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S1 Master equation of the null model

In this section we present the full mathematical description of the model. As
discussed in the main text, the function Tij (see Eq. (1) in the Main Text)
gives the probability per unit time that the number of individuals carrying
the mating type i allele in the population increases by one and that of type j
decreases by one from an initial state n = (n1, n2, . . . , ni, . . . , nj, . . .), e.g.

Tij =

(
c
ni

N
+

(1− c)
2

ni

N

∑
k 6=i nk

N

)(nj

N

)
. (S1)

For ease of notation, we now introduce the probability transition rate T (n′|n),
which gives the probability per unit time that a population transitions to a
state n′ from a state n. For our model, the two quantities are related as

T (n′|n) = Tij if n′ = (. . . , ni + 1, . . . , nj − 1, . . .) ,

T (n′|n) = 0 otherwise . (S2)

The probability of being in a state n at time t, Pn(t), evolves according to
the master equation [Kam07], which can be compactly expressed as

dPn(t)

dt
=
∑

n′ 6=n

[T (n|n′)Pn′(t)− T (n′|n)Pn(t)] . (S3)

This equation can be intuitively understood as follows: The probability
of being in a state n increases with the probability that the population
transitions into state n from a state n′ but decreases with the probability
that the population was already in state n and transitioned out of it.

For arbitrary initial conditions, it is difficult to solve Eq. (S3), for Pn(t).
A simpler quantity is the stationary probability distribution P st

n , to which the
population relaxes on very long timescales. For a time-homogeneous process
P st
n is given by the solution to the set of difference equations

∑

n′ 6=n

[
T (n|n′)P st

n′ − T (n′|n)P st
n

]
= 0 . (S4)

In [CK18], it was shown that an analytic solution for P st
n was obtainable for

the model defined by Eq. (S2) (see also [CK18]: Supplementary Information).
This is given in the Main Text, Eq. (6); denoting by n↓ the vector n reordered
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with its largest elements first, the stationary distribution of the population
composition can be expressed as

P st
n ∝

M−1∏

i=1

n↓i−1∏

k=0

b(k)d (Φi − k)

b (Φi − k − 1) d(k + 1)
, (S5)

where M is the number of non-zero elements of n (i.e. the number of mating
types in state n), and b(k) and d(k) are given by

b(ni) = c
ni

N
+

(1− c)
2

ni

N

N − ni

N
, if ni ≥ 1 ,

b(ni) =
m

Mmax −M
, if ni = 0 , (S6)

d(nj) =
nj

N
, for all nj ,

(see also, Eq. (4) in the Main Text) and

Φi = N −
i−1∑

j=1

n↓j . (S7)

The parameter Mmax marks the length of the vector n (i.e. Mmax is the
number of distinct possible mating types in the model, which may exceed N).
The factor 1/(Mmax −M) in the mutation term (which is suppressed in the
main text) is an accounting term that ensures that the total population level
mutation rate is m, i.e.

Mmax∑

i=1

b(ni)δ(ni − 0) = m, (S8)

where δ(ni − 0) is the Dirac delta function. As we take the limit Mmax →∞
(see Section S3), the appearance of this factor in our transition rates does not
alter our results. The validity of Eq. (S5) as a solution can be demonstrated
by its direct substitution into Eq. (S4).
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S2 Approximation of the quasi-stationary dis-

tribution of a focal mating type

In this section we will calculate an approximate expression for the quasi-
stationary distribution of mating type alleles around one of the fixed points
(deterministic equilibria). We expect this approximation to be valid on
timescales shorter than those of mutation or extinction events.

The approximation that we will use is equivalent to the Linear Noise
Approximation (LNA) or a central limit theorem for Markov processes, see
[EK86, Kam07]. The procedure is as follows: First we apply a diffusion
approximation to Eq. (S3), to obtain a non-linear advection-diffusion equation
for the frequency of mating type alleles. Second we will linearize this resultant
equation about its fixed point value, to obtain a form of the equation that
is amenable to analytical simplifications. Since we are interested in the
distribution of mating type alleles close to the fixed point of a focal mating
type allele, we will assume both that m = 0 and that there are no extinctions
(so that M is fixed to its initial value) for the remainder of this section.

We begin by applying the diffusion approximation to Eq. (S3); we introduce
variables xi = ni/N that measure the frequency of a given mating type allele
in the population. The variables xi are approximately continuous when the
population size N is large. We transform into these variables and conduct
a Taylor expansion of Eq. (S3) in the small parameter 1/N . Truncating at
next to leading order, we obtain the following non-linear advection-diffusion
equation, the Fokker-Planck equation (FPE),

∂p(x, t)

∂τ
= −

M∑

i=1

∂

∂xi
[Ai(x)p(x, t)] +

1

2N

M∑

i,j=1

∂2

∂xi∂xj
[Bij(x)p(x, t)] , (S9)

describing the time-evolution of the continuous probability distribution of
the variables x, p(x, t). The expressions for the advection vector A(x) and
diffusion matrix B(x) can be uniquely defined from the underlying probability
transition rates Eq. (S1) using well-practiced standard methods [Kam07].

In the current notation we find that the advection vector in Eq. (S9) is
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given by

Ai(x) =
M∑

j 6=i

Tij − Tji ,

=
M∑

j 6=i

xi

[
c+

(1− c)
2

(1− xi)
]
xj − xj

[
c+

(1− c)
2

(1− xj)
]
xi ,

=

(
1− c

2

) M∑

j=1

xixj(xj − xi) . (S10)

As ẋ = A(x) in the N →∞ limit (see [MBR14]), this vector essentially gives
the deterministic dynamics of the population. Therefore solving A(x∗) = 0
allows us to calculate the deterministic fixed point of the dynamics, which we
find lies at x∗i = 1/M for i = 1, . . . ,M . Meanwhile the diagonal elements of
the diffusion matrix are given by

Bii(x) =
M∑

j 6=i

Tij + Tji ,

=
M∑

j 6=i

xi

[
c+

(1− c)
2

(1− xi)
]
xj + xj

[
c+

(1− c)
2

(1− xj)
]
xi ,

=
M∑

j 6=i

xixj

[
2c+

(
1− c

2

)
(2− xi − xj)

]
, (S11)

while the off-diagonal entries are given by

Bij(x) = − (Tij + Tji) , ∀i 6= j ,

= −
{
xi

[
c+

(1− c)
2

(1− xi)
]
xj + xj

[
c+

(1− c)
2

(1− xj)
]
xi

}
,

= −xixj
[
2c+

(
1− c

2

)
(2− xi − xj)

]
. (S12)

With the non-linear FPE for p(x, t) now defined, we proceed to linearize the
system about its deterministic fixed point.

As addressed, the deterministic fixed point of the system with M mating
types is given by x∗i = 1/M for i = 1, . . . ,M . We assume that the population
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relaxes to the vicinity of this fixed point before any mutation or extinction
events have had time to occur. If N is large, the population will then approach
a quasi-stationary distribution around this fixed point on an intermediate
timescale. Fluctuations about the fixed point will be of order 1/

√
N due to

the central limit theorem for density dependent Markov processes [EK86].
The LNA [Kam07] utilizes this fact by making the change of variables

xi = x∗i +
1√
N
ξi (S13)

to linearize the FPE around the fixed point. Neglecting terms of order 1/N
or lower, we obtain the following FPE for φ(ξ, t), the probability distribution
of ξ (see [Kam07]; Eq. (6.4) and surrounding discussion):

∂φ(ξ, t)

∂τ
= −

M∑

i,j=1

Jij
∂

∂ξi
[ξjφ(ξ, t)] +

1

2

M∑

i,j=1

Bij(x
∗)

∂2

∂ξi∂ξj
[φ(ξ, t)] , (S14)

where J is the Jacobian matrix of A(x),

Jij =
∂Ai

∂xj

∣∣∣∣
x=x∗

(S15)

As addressed, we are interested in obtaining the stationary distribution
of fluctuations about the fixed point (the quasi-stationary distribution of x
around x∗). Our first step is to obtain the stationary distribution φst(ξ) that
is the solution to Eq. (S14) at long times;

−
M∑

i,j=1

Jij
∂

∂ξi

[
ξjφ

st(ξ, t)
]

+
1

2

M∑

i,j=1

Bij(x
∗)

∂2

∂ξi∂ξj

[
φst(ξ)

]
= 0 . (S16)

Since Eq. (S16) is linear, φst(ξ) is normally distributed [Kam07], with
mean 0 and a covariance matrix, Σ, that is the solution to the following
Lyapunov equation (see [HJ91]);

JΣ + ΣJ +B(x∗) = 0 . (S17)

We now must determine the form of the matrices J and B(x∗), which can
be calculated from Eqs. (S10-S12). Substituting xM = 1−∑M−1

j=1 xj we find
that the Jacobian matrix is diagonal with

Jii = −
(

1− c
2

)
1

M
, ∀i , Jij = 0 , ∀i 6= j , (S18)
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Figure S1: Stochastic simulations (orange histograms) and analytic predictions
(blue lines) for the quasi-stationary marginal distribution of x1 in the model.
Simulation data is taken from stochastic simulations of a population sampled
once every generation for 105 generations. Analytic results are those predicted
by the linear Gaussian approximation, Eq. (S25). The population size of
N = 420 in each figure has been chosen so that the fixed point value Nx∗ is
integer in each plot. Histogram bin sizes are 1/N .

while the diffusion matrix evaluated at the fixed point is

Bii(x
∗) = (1− c)

(
M − 1

M2

)(
1− 1

M

)
+ 2c

1

M

(
1− 1

M

)
,∀i , (S19)

Bij(x
∗) = − (1− c) 1

M2

(
1− 1

M

)
− 2c

1

M2
, ∀i 6= j . (S20)

Since the Jacobian matrix can be expressed by

J (M) = −
(

1− c
2M

)
I , (S21)

where I is the identity matrix, Eq. (S17) can be simplified to

Σ =
M

(1− c)B(x∗) . (S22)

We also note that since the original model is a Moran type model in which the
number of individuals N is constant, J , B(x∗) and Σ are all (M−1)×(M−1)

7



matrices. Therefore the determinant of Σ can be calculated to be

|Σ| = 1

M

(
1 + c

1− c −
1

M

)M−1

. (S23)

This can be verified by solving the matrix of interest, i.e. for a given M with
a computer algebra program, e.g. Mathematica.

In summary, we find that the stationary distribution of ξ is given by

φst(ξ) = N (0,Σ) , (S24)

where 0 is the zero vector and Σ is given by Eq. (S22). Re-expressing this
distribution in terms of our x variables we find

pst(x) ≈ N (x∗,Σ/N) , (S25)

at intermediate times in the region of the fixed point, as illustrated in Figure S1.
Here we see that as the number of mating types in the population, M , increases,
the mean of the quasi-stationary PDF, x∗ = 1/M , approaches the extinction
boundaries. Simultaneously, increased M leads to increased variance in the
quasi-stationary PDF (see Eqs. (S19) and (S22)), though the co-variance
of the distribution decreased (fluctuations in each mating type frequency
become less correlated, see Eqs. (S20) and (S22)). The variance of the PDF
also increases as the rate of asexual to sexual reproduction increases, and
fluctuations around the fixed point frequency increase in magnitude (see
Eqs. (S19) and (S22)).

Our final step is to re-express Eq. (S25) in terms of the number of alleles
of each type in the population. Let η(M) be a vector giving an approximate,
potentially non-discrete, value of n in the region of a deterministic fixed point
with M mating types, e.g.

η(M) = Nx∗ ,

=




M elements︷ ︸︸ ︷
N

M
,
N

M
, . . . ,

N

M
, 0, 0, . . .


 . (S26)

For clarity, we choose to write this quasi-stationary distribution as

P qst(M)(n) = N (η(M), NΣ(M)) , (S27)

where the superscript (M) emphasizes that the form of this quasi-stationary
distribution and the covariance matrix change with the number of mating
types present at the fixed point.

8



S3 Approximation of the stationary distribu-

tion of the number of mating types, P st
M

In the previous two sections, we provided a solution for P st
n , the stationary

distribution of the population composition, and for P qst(M)(n), the quasi-
stationary distribution of a focal mating type. We will need both of these
solutions to obtain an expression for the stationary distribution of the num-
ber of mating types, Pst

M - our actual object of interest. These stationary
distributions of the population composition and the stationary distribution
of the number of mating types are related by

Pst
M =

∑

n∈S(M)

P st
n , (S28)

where S(M) is the set of all vectors n with M non-zero elements. In other
words, to obtain Pst

M we need to sum our expression for P st
n over all the states

that contain M mating types. As this calculation is cumbersome, we seek an
analytic approximation.

We consider the biologically reasonable parameter regime in which the
population size, N , is large and the per-generation mutation rate, mg = mN , is
small. Under these conditions the population quickly relaxes to a distribution
in the region of a deterministic fixed point following an extinction or invasion
event. We will use the expression in Eq. (S27) to approximate this quasi-
stationary distribution in the region of the fixed point. By doing so, we can
replace the sum in Eq. (S28) by a sum of Gaussian distributions (see Figure
S2).

The calculation used to obtain Eq. (S27) is based on a linearization of
the population dynamics around a deterministic fixed point. As such the
expression contains no information about how much more likely the population
is to be in the region of a given fixed point with M mating types as opposed
to in the region of a fixed point M + 1 mating types. In order to renormalize
each of the normal distributions by the appropriate amount, we “pin” the
peak of each normal distribution (see Eq. (S27)) to the height of the full
distribution, P st

n from Eq. (S5), evaluated in the region of the relevant fixed
point. Therefore, we renormalize the height of the Gaussian distribution
Eq. (S27) to the height of P st

n at n = η(M) (see Eq. (S26)). Thus, the
probability distribution in the region of a deterministic fixed point with M
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Figure S2: Figure illustrating the analytic approximation used to estimate
the distribution of P st

n and thus simplify the calculation of Pst
M via Eq. (S28).

mating types can be described by the following function

P st
η(M) exp

[
− 1

2N

(
n− η(M)

)T [
Σ(M)

]−1 (
n− η(M)

)]
, (S29)

(see Eq. (S27)). Now, the probability of being in the region of a specific fixed
point with M mating types is simply the above function integrated over all n:

P st
η(M)

∫ ∞

−∞
. . .

∫ ∞

−∞
exp

[
− 1

2N

(
n− η(M)

)T [
Σ(M)

]−1 (
n− η(M)

)]

dn1 . . . dnM−1

= P st
η(M)

√
(2πN)M−1| [Σ(M)] |

= P st
η(M)

√
(2πN)M−1

1

M

(
1 + c

1− c −
1

M

)M−1

=
P st
η(M)√
M

[
2πN

(
1 + c

1− c −
1

M

)](M−1)/2
. (S30)

Eq. (S30) approximates the probability of being in the region of a particular
fixed point with M mating types. The probability of the population having
M mating types is therefore given by Eq. (S30) multiplied by the number
of fixed points with M mating types. Recall that we introduced Mmax as a
temporary parameter capturing the length of the vector n (we will shortly
take the limit Mmax → ∞). The number of ways of choosing a fixed point
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containing M distinct present mating types from Mmax potential mating types
is then given by the Binomial coefficient, such that

Pst
M =

∑

n∈S(M)

P st
n

≈
(
Mmax

M

)
P st
η(M)√
M

[
2πN

(
1 + c

1− c −
1

M

)](M−1)/2
. (S31)

We now proceed to calculate P st
η(M) explicitly.

By substitution of the functions b(k) and d(k) into Eq. (S5), we find after
some algebraic simplification [see [CK18]: Eq. (S35)] that

P st
n ∝

{(
2mN

Mmax −M

) [(1+c
1−c

)
N
]
!

(1 + c)

}(M−1) [
2

(
c

1− c

)
N

]
!×

M∏

i=1

{
1

n↓i

}


1[(
1+c
1−c

)
N − n↓i

]
!



 .

It is therefore straightforward to show that

P st
η(M) ∝

(
1

Mmax −M

)M−1

ΩM (S32)

where

ΩM =

{
2mN

1 + c

[(
1 + c

1− c

)
N

]
!

}(M−1) [
2

(
c

1− c

)
N

]
!×

(
M

N

)M {[
N

(
1 + c

1− c −
1

M

)]
!

}−M
.

Upon substitution of Eq. (S32) into Eq. (S31), we find

Pst
M ∝

(
Mmax

M

)(
1

Mmax −M

)M−1
ΩM√
M

[
2πN

(
1 + c

1− c −
1

M

)](M−1)/2
.(S33)

As Pst
M is proportional to the function on the right hand side of Eq. (S33),

we can divide through this function by a constant. We choose the binomial
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coefficient
(
Mmax

1

)
. The terms involving Mmax in Eq. (S33) can then be

considered separately, and the limit Mmax →∞ taken;
(
Mmax

1

)−1(
Mmax

M

)(
1

Mmax −M

)M−1

=
Mmax→∞

1

M !
. (S34)

Thus, for Mmax → ∞, our final expression for the approximate stationary
distribution of the number of mating types is

Pst
M =

1

M
1√
M

[
2πN

(
1 + c

1− c −
1

M

)](M−1)/2(
M

N

)M (
2mN

1 + c

)M−1

× 1

M !

{[
N

(
1 + c

1− c

)]
!

}M−1{[
N

(
1 + c

1− c −
1

M

)]
!

}−M
(S35)

where we have also absorbed any constant terms that do not involve M
(e.g. [2cN/(1− c)]!) into the normalization factorM, which is defined so that

N∑

M=1

Pst
M = 1 . (S36)

Eq. (S35) can be further simplified by noting that if N is large the terms
in the final two factorials are large when M ≥ 2. We may then express these
factorials using the Stirling approximation [AS65];

[
N

(
1 + c

1− c

)]
! ≈

[
2πN

(
1 + c

1− c

)]1/2 [
N

e

(
1 + c

1− c

)]N(1+c)/(1−c)

,

[
N

(
1 + c

1− c −
1

M

)]
! ≈

[
2πN

(
1 + c

1− c −
1

M

)]1/2
×

[
N

e

(
1 + c

1− c −
1

M

)]N( 1+c
1−c
− 1

M )
.

Substituting these expressions into Eq. (S35), we find after some algebra that
for M ≥ 2,

Pst
M ≈ (2π)

M
2
−1

M

(
2m

1 + c

)M−1
MM− 1

2

M !

[(
1+c
1−c

)M−1
1+c
1−c − 1

M

]1/2
×

N (M−1)/2



(

1 + c

1− c −
1

M

)( 1+c
1−c

1+c
1−c − 1

M

)M 1+c
1−c




N

, (S37)
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where we have again absorbed any terms independent of M into the normal-
ization factor M. We can see that Eq. (S37) matches the full expression in
Eq. (S35) very well (see also Figure 1 in the Main Text).

13



S4 The mode of the stationary distribution

of the number of mating types

Since the distribution Pst
M is unimodal (see Figure 1, Main Text), determining

the mode of Pst
M , amounts to obtaining the first value of M for which

Pst
M+1 < Pst

M . (S38)

This can be obtained with a simple numerical algorithm. Alternatively, we
can assume that M is approximately continuous and solve

Pst
M+1 = Pst

M . (S39)

We introduce rM as

rM =
Pst

M

Pst
M−1

. (S40)

Solving Eq. (S39) is equivalent to finding the root of the following expression

rM − 1 = 0 . (S41)

To this end we seek to simplify our expression for rM .
Note that as rM involves the ratio of terms in Pst

M , the normalization
factor M cancels. We obtain

rM =
√

2π
2m

1 + c

(
1 + c

1− c

)N( 1+c
1−c)+

1
2
(
M − 1

M

) 3
2
−M
(

1+c
1−c − 1

M
1+c
1−c − 1

M−1

)− 1
2

×

1√
N



(

1+c
1−c − 1

M
1+c
1−c − 1

M−1

)−M( 1+c
1−c)+1(

1 + c

1− c −
1

M − 1

)− 1+c
1−c




N

. (S42)

Substituting Eq. (S42) into Eq. (S41), we find that a single root exists for
M that gives the mode number of mating types that is straightforward to
compute numerically with a standard root finding algorithm.
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S5 Establishment probabilities

In the following we compute the establishment probability of a novel mating
type in the population. We consider the case of facultative sex, i.e. the
probability for asexual reproduction is given by c ∈ (0, 1]. Since the internal
fixed point is stable in this case, see for example [IS87, Mating kinetics I], the
calculation of the survival probability of the invading type gives a reasonable
approximation of the establishment probability. Initially, when the mutant is
still rare, the mutant individuals evolve independently. Hence, the mutant
dynamics can be described by a branching process. For a general introduction
on branching processes we refer to [HJV05, All11].

The birth and death probability for a rare invading mating type in a
population of M resident mating types can be written in terms of the transition
probabilities given in Equation (S1). Assuming that the novel mating type
has the index M + 1 and is present in k copies we find that it increases by
one with rate

T+
k =

M∑

j=1

T(M+1)j =
M∑

j=1

(
c
k

N
+

(1− c)
2

k

N

∑M
i=1 ni

N

)(nj

N

)
, (S43)

and decreases by one with rate

T−k =
M∑

j=1

Tj(M+1) =
M∑

j=1

(
c
nj

N
+

(1− c)
2

nj

N

∑
i 6=j ni

N

)(
k

N

)
. (S44)

Assuming that the resident mating types are in the stationary state, i.e. setting
nj = N

M
for all resident mating types and therefore having

∑M
j=1 nj/N = 1 we

find

T+
k ≈ c

k

N
+

1− c
2

k

N
=

k

N

(1 + c)

2
(S45)

and

T−k ≈ c
k

N
+
k

N

(1− c)
2

M∑

j=1

nj

N

N − nj

N

≈ c
k

N
+
k

N

(1− c)
2

(
1− 1

M

)

=
k

N

(1 + c)

2

(
1− 1

M

)
+
k

N

c

M
.

(S46)
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Using the formula for the probability of extinction in a birth-death process
(see e.g. [All11, Theorem 6.2])

pext =

∑∞
k=1

T−1 ···T
−
k

T+
1 ···T

+
k

1 +
∑∞

k=1

T−1 ···T
−
k

T+
1 ···T

+
k

, (S47)

we see that it depends on the ratio of the rates given in equations (S45)
and (S46). We obtain

T−k
T+
k

=
k
2
(1 + c)

(
1− 1

M

)
+ kc

M
k
2
(1 + c)

=

(
1− 1

M

)
+

2c

M(1 + c)
= 1− 1− c

M(1 + c)
.

(S48)
Then equation (S47), using the geometric series, simplifies to

pext =

1

1−(1− 1−c
M(1+c))

− 1

1 +

(
1

1−(1− 1−c
M(1+c)

)
− 1

) = 1− 1− c
M(1 + c)

. (S49)

This results in a survival probability of

psurv = 1− pext =
1

M

(1− c)
(1 + c)

. (S50)

Since QEst
M equals the survival probability of this process we have found the

expression in Eq. (13) from the Main Text.
We note that for c = 1, i.e. exclusively clonal reproduction, our model

reduces to a multi-allelic Moran model. In this setting the establishment
probabilities can not be calculated via the here implemented approach.
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S6 Breakdown of the mean extinction time

calculation

In the main text, we calculate an approximation for the mean extinction
time as a function of the population size, N , rate of asexual reproduction
c and number of resident mating types, M (see Eq. (18)). We also show
that in certain regions of parameter space, this approximation breaks down
(see Eq. (20)). In these parameter regions, in which genetic drift dominates
the dynamics, the mean time to extinction of a resident allele is better
approximated by the neutral multi-allelic Moran model (see below).

In the following we show that it is the inaccuracies of our quasi-stationary
linear approximation for the distribution of mating type allele frequencies
about deterministic fixed points (see Section S2) that drives this break down.
This approximation assumes that a given fixed point of the deterministic
system is sufficiently stable that the distribution of allele frequencies around
this fixed point can be well captured by a Gaussian (normal) distribution
(see Eq. (S25)). Clearly this local description of the distribution does not
account for the behaviour of the system at the extinction boundaries. When
population sizes are high, rates of asexual reproduction low, and the number
of resident mating types small, the probability mass predicted by the Gaussian
approximation at these extinction boundaries is negligible. In this regime
our approximation continues to be accurate, as illustrated in Figure S1.
However, outside this range (i.e when N is low, c high, or M large), the
variance of the Gaussian approximation becomes sufficiently large that non-
negligible probability mass is predicted at the boundary (see Figure S3). These
parameter regions correspond to areas where drift dominates the dynamics.

In regions of parameter space where the Gaussian approximation becomes
inaccurate, we expect our expression for the distribution of mating types, Pst

M ,
(which relies on the Gaussian approximation, see Eq. (S28) and the subsequent
calculations) to also become inaccurate. However, as these inaccuracies occur
in biologically less interesting regions of parameter space where mating types
are frequently becoming extinct, they do not affect the dominant modes of
Pst

M (see Figure 1 in the Main Text). In contrast, in our investigation of
extinction times we are sometimes probing very unstable configurations of
the resident mating types (see Figure 5 in the Main Text), and thus the
approximation breaks down in these parameter regions.

We now show that it is indeed the Gaussian approximation for the quasi-
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Figure S3: Figure illustrating the breakdown in the quasi-stationary ap-
proximation for the distribution of alleles around a fixed point, P qst(n) (see
Eq. (S27)). We consider two mating types in a fairly small population, M = 2,
N = 200. For c = 0, the approximation remains physically reasonable. As c is
increased however, a non-negligible amount of probability mass builds up on
the boundary relative to that at the fixed point around which the distribution
is centered (that is, the ratio of P qst(2)(η(1)) to P qst(2)(η(2)) tends to one). A
similar pattern can be observed as N decreases and M increases.

stationary distributions of mating type allele frequencies about deterministic
fixed points that drives the breakdown of the extinction time calculation. In
Figure S4 we plot the probability mass predicted by the Gaussian distribution
at an extinction boundary relative to the distribution’s value at the corre-
sponding fixed point. This quantity should be very low for the approximation
to remain physically reasonable (i.e. there should be very little mass at the
extinction boundary), while it approaches one as the predicted distribution
becomes increasingly flat and inaccurate. We observe that high values of
predicted probability mass at the extinction boundary coincide with regions
where our prediction for the mean time to extinction, Eq. (18), break down,
and the neutral theory becomes more appropriate (see Eq. (20)).
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Figure S4: Figure illustrating the coincidence of the breakdown in the quasi-
stationary approximation for the distribution of alleles around a fixed point,
P qst(n) (see Eq. (S27)). The colorbar indicates the probability mass predicted
by the quasi-stationary distribution at the nearest extinction boundary, rela-
tive to the probability mass at the center of the quasi-stationary distribution
(i.e. at the deterministic fixed point). Low values (in white) are associated
with regions of parameter space where the quasi-stationary distribution re-
mains reasonable. High values (in deep blue) are associated with regions
where the quasi-stationary distribution becomes a poor approximation (see
Figure S3). Areas to the top left of the red dashed lines are those where the
conditions in Eq. (18) are violated (that is, our approximation for the mean
time to fixation breaks down).
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S7 Neutral mean extinction time

We derive an approximation for the neutral mean extinction time as given
in Eq. (19) in the Main Text. Therefore, we identify our process with the
multi-allelic neutral Moran model. This model has been analysed in detail
in [BBM07]. Using their Eq. (44) and plugging in our parameter values, i.e.
x(0) = x∗ = 1/M and r = 1 we find

τ = −N
M−1∑

s=1

(−1)s−1
(
M

s

)
s

M
log
( s
M

)
, (S51)

which is the result in Eq. (19) from the Main Text. Note, that there is a
time-scale difference of 1/2 between their model (Wright-Fisher diffusion) and
our implementation (Moran model) explaining. Furthermore, we consider the
dynamics on the original time-scale resulting in the factor N in front of the
sum (see also their comment preceding their Eq. (2)).
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S8 The stationary distribution P st
M for the pa-

rameters given in Table 1.
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Figure S5: Theoretical distributions for Pst
M (see Eq. (9) in the Main Text)

using parameter values from Table 1 in the Main Text. Panel top-left ((1−
c) = 1/2000): parameters estimated for S. cerevisiae. Panel top-right ((1−
c) = 1/770): parameters estimated for C. reinhardtii. Panel bottom-left
((1−c) = 1/100): parameters estimated for Tetrahymena. Panel bottom-right
((1 − c) = 1): parameters estimated for S. commune. Note that for clarity
the scale of the M axis changes between panels. Also note that for the final
panel (bottom-right) the region 100 ≤M ≤ 400 has been omitted.
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