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Supplemental Methods

Selective sweep - integrated haplotype score (iHS). The integrated haplotype

score, or iHS, measures local haplotype diversity within a single population, and is

designed to detect recent hard selective sweeps that reduce local haplotype diversity

(Voight et al. 2006). iHS is a measure of the amount of extended haplotype homozygosity

(Sabeti et al. 2002) at a given SNP along the ancestral allele relative to the derived allele

(Voight et al. 2006). iHS was calculated with scikit-allel v1.1.10.

Selective sweep - H12. The test statistic H12 estimates haplotype homozygosity by

combining the frequencies of two most frequent haplotypes into a single frequency and

adding it to the total haplotype homozygosity (Messer and Petrov 2013; Garud et al.

2015). The H12 statistic increases with strong and recent adaptation (Schlamp et al. 2016),

and has similar sensitivity for both hard and soft sweeps, as long as the latter only

comprise a few frequency components (Messer and Petrov 2013; Garud et al. 2015). H12

was calculated with scikit-allel v1.1.10.

Selective sweep - H2/H1. The test statistic H2/H1 compares the haplotype

homozygosity using all but the most frequent haplotype to the total haplotype

homozygosity (Messer and Petrov 2013; Garud et al. 2015). This value is expected to be

small for hard sweeps (when H1 is large because one haplotype reaches high frequency in

the sample) and large for soft sweeps (because multiple adaptive alleles arise on different

haplotypes simultaneously, resulting in two or more common haplotypes at similar

frequency) (Messer and Petrov 2013; Garud et al. 2015). H2/H1 was calculated with

scikit-allel v1.1.10. Because the simulations only included hard sweeps, this statistic was

transformed to −log10(H2/H1) for performance evaluation.

Differentiation outlier - OutFLANK (FST ). OutFLANK seeks to identify loci with

larger FST than expected by neutrality (Whitlock and Lotterhos 2015). The program

assumes that the neutral FST is chi-squared distributed, and the neutral parameterization

uses maximum likelihood to estimate the mean FST and degrees of freedom for neutral loci

by trimming off the tails of the FST distribution. These parameters are then used to
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calculate P -values for all loci. Individuals were grouped into populations based on

proximity to each other on the landscape (Figure 1). The nave approach was evaluated

using the −log10 P -values that resulted from running the algorithm on all SNPs. The best

practice was evaluated using the −log10 P -values that resulted from running the algorithm

in two steps: first, using a quasi-independent set of thinned SNPs to estimate the neutral

mean FST and degrees of freedom, and then second, using these estimates to parameterize

the chi-square distribution for obtaining P -values for all SNPs. In both cases, default

values were used for trimming (He ¿ 0.1, and left and right trim fractions of 0.05). The

algorithm was implemented with the R package OutFLANK v0.2.

Differentiation outlier - PCAdapt. PCAdapt seeks to identify loci that have outlier

loadings along PC axes that describe population structure, and does not require

individuals to be assigned to populations (Duforet-Frebourg et al. 2014; Luu et al. 2017).

For each SNP, the procedure computes a Mahalanobis distance on a vector of z-scores that

corresponds to the z-scores obtained when regressing a SNP by the K PCs. The neutral

parameterization in this case are the PC axes that describe population genetic structure.

P-values for each locus are obtained from a chi-squared distribution with K degrees of

freedom. I chose the best value of K based on a scree plot according to Cattells rule

(Cattell 1966) and determined K = 3. The algorithm was implemented with the

‘snp pcadapt’ function in the R packages bigsnpr v 0.2.1 and bigstatsr v 0.2.3 (Priv et al.

2018). The nave approach was evaluated using the −log10 P -values that resulted from

running the algorithm on all SNPs with MAF > 0.01. The best practice was implemented

by using the quasi-independent thinned set of SNPs to estimate the PC axes, and then

using these obtain −log10 P -values from the regression for all SNPs with MAF > 0.01 (note

that the method used for SNP thinning was more comprehensive than that implemented

with the LD.clumping option in the new version 4.0 of the R package pcadapt).

Differentiation outlier - BayPass (XTX). BayPass (v2.1) implements the model of

Bayenv2 (Gnther and Coop 2013) as well as some extensions (Gautier 2015). The XTX

measures the degree to which loci are differentiated among populations, with neutral
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parameterization described by the covariance in allele frequencies among populations.

BayPass was implemented with the standard model with default settings. The nave

approach was evaluated using the XTX values that resulted from running the algorithm on

all SNPs with MAF > 0.01. The best practice was implemented by using the

quasi-independent thinned set of SNPs to estimate the covariance matrix, and then using

these to calculate XTX for all SNPs with MAF > 0.01.

GWAS - LFMM ridge and LFMM lasso. Ridge regression and lasso are two

different methods for adjusting for coefficient inflation in large data sets with collinear

predictor variables (Caye et al. 2018). Ridge regression adjusts for coefficient inflation by

minimizing the residual sum of squares of predictors with a ridge penalty, which adjusts all

model coefficients by a shrinkage term (thus either all predictors are included in the final

model, or none are). Lasso adjusts for coefficient inflation by minimizing the residual sum

of squares with a lasso penalty, which is equal to the sum of absolute value of model

coefficients (thus, the resulting coefficients for some predictors could be near zero,

indicating they are dropped from the model). I implemented both types of regression in

the R package lfmm v 2.0, with the functions ‘lfmm ridge’ and ‘lfmm lasso’ (Caye et al.

2018), with K = 3 for consistency with other methods.

GEA- latent-factor mixed model. A genetic-environment association (genotype as a

function of population-mean environment) was implemented with a latent factor mixed

model (LFMM) with the function lfmm in the R package LEA v 1.8.1 (Frichot and Franois

2015). The GEA was modeled as a Bayesian hierarchical model in which the LFMM

parameters were estimated with a Gibbs sampler algorithm (Frichot et al. 2013). The

number of latent factors was chosen by the cross-entropy criterion, which approximates the

number of ancestral populations (and is closely linked to the number of principal

components that explain variation in the genomic data, Frichot and Franois 2015). Based

on this criterion and for consistency with pcadapt, I chose K = 3. The algorithm

calculates z-scores for each locus and the corresponding P -values, which were averaged over
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3 replicate runs. Similar to the GWAS models, the latent factors and model coefficients are

estimated jointly, and the algorithm can only be run on all SNPs at the same time.

GEA - BayPass (Bayes Factor). BayPass also allows to test for associations with

population-specific covariates, and for each locus calculates a Bayes Factor (BF ) that

reflects the degree of support for the hypothesis that the association does not equal zero,

compared to the hypothesis that the association equals 0. We ran BayPass with the

covariate being the population-mean environment (GEA). The nave approach and best

practice were implemented as described for XTX above, except the evaluation was done on

log10(BF ) instead of XTX.

GEA - Spearmans ρ. The nonparametric rank-order association was calculated with

Spearmans ρ between genotype and environment for each SNP. This measure does not

correct for population structure.

GEA - Redundancy analysis. Redundancy analysis (RDA) is a method to extract

and summarize the variation in a set of response variables that can be explained by a set of

explanatory variables (Legendre and Legendre 2012). In this case, the response variables

are the SNPs and the explanatory variable is the environment. Each SNP receives a

loading on the constrained axis (e.g., the environmental predictor) and a loading on many

unconstrained axes (e.g., principal components that capture structure in the SNP data).

The loading on the constrained axis was used to evaluate performance of the RDA. RDA

was implemented following the recommendations of Forester et al. (2018) using the rda

function in the R package vegan v2.5.2. Note that RDA can only be performed on one set

of SNPs as implemented in this function, so all SNPs were used for this analysis. Note that

RDA does not have a neutral parameterization or correction for population structure in the

association test, but Forester et al. (2018) found that including a structure correction in

the RDA actually reduced power.
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1. Supplementary Figures

Haplotype frequency at inversion
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Supplementary Figure 1. The distribution of minor haplotype frequency
at the inversion (top) and number of generations since the origin of the inver-
sion (bottom).
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Supplementary Figure 2. The distribution of frequencies and effect sizes
for different categories of causal loci across all replicate simulations. Rare
alleles were categorized as loci with less that a frequency of 1%, while common
alleles had a frequency of greater than 1%. Loci were further categorized
whether they explained greater or less than 1% of the additive genetic variance.
The bottom panel is zoomed in on alleles with low minor allele frequency of
the derived allele (left side of top plot).
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Supplementary Figure 3. The proportion of additive genetic variance ex-
plained by different categories of loci across a subset of replicate simulations.
For definition of categories see main text.
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Allele frequency
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Supplementary Figure 4. Distributions of (A) the final allele frequency
of the full sweep simulated on LG-5, (B) for fixed mutations, the number of
generations since fixation for sweep mutations simulated on LG-5, and (C) the
final allele frequency of the partial sweep simulated on LG-6.
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Supplementary Figure 5. Manhattan plot for selective sweep methods.
The purple arrows show the locations of the hard sweeps. The orange arrows
show the locations of the QTNs, and the arrow thickness is proportional to
the percent of the additive genetic variance explained by each QTN.
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Supplementary Figure 6. Scatterplot of the empirical quantile of each
statistic (relative to neutral loci) as a function of minor haplotype frequency
at the inversion. Lines show best fit linear model.
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Supplementary Figure 7. Manhattan plots for differentiation outlier
methods from one replicate simulation. The orange arrows show the loca-
tions of the QTNs, and the arrow thickness is proportional to the percent of
the additive genetic variance explained by each QTN. The purple arrows show
the locations of the selective sweeps. The “naive” approach used all SNPs for
neutral parameterization, while the “best practice” used a set of SNPs that
had been thinned for LD for neutral parameterization.
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Supplementary Figure 8. Manhattan plots for association methods for
one replicate simulation. The orange arrows show the locations of the QTNs,
and the arrow thickness is proportional to the percent of the additive genetic
variance explained by each QTN. The purple arrow shows the location of the
selective sweep. The “naive” approach used all SNPs to estimate the neutral
population structure, while the “best practice” used a set of SNPs that had
been thinned for LD.
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Supplementary Figure 9. Loadings of loci onto the unconstrained axes
(e.g., PC axes) from the Redundancy Analysis (RDA) across all replicate sim-
ulations. Each panel shows the frequency distribution of genomic locations
that had outlier PC loadings (95%) for that scenario. A) Loadings on the
first unconstrained axis. B) Loadings on the second unconstrained axis. C)
Loadings on the third unconstrained axis.
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