Nordic and Standardbred trotters. Journal of Animal Science, 92(10):4279-4286.
[Kim et al., 2013] Kim, H., Lee, T., Park, W., Lee, J. W., Kim, J., Lee, B.-Y., Ahn, H., Moon, S., Cho, S., Do, K.-T., Kim, H.-S., Lee, H.-K., Lee, C.-K., Kong, H.-S., Yang, Y.-M., Park, J., Kim, H.-M., Kim, B. C., Hwang, S., Bhak, J., Burt, D., Park, K.-D., Cho, B.-W., and Kim, H. (2013). Peeling back the evolutionary layers of molecular mechanisms responsive to exercise-stress in the skeletal muscle of the racing horse. DNA Research, 20(3):287-298.
[Librado et al., 2015] Librado, P., Der Sarkissian, C., Ermini, L., Schubert, M., Jónsson, H., Albrechtsen, A., Fumagalli, M., Yang, M. A., Gamba, C., Seguin-Orlando, A., et al. (2015). Tracking the origins of Yakutian horses and the genetic basis for their fast adaptation to subarctic environments. Proceedings of the National Academy of Sciences, 112(50):E6889-E6897.
[Librado et al., 2017] Librado, P., Gamba, C., Gaunitz, C., Der Sarkissian, C., Pruvost, M., Albrechtsen, A., Fages, A., Khan, N., Schubert, M., Jagannathan, V., et al. (2017). Ancient genomic changes associated with domestication of the horse. Science, 356(6336):442-445.
[Mallick et al., 2016] Mallick, S., Li, H., Lipson, M., Mathieson, I., Gymrek, M., Racimo, F., Zhao, M., Chennagiri, N., Nordenfelt, S., Tandon, A., et al. (2016). The Simons Genome Diversity Project: 300 genomes from 142 diverse populations. Nature, 538(7624):201-206.
[Metzger et al., 2014] Metzger, J., Tonda, R., Beltran, S., Águeda, L., Gut, M., and Distl, O. (2014). Next generation sequencing gives an insight into the characteristics of highly selected breeds versus non-breed horses in the course of domestication. BMC Genomics, 15(1):562.
[Schubert et al., 2014] Schubert, M., Jónsson, H., Chang, D., Der Sarkissian, C., Ermini, L., Ginolhac, A., Albrechtsen, A., Dupanloup, I., Foucal, A., Petersen, B., et al. (2014). Prehistoric genomes reveal the genetic foundation and cost of horse domestication. Proceedings of the $N a$ tional Academy of Sciences, 111(52):E5661-E5669.
[Wade et al., 2009] Wade, C., Giulotto, E., Sigurdsson, S., Zoli, M., Gnerre, S., Imsland, F., Lear, T., Adelson, D., Bailey, E., Bellone, R., et al. (2009). Genome sequence, comparative analysis, and population genetics of the domestic horse. Science, 326(5954):865-867.

[^0]: Table 1: Error made at different rate of subsampling in the estimate by masking polymorphic positions of C to T substitution at the 5' end and the G to A substitutions for the simulated data using the high rates of misincorporations from the ATP2 sample.The estimate of substitutions was computed by masking potentially polymorphic and was performed using a script provided with the software package. The number reported is the ratio of the deamination rate found at that position to the one simulated. The consistent underestimate is likely due to mapping issues of the heavily deaminated aDNA fragments. RMSD stands for root-mean-square deviation.

[^1]: Table 2: Error made at different rate of subsampling in the estimate of C to T substitution at the 5 ' end and the G to A substitutions for the simulated data using the high rates of misincorporations from the ATP2 sample. The estimate of substitutions was computed by masking potentially polymorphic and was performed using a script provided with the software package. The number reported is the ratio of the deamination rate found at that position to the one found at 27 X at the same position. RMSD stands for root-mean-square deviation.

[^2]: Table 5: Error made in the estimate of C to T substitution for the Vindija 33.19 sample at different rate of subsampling. The number reported is the ratio of the deamination rate found to the one found at 24 X at the same position. The estimate of substitutions was computed by masking potentially polymorphic and was performed using a script provided with the software package. RMSD stands for root-mean-square deviation.

