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Details of the algorithm magicMap

HMM

The HMM in multiparental populations has been described in detail for haplotype reconstruction (Zheng
et al. 2015) and genotype imputation (Zheng et al. 2018a). Here we give a short summary. Conditional on
phased parental genotypes, offspring are assumed to be independent. The hidden process describes how the
ancestral origins change along the two homologous chromosomes within an offspring. It is assumed to follow
a continuous time Markov process, which is described by an initial distribution 7t and a rate matrix Q. The
initial distribution 7t is specified to be the stationary distribution of the rate matrix, so that the prior ancestral
origin process does not depend on chromosome direction. According to the theory of continuous time Markov

chain, the transition probability matrix from markers f to ¢t 4 1 is in the form of the matrix exponential
P [xii1|x, di] = eQ%,

where x; = (x}", xf ) with x}" (xf ) being the ancestral origin on the maternally (paternally) derived chromosome

at marker ¢, and d; is the genetic distance in Morgan between markers t and t + 1.

The calculation of the rate matrix Q depends the relationship between the two homologous chromosomes
within an offspring. Following Zheng er al. (2015), "depModel" denotes the ancestral origin process along
the maternally derived chromosome is completely determined by the ancestral origin process along the
paternally derived chromosome, "indepModel" denotes that the two ancestral origin processes are independent,
and "jointModel" denotes that two processes are modeled jointly. Here we assume that there is no genetic
interference. The rate matrix Q takes a general form for "jointModel". It holds that Q = Q™ ® I + I ® QP
for "indepModel", where Q™ (QP) denotes the rate matrix for the continuous time Markov processes along the
maternally (paternally) derived chromosome, & denotes the Kronecker product, and I is an identity matrix with
appropriate dimension. For "depModel", we only need to consider one representative homologous chromosome,

and the rate matrix Q = (Q™ + QP) /2 for autosomes or female X chromosomes, and Q = Q™ for male X

Genetic map construction 1
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chromosomes. The calculations of 7r, Q™, QF, and Q using the available breeding design information have

been described (Zheng et al. 2014; Zheng 2015; Zheng et al. 2018b).

For example, consider four-way RILs by many generations of selfing so that the population becomes fully

inbred. We use "depModel" for the ancestral origin process. The rate matrix is given by

-1 1/3 1/3 1/3

1/3 -1 1/3 1/3

1/3 1/3 -1 1/3

1/3 1/3 1/3 -1

and the transition probability matrix is given by

1=3r/4 /4 v/ 14
P(xpy1|xe) = e = r/4  1-3r/4 r/4 r/4
r/4 r/4 1—3r/4 r/4

r/4 r/4 r/4 1—3r/4

where the state space consists of four inbred founder origins, 1/3 denotes the probability that current state
changes into one of other three equally probable parental origins, the map expansion R denotes the average
number of recombination breakpoints per Morgan and R = 3 for four-way RILs by selfing, and the scaled

recombination fraction 7 is given by
_4R
r=1—¢ 3R

which is similar to the Haldane’s map function. Here we have scaled the recombination fraction so that the

maximum value is always 1, independent of the number of founders.
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Two-locus linkage analysis

We denote the two loci by subscripts 1 and 2. For the sake of computational efficiency in two-locus linkage
analysis but not in the final map refinement stage, we construct the transition probability from the stationary
distribution vector 7r(x) instead of the rate matrix Q, and allow only "depModel" and "indepModel". For a
maternally or paternally derived homologous chromosome, the transition probability matrix is constructed as

follow,
P|x,r) =1 -1 +r[1, @ m(x})],a=m,p

where 1, is a vector with all elements being 1, the first term on the right-hand side denotes the case of
no recombination, and the second term denotes that x5 follows the stationary distribution in the case of
recombination. For "depModel", the transition probability matrix P(x;|x1, ) is calculated as %P [xzm |x{", r] +
1

5P [xg |xf ,r} for autosomes or female X chromosome, and P [xﬂxT,r} for male X chromosomes. For

"indepModel", it is given by P [x? |x], r} ®P [xg |xf, r} .

Offspring are assumed to be independent conditional on parental haplotypes, and thus the likelihood [ for all

offspring is given by

l(rr hl/ hZ) - Hp(y(])/yg|r/h1/h2)/
(0]

P(yS,y5lr, h1, o) = Y P(y]|x1, 11, €,€p)P(y3|x2, ha, €, €p) P (22| x1, 7) 71 (x1),

X1,X2

where r is scaled recombination fraction with maximum being 1, parental haplotype h; (i = 1, 2) accounts
for missing genotypes in founders and unknown parental genotype phases, € (er) denotes the probability of
allelic errors in offspring (founders), and P(y?|x;, hj, €,er) (i = 1, 2) is the probability of genotype y¢ of
offspring o and it is described in Zheng et al. (2015, 2018a). Since the transition probability matrix element
P(x3|x1,7) is a polynomial function of r, the individual likelihood P(y{, y3|r, h1, h2) can also be expressed as
a polynomial function of r. The function is linear for "depModel" and quadratic for "indepModel". Because
both genotypes ¢ and parental haplotypes h; (i = 1, 2) take only discrete values, we calculate individual

likelihood P(y9, y5|r, h1, h2) as a polynomial function of r for all possible combinations of genotypes and
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haplotypes, which can be saved in a table to increase computational efficiency. For each pair of markers, we
estimate scaled recombination fraction r and parental haplotypes k7 and hp by maximizing the likelihood
I(r, hy, hy) using Brent’s numerical method (Brent 1973), and calculate the linkage LOD score under the null

model of r = 1.

Spectral clustering

Given the weight matrix W, we group markers based on the spectral clustering algorithm (Shi and Malik 2000)

that uses a tool called graph Laplacian. The three variants of graph Laplacians are given by

L=D-W,
Lyyw =1-D'?WD™1/2,

Lp,=1—-D"'W

where D is the degree matrix, a diagonal matrix with ith diagonal element being Zj w;j. All three graph
Laplacians are positive semi-definite and have non-negative and real-valued eigenvalues. The number of
connected components of the similarity graph is given by the number of zero eigenvalues, and the components
can be specified according to the corresponding eigenvectors. The random walk related L, is more favored
than the symmetric normalized Ly, and the unnormalized L (von Luxburg 2007), and thus it is used by default
in our method.

In relation to the variants of graph Laplacians, there are also several well-known versions of spectral
clustering algorithms. We describe as follows a modified version of spectral clustering for marker grouping

with the input being the weight matrix W and the number 7214, of groups to construct.

1. Compute the graph Laplacian L,,, from the weight matrix W.

2. Compute the first 21140, eigenvalues and eigenvectors of Ly, which are ordered with increasing
eigenvalues.

3. Select the first n1group < 1’ < 2ngr0yp eigenvectors so that the ratio of the (1 + 1) to the (n')H"

eigenvalues is a local maximum.

4. Let U be the matrix using the n’ eigenvectors as columns.

5. Cluster the rows of U with the agglomerative hierarchical clustering algorithm with linkage being average

4 Zheng et al.
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and distance metric being cosine.

where in the last step the simple k-means algorithm with the Euclidean distance that is used in the spectral
clustering (Shi and Malik 2000) is replaced by the hierarchical clustering with the cosine distance, because the
latter has been observed with better performance in our preliminary simulation studies. In addition, we select
eigenvectors in steps 2 and 3, in contrast to the usual spectral clustering algorithm that uses only the first 71group

eigenvectors; the maximum number 2740, of eigenvectors for selection is somewhat arbitrary.

Spectral ordering

In comparison with spectral clustering, spectral ordering uses a single eigenvector of graph Laplacian for
ordering vertices of a connected similarity graph. Let ¢ = (g1, 42, ..., 4n) be the relative ordering of n markers
in a given linkage group, subject to rescaling and shifting. The goal of spectral ordering is to place similar
markers in adjacent orders and to place dissimilar markers far apart. Formally, it minimizes the following

weighted sum of squares
f(q) = 5 Z(‘?i —gj)*w;j = q'Lg,

subject to the constraints g'1 = 0 and q’'q = 1, where the prime ’ denotes transpose, and 1 = (1, ..., 1). The
solution ¢ satisfies the eigenvalue equation Lg = Aq under the second constraint. The trivial eigenvector
corresponding to eigenvalue A = 0 is ¢ = 1. The markers are ordered by the element values of the Fiedler
vector, the eigenvector associated with the non-zero smallest eigenvalue (Fiedler 1973, 1989).

Ding and He (2004) described a modified version using the weighted constraints ¢'D1 = 0 and g'Dg = 1,
and the Fiedler vector satisfies L,,q = Aq. The authors have shown that the weighting leads to better ordering
because it tends to keep vertices with more edges in the middle. By default, we use the modified spectral
ordering with graph Laplacian L, since we also use L, in the spectral clustering. There are no noticeable

differences between the normalized Ly and Ly, in our preliminary studies.

Change of marginal likelihood

We calculate the marginal likelihood for an individual, since offspring are assumed to be independent given

the current phased parental genotypes. Let x; be the latent ancestral origins at locus ¢, y; be the observed

Genetic map construction 5
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genotype data, and Y, 1).; 1, be the observed genotypic data in the window of loci from £ + 1 to £ 4 w. The
standard forward algorithm recursively calculates the joint probability P(x;,y1.¢) forwardly for t =1, ..., M,
where M is the number of markers. The backward algorithm recursively calculates the conditional probability
P [y(t ). M|x,f] backwardly for t = M, ..., 1 with initial P [y( M41): M|xM} — 1. The marginal likelihood is

given by

P(y1.m) = ;P(xh}/l:t)l’ []/(m):m!xt}
t
since P [y(t+1):M|xt,y1:t} =P [y(t+1):M|xt] according to the Markov approximation.

The above calculation of P(y1.p) is valid for any locus ¢ in a given genetic map, which enables a fast way
to calculate the change Alogl of log marginal likelihood. We update inter-marker distances one by one from
left to right along chromosomes, and update local ordering by sliding a small window along chromosomes.
We first perform the backward algorithm for all offspring. Synchronizing with an update window sliding
along chromosomes, we erase the backwardly calculated P []/(t +1):M ]xt] and meanwhile update the forwardly
calculated P(x, y1.+) up to the rightmost locus ¢ of the window. For a given update window, we can calculate
the log marginal likelihood for a proposal map and thus Alogl by only re-calculating the forward probabilities

for the loci within the window.

Running setups of map construction packages

magicMap

The Mathematica command line used for magicMap is given by
magicMap [magicsnpfile, model, popdesign, ngroup, options]

where the magicsnpfile specifies the input genotypic data. For simulated data, we set model to be
"indepModel" for the F2, "jointModel" for the CP, and "depModel" for the 8-way RIL. For the real data, we set
model to be "jointModel" for the Apple CP, and "depModel" for the Arabidopsis 2-way RIL, the Arabidopsis
MAGIC, and the barley multiparental population.

The popdesign specifies the breeding design information, which is used to compute the process parameter

values of the HMM. popdesign is set to be the corresponding simulated pedigree file for all simulated

6 Zheng et al.



128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

data, the real apple CP data, and the real barley data. For the real Arabidopsis 2-way RIL, it is set to be

{"Pairing", "Pairing", "Selfing", ..., "Selfing"} where "Selfing" is repeated for
8 times. For the AI-RIL, it is set to be {"FullDiallel", "RM1-E-1000", "RM1-E", ..., "RM1-1E",
"Selfing", ...,"Selfing"} where "RM1-E" is repeated for 3 times, and "Selfing" is repeated

for 6 times. The ngroup specifies the number of linkage groups.
There are many options for magicMap to specify the details of map construction. We use default option values,
except that we set the option i sFounderInbred —-> False for the CP where two parents are outbred,

and we set minLodSegregateBin —> Automatic for the maize MAGIC and the maize EU-NAM.

MSTmap
The command line used for MSTmap is given by

MSTmap.exe input.txt output.txt

Here input file input . txt specifies genotypic data and some parameter values, and output file input .txt

outputs the constructed genetic map. We set distance_function to Haldane,missing_thresholdto

1.00,estimation_before_clusteringtono,detect_bad_datatoyes,and objective_function

to ML.

We set population_type to RIL2 for the simulated F2 and to RILS for the real Arabidopsis 2-way RIL.
For grouping from simulated data, we set cut_off_p_value to 10~ for the population size 50 and to 101
for the other population sizes, and we set no_map_dist to 15.0 and no_map_size to 2. For ordering from

simulated data, we use the grouping results of magicMap, and set cut_off_p_value to2,no_map_dist

to 10, and no_map_size to 0. For the real Arabidopsis 2-way RIL, we set cut_off_p_value to 1012

9

no_map_dist to 15.0 and no_map_size to 2.

Lep-MAP3
The command line used for Lep-MAP3 parental genotype calling is given by
java —-cp ParentCall?2 data=geno.post >geno.call

The command line used for Lep-MAP3 filtering is given by

java —-cp Filtering2 data=geno.call dataTolerance=0.001 >geno_f.call

Genetic map construction 7
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For Lep-MAP3 grouping, first run the following command line

java —-cp SeparateChromosomes2 data=geno_f.call

lodLimit=threshold sizelLimit=5 >geno_f_grouping.txt
and iteratively run the following command until the grouping does not change

java —-cp JoinSingles2All map=geno_f_grouping.txt

lodLimit=4 >geno_f_grouping iter.txt
The command line used for Lep-MAP3 ordering is given by

java —-cp OrderMarkers2 map=geno_f grouping iter.txt
data=geno_f.call numMergelterations=6

useKosambi=0 sexAveraged=1 >geno_f.order

Here input file geno . post specifies genotypic data, output file geno_f_grouping.txt saves the group-
ing, and output file geno_f.order saves the constructed genetic map. Here we set the threshold of
lodLimit to 6 for simulated data, and 8.5 for the real apple CP data. For marker ordering in the simulated

data, we use the grouping obtained from magicMap.
mpMap
The R command lines used for mpMap grouping in the simulated 8-way RIL are given by

dat.rf <- mpestrf(sim.dat)

grouped <- mpgroup (dat.rf, groups=5,clusterBy="combined", method="average")

Here the object sim. dat specifies all genotypic data and pedigree information.

The R command lines used for mpMap ordering and spacing in the simulated 8-way RIL are given by

dat.rf <- mpestrf(sim.dat))

grouped <- mpgroup (dat.rf, groups=1l, clusterBy="combined", method="average")

ordered2<-mporder (grouped, 1, type="2")
orderedml<-mporder (ordered2, 1, type="m",mapfx="haldane", window=5, repeats=1)

orderedmld<-computemap (orderedml, mapfx = "haldane",maxOffset=40))

8 Zheng et al.
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Here the object sim.dat specifies genotypic data for a given linkage group and pedigree information. The

grouping is given by magicMap.

Preparation of the real datasets

The marker data for the Arabidopsis RIL, the CP, and the barley MAGIC have been filtered by West et al.
(2006), Gardner et al. (2014), and Liller et al. (2017), respectively, and they were used directly as the test data.
For the Arabidopsis MAGIC, the markers with the number of missing founder genotypes being greater than
4 and the markers without known physical locations were deleted, there remain 1228 out of 1259 markers.
For the tomato MAGIC, 5 out of 1487 markers were deleted because offspring genotypes at those markers
are completely missing. For the maize MAGIC (Dell’ Acqua et al. 2015), we select 303 out of 529 offspring
with eight founders. And we deleted 6700 marker with missing fraction greater than 0.5, 6025 monomorphic
markers, and 36 markers with the number of missing founder genotypes being greater than 4, reducing the
number of markers from 54234 to 41473. For the marker data of the maize EU-NAM (Bauer et al. 2013), only
the markers the are present in the genetic map derived by Giraud et al. (2014) were selected. For the maize
US-NAM and the maize EU-NAM, the parental genotypes were imputed and corrected independently for each
biparental family, based on single marker analyses; the inconsistent genotypes for the shared parents were then
re-set to be missing.

To study the effects of the number of markers, we extract four sub-datasets by randomly choosing 2000,
5000, 10000, 20000 out of the 41473 markers in the maize MAGIC, and similarly for the 34223 markers in the

maize EU-NAM.

Genetic map construction 9
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(F). The gray grid lines denote the chromosome boundaries, and the dots with negative y-values denote the
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CP (C&D), and the 8-way RIL (E&F), respectively. The results are obtained from the simulated data with
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Figure S4 Effect of magicMap error correction on marker ordering. The dotted lines denote the refined
orderings without the error correction, and the solid lines denote the orderings with the error correction.
The red diamonds (#) and blue rectangles (m) refer to medium and large population sizes, respectively. The
population sizes are 100 and 200 for the F2 (A&B) and the CP (C&D), and they are 400 and 800 for the

8-way RIL (E&F).
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Figure S5 Effect of magicMap error correction on marker spacing. The y-axis denotes the ratio of estimated
total chromosome length to true value. The dotted lines denote the refined orderings without the error cor-
rection, and the solid lines denote the orderings with the error correction. The red diamonds (¢) and blue
rectangles (w) refer to medium and large population sizes, respectively. The population sizes are 100 and 200

for the F2 (A&B) and the CP (C&D), and they are 400 and 800 for the 8-way RIL (E&F).
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Figure S6 Scaling of magicMap performances with the number of markers in the maize MAGIC and the

maize EU-NAM. (A) The ordering accuracy. (B) The genetic map length.
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Table S1 List of symbols and their brief descriptions

Symbol Description
xi! Ancestral origin of the allele on maternally derived chromosome at locus ¢
xf Ancestral origin of the allele on paternally derived chromosome at locus ¢
Xt Hidden state at locus t. x; = (x}", xf )
d; Genetic distance in Morgan between loci f and t + 1
P(x) Probability that the implicit random variable takes value x
P [xp|x1,d] Transition probability matrix from random variable x; to x; for a given d value.
"depModel" Dependent model with x}" = xf
"indepModel" Independent model with P(x}", x} ) = P(x}/")P(x})
"jointModel" Joint model without assuming a simplified structure of P(x/", x})
I Identity matrix
Q" Rate matrix of Markov process along the maternal chromosome
Qr Rate matrix of Markov process along the paternal chromosome
Q Rate matrix for two homologous chromosomes under "jointModel"
Q=0"®I+ I® QP under "indepModel"
Q = (Q™ + QP) /2 for autosomes or female XX under "depModel"
Q = Q" for male X chromosome under "depModel"
t(x) Stationary distribution vector as a function of random variable x
R Expected number of recombination change-points per Morgan
r Scaled recombination fraction
f Fraction of missing offspring genotypes
€ Allelic error probability in offspring

€F Allelic error probability in founders

A Genotype of offspring o at locus i = 1,2

h; Parental haplotype at locus i = 1,2

I(r,hy, hy) Two-locus likelihood. Probability of all offspring genotypes at loci 1 and 2
G Test statistic in G-test

Csave LOD score threshold below which the results of two-locus analysis are not saved
Clinkage LOD score threshold in linkage analysis

Cindep LOD score threshold in independence tests

S Similarity matrix {s;; }

W Sparse similar matrix {w;;} obtained from S

D Diagonal matrix with ith diagonal element being Ej Wij

L Un-normalized graph Laplacian L = D — W

Lsym Symmetric normalized graph Laplacian Lgy, = I — D 12wp-1/2

L,y random walk related graph Laplacian L, = I — D™'W

kun Number of nearest neighbors

Alogl Change of log likelihood by the proposal map

T Temperature in simulated annealing

Ty Initial temperature in simulated annealing

T Freezing temperature in simulated annealing

o Cooling constant. T'— aT if T > T, and T — a3T if T < T, after each iteration
N freeze Maximum number of iterations with T' < T,
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