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selective sweeps and background selection  

 

S1. Approximations for the effect of BGS 

Here we use Equation 7 of Nordborg et al. (1996), modified to include a contribution from 

gene conversion to the frequency of recombination, plus an additional term arising from 

deleterious mutations that were in initially in repulsion with a new neutral variant (Santiago 

and Caballero 1998; Charlesworth 2012b). This was overlooked in the treatment of BGS by 

Hudson and Kaplan (1995) and Nordborg et al. (1996), but can play a significant role with 

diploidy. With low frequencies of recombination, this term is negligible, but we are dealing 

cases in which the map length can be considerably larger than one, because of the rescaling 

of the deterministic parameters in the simulations. 

  For a given class of deleterious mutations with selection coefficient t, occurring at 

a net rate Ut over the region in question, the Nordborg et al. equation is:  

 

             Et1 ≈
Utt
l
{ dz

[t + g(1− t)+ c(z)(1− t)]20

Pl

∫ +
dz

[t + g(1− t)+ c(z)(1− t)]20

Ql

∫ } (S1a)  

                      

where l is the length of the region in basepairs, Pl is the distance from the left-hand end of 

the region to the location of the neutral site, and Q = 1 – P. The other variables are defined 

before Equation 1 in the main text. 

 Using the expression for the second BGS term (Charlesworth 2012b), there is an 

additional contribution of: 

 

Et2 ≈
Ut t
l
{ [t + 2g(1− t)+ 2c(z)(1− t)]2dz

[t + g(1− t)+ c(z)(1− t)]20

Pl

∫ +
[t + 2g(1− t)+ 2c(z)(1− t)]2 dz
[t + g(1− t)+ c(z)(1− t)]20

Ql

∫ } (S1b)  

 

 Assuming a fixed rate g of gene conversion (see Theoretical Results section of the 

main text), and transforming to x = exp(–2rcz), the indefinite integral corresponding to the 

integrals inside the braces in Equation S1a can be written as: 

                                  I1 = (−2rc )
−1 dx

x[t + g(1− t)+ 1
2 (1− x)(1− t)]

2∫ (S2a)  
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Writing a = t + g(1 – t) + ½ (1 – t) = ½ (1 + t) + g(1 – t)  and b = – ½ (1 – t), we have: 

 

                             I1 = (2rc )
−1{ 1

a2
ln(a+ bx

x
)− 1

a(a+ bx)
} (S2b)   

  

 Similar calculations can be done for the case of a linear relation between map 

distance and physical distance, such that c(z) = rc z. In this case, we replace a and b with 

a´= t + g(1 – t), b´ = 1 – t,  and write y = rc z, giving the equivalent of Equation S2b as: 

                                                   
ʹI1 = (−rc )

−1( ʹa + ʹb y)−2 ( ʹb ≠ 0) (S2c)
ʹI1 = rcy ( ʹb = 0) (S2d)  

  

 The definite integrals in Equation S1a sum to I[x(Pl)] + I[x(Ql)] – 2I[x(0)], where 

x(0) = 1, x(Pl) exp(–2rcPl) and x(Ql) = exp(–2rcQl). In order to avoid complicated 

integrations, we assume that the mean effect of  BGS over the whole region can be 

approximated by the value for P = Q = ½, as suggested by Figure 2 of Nordborg et al. 

(1996). Equation S1a then gives: 

 

                                E1t ≈ 2Uttl
−1{I[x(l)− I[x(0)]} (S3) 	

	
	 Following Nordborg et al. (1996), Equations S2 can be simplified when  

M(1 – t) >> t  + g(1 – t), to give the following expression for E1t for the linear map model 

(terms in gt have been neglected):  

 

																																																																					
E1t ≈ 2Utt(t + g)

−1M −1 (S4a)
	

 

Using the Taylor series expansion of E1t with respect to t, we obtain the following 

approximation to the expectation of E1t over the distribution of t  for the linear map: 

	

	 	 																		E1 ≈ 2Ut (g+ t )
−1[ t − gV (t)(g+ t )−2 ] (S4b) 	

 

where V(t) is the variance of t over the truncated gamma distribution of mutational effects 

on fitness. For ease of numerical work, V(t) can be further approximated by the variance of 
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the untruncated gamma distribution. Equation S4b is, however, not necessarily accurate for 

the rescaled parameters used in the simulations, since the condition on the relation between 

M and t is likely to be violated (see Table S2).	 	 	 		 

	 We now consider the second contribution to the BGS effect. The indefinite integral 

in Equation S1b can be evaluated in the same way as for Equation S1a. For the Haldane 

mapping function, the numerator of Equation S1b is a quadratic in  x, giving: 

 

                               
I2 = (−2rc )

−1 (d 2 + 2dex + e2x2 )dx
x(a+ bx)2∫ (S5a)

 

where d =1 + 2g(1 – t) and e = – (1 – t). 

 The first component in the numerator simply contributes d2E1t  to the final 

expression for the net contribution to the BGS effect, E2t. The second component involves: 

 

                          rc
−1d(1− t) dx

(a+ bx)2∫ = −
d(1− t)

rcb(a+ bx)
(S5b)                                             

	 	

 The third component involves: 

                           

(−2rc )
−1e2 xdx

(a+ bx)2∫

=
e2

2rcb
2 { a
(a+ bx)

+ ln(a+ bx)} (S5c)
 

  

After multiplication by Utt, the corresponding definite integrals between x = 1 and x = 

exp(- rcl) can be used to calculate the relevant contributions to E2t, in the same way as for 

E1t.  

 The final value for the BGS effect for a given t is  Et = E1t + E2t. It is useful to note 

that l can be written as M/rc, where M is the map length of the region in question, so that the 

factor of rc in Equations S2 and S5 can be cancelled, and M substituted for l in the divisor 

of Equations S1 and S3. 

	 For the linear map model, d and e in Equations S5 are replaced with d´ = t + 2g(1 – 

t) and e´ = 2(1 – t). When t = 1 (b´ = 0 ), the integral is given by Equation S2d. Otherwise, 

a contribution of d´2 is added to the term arising from Equation S2c, as with the Haldane 

mapping function, and the relations corresponding to Equations S5b and S5c are: 
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2 ʹd ʹe
rc ʹb

2 {ln( ʹa + ʹb y)+ ʹa
( ʹa + ʹb y)

} ( ʹb ≠ 0) (S5d)  

                           
ʹe 2

rc ʹb
3 { ʹa + ʹb y− 2 ʹa ln( ʹa + ʹb y)− ʹa 2

( ʹa + ʹb y)
} ( ʹb ≠ 0) (S5e)                    	

The definite integrals for the linear model are evaluated between y = 0 and y = ½l; 

otherwise, the same procedure as for the Haldane mapping function is used.  

 When linkage is tight, the denominator and numerator in Equation S1b for both 

mapping functions are approximately equal. This implies that the final contribution in both 

cases is approximately equal to 2Utt, which is equal to the additive genetic variance (VA) 

contributed by the whole region (Mukai et al. 1972; Santiago and Caballero 1998; 

Charlesworth 2012a). The expected value of E2t over the distribution of t is thus:  

   

                                                    E2 ≈ 2Ut t =VA (S6)  
 

For completely free recombination, the contribution is four times this expression (Santiago 

and Caballero 1998; Charlesworth 2012a). Use of VA thus provides a conservative 

approximation.  

 The results in Table S2 show that the full treatment of the linear model gives quite 

accurate fits to the simulation results for the lower crossing over rates, but becomes 

somewhat inaccurate for the two highest values, as might be expected since it overestimates 

the amount of crossing over when there is no interference. 

 

S2.  Variance of the first passage time of a neutral mutation and variance of the time 

to fixation following the first stochastic phase 

Following Kimura and Ohta (1973), the time T(x) that a mutation with initial frequency 

1/(2N) spends between 1/(2N) and a higher frequency x, conditional on not returning to a 

frequency below 1/(2N), is given by the relation: 

 

                                                          Tf (1 / 2N ) = T (x)+Tf (x) (S7)  
 
where Tf(p) is the time to fixation of a variant with initial frequency p. 

 Since Tf(1/2N) and Tf(x) are generated by independent stochastic events, the 

variance of T(x) is: 
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                        V{(T (x)} =V{Tf (1 / 2N )}−V{Tf (x)} (S8a)  

Using Equation 11 of Kimura and Ohta (1973) for the mean time to fixation of a neutral 

mutation, the mean value of T(x) is approximately B1x if x and 1/(2N) are both << 1, as in 

the case of interest here. When x = (B2γ)–1, B1x = λγ–1 (with λ = B1/ B2). Their Equation 14 

gives the mean square of the fixation time for an assumed initial frequency. Using these 

expressions and neglecting second-order terms, after some tedious algebra we obtain: 

               V{(T (x)} ≈ 1
3 B1

2x2 (S8b)   

 

 Putting B1x = λγ–1, we have: 

                                         V{(T (x)} ≈ 1
3 B1

2x2 (S9) 	
	 	

	 This expression gives an approximation for the variance of the time taken up by the 

first stochastic phase of an adaptive substitution. We can also find an expression for the 

variance in the duration of the deterministic phase, resulting from variation in the frequency 

of A2 at the end of the first stochastic phase (Martin and Lambert 2015). Using the 

argument leading to Equation 3, this time is given approximately by
 
4γ–1 ln(q0), where q0 is 

the initial frequency of A2 at the end of the first stochastic phase. Since q0 is exponentially 

distributed, with mean (B2γ)–1 and variance (B2γ)–2 (Martin and Lambert 2015), the delta 

method for approximating the variance of a function of a variable with known variance 

gives the variance of ln(q0) as ≈ 1, and the variance of this component of the fixation time 

as 16γ–2. 

                                      

S3. Coalescence of a swept allele during the sweep 

The mean coalescent time for a population of varying size can be approximated by 

replacing Ne by the harmonic mean of the effective population sizes over the period in 

question (Slatkin and Hudson 1991). We consider a lineage at the time of completion of a 

sweep, assuming that it traces its ancestry back to the selectively favored allele A2 at the 

end of the first stochastic phase, i.e. conditional on no recombination having occurred. The 

neutral effective population size for this lineage during the second stochastic phase is close 

to 2B1, and the duration of this phase (section S2) is approximately λγ–1, so that the net 

contribution to the integral of the reciprocal of the neutral effective population size over the 
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entire period, measured relative to 2Ne, is λ(B1γ)–1. The second contribution arises from the 

deterministic phase. If the frequency of A2 at time T (in units of 2Ne generations) is q(T), 

the corresponding relative effective population size for the lineage under consideration is 

B1q(T). The integral of the reciprocal of this quantity over the deterministic phase is given 

by: 

 

                   
dT

B1q(T )T0

T1

∫ = 2γ −1 dq
B1pq

2
(B2γ )

−1

1−(B2γ )
−1

∫

≈ 2(B1γ )
−1{2 ln(B2γ )+B2γ −[1− (B2γ )

−1]−1} (S10)

 

       

 The mean coalescent time arising from these two contributions is the main 

contribution to the overall relative mean coalescent time for a swept lineage, Tcs, since 

coalescence happens very rapidly during the initial stochastic phase. Tcs is thus given by 

dividing the net time for the sweep (Equation 3 of the main text), by the sum of  

λ(B1γ)
–1 and Equation S9: 

   

                    Tcs ≈
B1[2 ln(B2γ )+λ]

2 ln(B2γ )+λ
−1 +B2γ −[1− (B2γ )

−1]−1
(S11)  

 

 If B2γ >> 1, Tcs is approximately equal to 1/[1 + ½ B2γ/ln(B2γ)]. This is not 

necessarily totally negligible; for example, if B2γ = 100, Tcs ≈ 0.08, i.e. approximately 8% of 

the neutral variability in the absence of selection is expected to be recovered by the end of 

the sweep. 

 

S4. Recombination back onto the A2 background during a sweep 

A process that works in the opposite direction to the effect of recovery of variability is 

recombination of a swept lineage that has recombined onto an A1 background back onto an 

A2 background (Figure 2). This effect can be analysed as follows, by examining the 

trajectory of the probability P(T) that a lineage associated with A2 was present on an A2 

background at a given time T in the past, with P(Ts) being the net probability that the 

ancestor of the lineage was associated with A2.  
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Let p(T) be the frequency at time T of the wild-type allele at the selected locus, and 

q(T) = 1 – p(T). If recombination occurs at rate ρ = 2Ner on the coalescent timescale, and 

all evolutionary changes are slow, P obeys the following differential equation: 

                                    

dP(T )
dT

=  –ρp(t)P(T )+ ρq(T )[1−P(T )]

= −ρP(T )+ ρq(T ) (S12)   

The boundary condition is P(0) = 1, yielding the solution:   

           
P(T ) = exp(−ρT )[1+ ρ exp(ρτ )q(τ )dτ

0

T

∫ ] (S13)
  

The integral can be evaluated by substituting dp(τ) for dτ ; using the backwards-in- time 

selection equation, dp/dT ≈ 0.5γpq, we obtain: 

                            
exp(ρτ )q(τ )dτ

0

T

∫ = 2(γ )−1 exp[ρ
p(0)

p(T )

∫ τ (p)]p−1dp (S14)
 

where 

                     
τ (p) ≈ 2(γ )−1 ln(B2γ pq

−1) (S15)
  

  

 This assumes that the initial value of q for a successful sweep is (B2γ)
–1, on the 

grounds that the contribution from the first stochastic phase is negligible, given the low 

frequency of A2 over this period. The exponential term can thus be written as   (B2γ )ap aq–a, 

where a = 2ργ–1. 

 We are primarily interested in P(Ts), for which the integral takes the value: 

     

                                   
exp(ρτ )q(τ )dτ

0

Ts

∫ = 2(γ )−1(B2γ )
a pa−1
p(0)

p(Ts )

∫ q−adp (S16)
 

  

 We can set p(Ts) = 1 and p(0) = (B2γ)–1 to a sufficient level of accuracy, so that the 

definite integral in equation (S15) is equivalent to: 

 

                                          
pa−1

0

1

∫ q−adp – pa−1q−1 dp
0

(B2γ )
−1

∫

≈ Β(a,1− a)− a−1(B2γ )
−a (S17)
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where Β(a, 1 – a) is the beta function with parameters a and 1 – a.  

 From the known properties of the beta function, Β(a, 1 – a) = π /sin(πa). For a << 

1, π /sin(πa) ≈ a–1[1 + (πa)2/6], so that: 

 

                        pa−1
0

(B2γ )
−1

∫ q−adp ≈ a−1[1+ 1
6 (πa)

2 − (B2γ )
−a ] (S18)    

  

 This yields: 

                              P(Ts ) ≈ exp(−
1
2 ρTs )[1+

2
3 (πργ

−1)2 ] (S19) 	

The probability that two alleles have not recombined by the end of the sweep is thus: 

 

                       
Pcs ≈ exp(−ρTs )[1+

2
3 (πργ

−1)2 ]2 (S20)
 

 

This replaces the expression exp(–ρTs) in the standard formula. 

 

S5. Correcting for the effect of sweep duration 
Here we derive expressions for the integral I(ω, B1) in Equation 11. For B1ω > 1, I can be 

evaluated by using the fact that: 

                                        ω xi exp(−ωx)
0

∞

∫ dx = i!ω−i (S21)  

                                            	

Expanding exp(–B1
–1T) in Equation 11 as its MacClaurin series in B1

–1T, and substituting 

into the double integral, we have: 

          						

ωB1I(ω,B1) =ωB1
i=0

∞

∑ exp(−ωT )
0

∞

∫ [B1
−(i+1)(−1)iT i

(i+1)!
]dT

= [1+ (−1)i (i+1)−1(B1ω)
−i ]

i=1

∞

∑ =ωB1 ln[1+ (B1ω)
−1] (S22)  
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 As B1ω approaches 1, this expression implies that I(ω,B1) tends to ln(2) ≈ 0.6931, 

although the series is not formally convergent at this point, but behaves as an asymptotic 

expansion. For B1ω  < 1, I(ω, B1) can be expanded as a Taylor series in ω around ω = B1
–1, 

using the fact that its ith derivative with respect to B1ω is equal to   (–1)i(i – 1)![( B1ω )–i – 

(1+ B1ω)–i]. This gives: 

                   
I(ω,B1) = ln(2)+ (−1)i i−1(1− 2−i )(B1ω −1)

i

i=1

∞

∑ (S23)
                  

 Numerical evaluation shows that, for small B1ω, the series converges slowly to a 

finite limit. For ω = 0.001, the limit is approximately 6.908. With ω ≥ 0.1, the series 

effectively converges to a limit ≤ 2.398 after i ≤ 100. 

 

S6. Sampling during a sweep
 Let the rates of coalescent events due to NS and UTR mutations be Sa

–1 and Su
–1, 

respectively; these are given by the corresponding terms in Equations 5, with S–1 =  Sa
–1 + 

Su
–1. Let the expected durations of NS and UTR adaptive substitutions be Ta and Tu, 

respectively; these are obtained by substituting γa and γu into Equation 3. Using Equation 

S11, the corresponding expected coalescence times for samples taken at the end of 

successful NS and UTR sweeps are Tacs and Tucs. The probability that a random sample is 

not included in a sweep is Pns = [Sa
–1 exp(–S–1Ta) + Su

–1 exp(–S–1Tu)]/ S–1; the value of π/θ 

given by Equations 12 is to be multiplied by this quantity to obtain the net contribution 

from this type of event. Upper bounds to the expected coalescent times for a sample taken 

during an NS or UTR sweep are given by Tacs and Tucs respectively. The net coalescent time 

contribution from samples taken within sweeps is obtained by weighting these times by the 

probabilities of sampling each type of sweep, i.e. by (Sa
–1 Tacs [1 – exp(–S–1Ta)] + Su

–1 Tucs 

[1 – exp(–S–1Ta)])/ S–1. The sum of this term and the previous one provides an estimate of 

the net relative diversity. 
  

S7. Continuum approximation for effects of recurrent selective sweeps 

For NS sites, consider a focal synonymous site located at a site representing a proportion P 

of the total length l of the coding sequence. For lP ≤ dg, the expected contribution to S–1 in 

Equations 5 of the main text, caused by sweep events at NS sites to the left of the focal site, 

is equal to:  



	 10	

 

                     

S1P
−1 ≈ υa exp[−4ξa (rc

0

lP

∫ + rg )z]dz

= υa

4ξa (rc + rg )
{1− exp[−4ξa (rc + rg )lP]} (S24a)

   

where ξa = λ [ln(B2γa) + 0.5] /sa.  

 Writing Q = 1 – P, a similar expression holds for the effects of sweeps at NS sites to 

the right of a focal site when Ql ≤ dg: 

 

                    

S1Q
−1 ≈ νa exp[−4ξa (rc

0

lQ

∫ + rg )z]dz

= νa

4ξa (rc + rg )
{1− exp[−4ξa (rc + rg )lQ]} (S24b)

	
  

The mean value over all synonymous sites for these two cases can be found by integrating 

the sum of these two expressions with respect to P and Q, respectively, from 0 to their 

maximum permissible value, dg /l. By symmetry, no distinction need be made between P 

and Q, so we have: 

 

													

S1
−1 ≈

2νa

4ξa (rc + rg )
{1− exp[−4ξa (rc

0

dg /l

∫ + rg )l x]} dx

= νa

2ξa (rc + rg )
(dg
l
−

1
4ξa (rc + rg )l

{1− exp[−4ξa (rc + rg )dg ]}) (S25)
 

 

     
For l P > dg, the expected contribution to S–1 from single sweeps at NS sites to 

the left of the focal site is equal to: 

 

               

S2P
−1 ≈ νa exp[−4ξa (rc

0

dg

∫ + rg )z]dz + exp(-4ξag) exp[−4ξarc
dg

lP

∫ z]dz 

= νa

4ξa (rc + rg )
{1− exp[−4ξa (rc + rg )dg ]}

+
νa exp(−4ξag)

4ξarc
[exp(−4ξarcdg )− exp(−4ξarclP)] (S26)
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As before, a similar expression can be found for NS sites to the right of the focal 

site, by substituting Q for P.  

 The mean value for synonymous sites of this type can be found by integrating with 

respect to P, from P = dg/l to P = 1, and from Q = dg/l to Q = 1, yielding:  

 

                                  

S2
−1 =

(1− dg / l)νa

2ξa (rc + rg )
{1− exp[−4ξa (rc + rg )dg ]}

+
exp(−4ξag)νa

2ξarc
{(1− dg / l)exp(−4ξarcdg )

−
νa

2ξarcl
[exp(−4ξarcdg )− exp(−4ξarcl)]} (S27a)

 

 

 If there is no gene conversion, dg = g = 0, and Equation S27a reduces to:  

   

                         S2
−1 =

νa

2ξarc
{1− 1

4ξarcl
[1− exp(−4ξarcl)]} (S27b)  

 

 The effects of sweeps in 5´UTRs, whose length is denoted by l0, can be found as 

follows. Subscripts u are used to denoted the parameters corresponding to ξa etc. in the 

treatment of NS sites. Consider a focal synonymous site at location lP. Its distance from a 

5´UTR site that is located at a distance y from the beginning of the coding sequence is z = 

lP + y. Note that, for the gene conversion parameters assumed in the simulations, we have 

l0 < dg, but this is not necessarily the case – the case with no gene conversion is equivalent 

to setting dg = 0.   

 First, assume l0 < dg. With z  < dg, so that gene conversion occurs approximately at 

rate (rc + gc)z, y runs from 0 to l0 and lP runs from 0 to dg – y. The expected contribution of 

single sweeps in the UTR for a synonymous site is given by: 
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S3
−1 ≈ νu exp[−4ξu(rc + rg )(y+ lP)dPdy

0

(dg−y)/l

∫
0

l0

∫

=
νu

4ξu(rc + rg )l
exp[−4

0

l0

∫ ξu(rc + rg )y]{1− exp[−4ξu(rc + rg )(dg − y)]}dy

=
νu

4ξu(rc + rg )l
{ 1
4ξu(rc + rg )

(1− exp[−4ξu(rc + rg )l0 ])− l0 exp[−4ξu(rc + rg )dg ]} (S28)

	

With z  ≥ dg, so that gene conversion occurs at rate g, y runs from 0 to l0 and lP runs from 

dg – y to l; the expected contribution of UTR sweeps is then: 

    

S4
−1 ≈ νu exp{−4ξu[rc (y+ lP)+ g]}dPdy

(dg−y)/l

1

∫
0

l0

∫

=
νu exp(−4ξug)

4ξurcl
exp(−4

0

l0

∫ ξurcy){exp[−4ξurc (dg − y)]− exp(−4ξurcl)}dy

=
νu exp(−4ξug)

4ξurcl
{l0 exp(−4ξurcdg )− exp(−4ξurcl)4ξurc

[1− exp(−4ξurcl0 )]} (S29)

 

  
 

 
Second, consider the case dg ≤ l0. With z < dg, y runs from 0 to dg and lP runs from 

0 to dg – y. This implies that l0 can be replaced with dg in the last line of Equation S28: 

 

S5
−1 ≈ νu exp[−4ξu(rc + rg )(y+ lP)]dPdy

0

(dg−y)/l

∫
0

dg

∫

=
νu

4ξu(rc + rg )l
{ 1
4ξu(rc + rg )

(1− exp[−4ξu(rc + rg )dg ])− dg exp[−4ξu(rc + rg )dg ]} (S30)
 

 

 When z ≥ dg, two cases need to be considered. If y ≤ dg, lP runs from dg – y to l, 

giving the integral:
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S6
−1 ≈ νu exp{−4ξu[rc (y+ lP)+g]}dPdy

(dg−y)/l

1

∫
0

dg

∫

=
νu exp(−4ξug)

4ξurcl
{dg exp(−4ξurcdg )− exp(−4ξurcl)4ξurc

[1− exp(−4ξurcdg )]} (S31)
 

 

If y > dg, lP runs from 0 to l, giving the integral: 

														

S7
−1 ≈ νu exp{−4ξu[rc (y+ lP)+g]}dPdy

0

1

∫
dg

l0

∫

=
νu exp(−4ξug)[1− exp(−4ξurcl)]

(4ξurc )
2 l

[exp(−4ξurcdg )− exp(−4ξurcl0 )] (S32)
 

 

The final result is given by the sum of these two expressions. 

 If there is no gene conversion (so that dg = 0), only Equation S32 is relevant, which 

reduces to: 

                                          

S7
−1 ≈ νu exp{−4ξu[rc (y+ lP)+g]}dPdy

0

1

∫
0

l0

∫

=
νu[1− exp(−4ξurcl)][1− exp(−4ξurcl0 )]

(4ξurc )
2 l

(S33) 	

 Similar results hold for 3´UTRs, whose length is denoted by l1; l0 is simply replaced 

with l1 in the above expressions.  
 

S8 Inferring the parameters of interference among selective sweeps 

For a given parameter set and number of genes, we can treat each gene in a given 

simulation run as an independent replicate, and estimate the variance from the 95% 

confidence intervals for the total numbers of NS or UTR adaptive substitutions per 

chromosome for a given number of genes (File S3) (because the Central Limit Theorem 

implies that these are normally distributed, the C.I. for a given parameter set is equal to 

1.96σ/√n, where σ is the standard deviation and n is the number of replicate simulations). 

This assumes that there is little interference among substitutions in different genes, which 

is justified by the lack of effect of the number of genes on the numbers of substitutions 

when crossing over is present (Tables 3 and S4).  

 The ratio of the mean to the variance (R) is distributed approximately as χ2, with the 

number of degrees of freedom (d.f.) equal to the number of replicates minus one. χ2 and 
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d.f. values for different parameter sets can be summed to provide an overall test of 

significance, and the ratio of χ2 to the d.f. provides an estimate of R. The results are shown 

in Table S5 below. There is little evidence for an effect of the selection model or the 

crossing over rate on the estimates of R, consistent with the lack of a strong effect of the 

crossing over rate on the numbers of adaptive substitutions. For all parameter sets, the total 

χ2 is 4639, with 5083 d.f., and Fisher’s normal deviate transformation is – 4.50 (P < 10–4). 

The overall R estimate is 0.91, with an approximate standard error of 0.02.  

 There is no simple formula for relating R to the intensity of interference, in the 

sense of the proportion of adaptive substitutions that are removed by interference among 

sweeps within the same gene. Such interference can only occur when a second substitution 

is initiated while a given substitution is spreading through the population (Barton 1995; 

Kim and Stephan 2003). The effects of interference on dispersion were simulated by 

assigning an adaptive substitution rate of ω per gene per unit coalescent time, and drawing 

a set of successive exponential random deviates with ω as parameter over the chosen period 

of observation (8N generations in the case of our simulations), which represent the times 

between substitutions. If a given substitution is followed by a second one within the time Ts 

for completion for the first one (Equation 3), the second one is removed with an assigned 

probability pi. By replicating this process many times, both R and the proportion of 

substitutions lost to interference can be estimated. A computer program for this simulation 

is available (File S4). Using a value of 0.1 for Ts, which is approximately the value for 

autosomal NS and UTR favorable mutations, together with ω values corresponding to the 

autosomal loci parameters, R = 0.91 corresponds to a net proportion of lost substitutions of 

approximately 0.055.   

 

S9. BGS effects for regions with selection on noncoding sites 

To extend the model of BGS here, which includes the effect of gene conversion, we 

modified the approach of Charlesworth (2012b), which models a length of chromosome 

subject to deleterious mutation, with a linear genetic map in the absence of gene 

conversion, assuming a relative rate of crossing of 1 in the terminology used here. His 

Table 2 shows that the ratio of the diploid deleterious mutation rate to the effective map 

length provides a good approximation to the BGS parameter B1 obtained from more 

realistic models. In order to include the effects of gene conversion, we used the BGS 
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formulae given in the first section of the Appendix. Since we are interested in predicting 

the effects of BGS for parameters that are realistic for a natural population, we used the 

versions of these formulae that assume a linear genetic map, and ignored contributions 

from deleterious mutations that are initially in repulsion with a focal neutral variant, i.e.  

Equations S2c, S2d, S3 and S4a. (The reasons for doing this are explained in the final part 

of the Discussion.) For this purpose, we used the selection, mutation and recombination 

parameters that apply to a population that is 532 times as large as the simulated population. 

Numerical integration of Equation (S3) over the relevant gamma distribution of selection 

coefficients then allowed us to calculate the ratio of the value of E = – ln(B1) with gene 

conversion at a rate of 2 x 10–8 per base pair to its value without gene conversion for 2000 

genes, which gives results close to the asymptote with respect to gene number. For 

autosomal NS sites, this ratio is 0.816, and for the more weakly selected UTR sites, it is 

0.613; these are nearly independent of the rate of crossing over.   

 We assume that these ratios also apply to the strongly selected and weakly selected 

sites modeled by Charlesworth (2012b). It is then a simple matter to extract the E values for 

strongly selected and weakly selected sites for the standard rate of crossing over from the 

Model 1 results for autosomes in his Table 2, and to modify them by multiplication by a 

factor of 0.816 and 0.613, respectively. The sum of the resulting products, 0.485, is equal 

to E for the standard rate of crossing over; the E value for a rate that is a factor of C times 

the standard rate is given by dividing the standard value by C. The corresponding values of 

B1 are then given as exp(–E). 

 The same procedure can be applied to the X chromosome, yielding factors of 0.872 

and 0.716 for strongly and weakly selected sites, respectively. The resulting E value is 0.4 

for the standard rate of crossing over (adjusted so that the effective rate of crossing over is 

the same for the X and the autosomes).  

 

S10. Diversity patterns on the X chromosome 

The procedure used for including effects of BGS on noncoding sequences on autosomes 

yields X chromosome values of B1 values of 0.383, 0.619, 0.726, 0.787 and 0.825 for 



	 16	

relative effective rates of crossing over of  0.5, 1, 1.5, 2 and 2.5, respectively, which are 

very close to the autosomal values. With selective sweeps, these estimates of B1 yield 

K values of 2.04 and 1.99 for the smaller and large selection coefficients for favorable X-

linked mutations, respectively, compared with an observed value of 1.78 from Figure S2 of 

Campos et al. (2014).  

 A possible reason for this is that differences in gene density associated with 

different crossover rates have been ignored. As noted by Campos et al. (2014), the gene 

density on the X chromosome in regions with low but not zero rates of crossing over is 

substantially lower than on the autosomes. If the BGS model for the X chromosome is 

modified to reduce the value of E  for the low crossover region by one-quarter, yielding B1 

= 0.487 instead of 0.383, the predicted values of πS/θ  for relative crossover rates of 0.5 and 

2 with the weaker selection for favorable X-linked mutations become 0.431 and 0.712, 

respectively, giving X/A diversity ratios of 0.93 and 0.75 for the two crossover rates after 

(adjusting the X values by multiplying by 0.75), while the observed values are 1 and 0.74; 

the value of K for the X is now 1.65, somewhat smaller than the observed value.  With the 

stronger selection case, the respective X/A diversity ratios are 0.92 and 0.69, and K = 1.54.   

 

S11. Rates of substitution of favorable mutations in relation to the rate of crossing 

over 

We used the principle that the expected relative values of ωa, the rate of adaptive NS 

substitiutions relative to neutral rates, for different rates of recombination should 

approximately reflect the corresponding relative values of B2, given the evidence that there 

is little interference among positively selected mutations. For autosomes, the B1 values used 

here in place of B2 predict a ratio of 2.08 for crossing over rates of 2 and 0.5, compared 

with the observed value of approximately 3 from Figure 2 of Charlesworth and Campos 

(2014). However, Castellano et al. (2016) suggested that the smoothing procedure used by  

them to estimate rates of crossing over for each bin might produce biased results, and 

instead conducted analyses of the relation between the rate of autosomal NS adaptive 

evolution and unsmoothed rates of crossing over obtained from Comeron et al. (2012). For 

the Rwandan sample used here, with the same number of bins of rates of crossing over (but 

including non-crossover regions), their non-linear regression equation (line 5 of their Table 

1) yields a ratio of 1.95 for the estimated rates of autosomal adaptive evolution for relative 

effective rates of crossing over 2 and 0.5, which is much closer to the above prediction. For 

the X chromosome, the predicted ratio for relative crossover rates of 2 and 1 is 1.27 (the 
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observed value for 0.5 is not available, due to the binning procedure used), and the 

observed value from Figure 3 of Charlesworth and Campos (2014) is 1.22.  
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Table S1  BGS predictions and simulation results for X chromosomal values of  
    B1 = π /θ  
	

 
    Autosomes 

 

  X chromosome 

  

Xover Rate        0.5     1.0      1.5      2.0       2.5 

No g.c      

20 genes  0.687, 0.723 
(0.702, 0.745) 

 0.798, 0.838 
(0.823, 0.852) 

 0.845, 0.861 
(0.843, 0.879) 

 0.871, 0.868 
(0.849, 0.887) 

 0.888, 0.913 
(0.894, 0.933) 

70 genes  0.593, 0.634 
(0.623, 0.645) 

 0.716, 0.737 
(0.721,0.750) 

0.767, 0.790 
(0.770, 0.799) 

0.794, 0.818 
(0.810, 0.827) 

0.812, 0.830 
(0.824, 0.838) 

140 genes  0.514, 0.543 
(0.534, 0.550) 

 0.632, 0.655 
(0.648, 0.663) 

0.679, 0.701 
(0.694, 0.709) 

0.704, 0.723 
(0.717, 0.729) 

0.719, 0.731 
(0.724, 0.739) 

210 genes 0.452, 0.489 
(0.481, 0.491) 

0.559,  0.582 
(0.574, 0.590) 

0.601, 0.620 
(0.618, 0.624) 

0.623, 0.642 
(0.638, 0.646) 

0.637, 0.654 
(0.650,  0.658) 

G.c.      

20 genes  0.753, 0.796 
(0.775, 0.819) 

 0.836, 0.883 
(0.862, 0.903) 

 0.872, 0.905 
(0.889, 0.920) 

 0.892, 0.907 
(0.887, 0.929) 

0.905, 0.924 
(0.905, 0.942) 

70 genes  0.650, 0.686  
(0.677, 0.693) 

0.750, 0.782 
(0.767, 0.799) 

 0.791, 0.816 
(0.797,0.834) 

 0.813, 0.820 
(0.813,0.827) 

0.827, 0.838 
(0.830,0.848) 

140 genes 0.563, 0.594 
(0.588, 0.601) 

0.662, 0.687 
(0.676, 0.696) 

 0.700, 0.719 
(0.707,0.728) 

 0.720, 0.725 
(0.720,0.731) 

0.733, 0.736 
(0.729,0.744) 

210 genes  0.496, 0.525 
(0.519,0.531) 

 0.586, 0.605 
(0.598,0.613) 

  0.620, 0.640 
(0.635,0.645) 

 0.638, 0.639 
(0.635,0.640) 

0.649, 0.657 
(0.652,0.661) 

Xover Rate        0.5     1.0      1.5      2.0       2.5 

No g.c      

20 genes 0.755, 0.779 
(0.757, 0.801) 

0.845, 0.880 
(0.857, 0.904) 

0.881, 0.901 
(0.879, 0.922) 

0.902, 0.937 
(0.923, 0.953) 

0.915, 0.928 
(0.907, 0.950) 

70 genes  0.675, 0.700 
(0.693, 0.708) 

 0.779, 0.807 
(0.793,0.823) 

0.820, 0.839 
(0.830, 0.848) 

0.841, 0.860 
(0.846, 0.872) 

0.856, 0.878 
(0.858, 0.884) 

140 genes  0.607, 0.627 
(0.620, 0.635) 

 0.709, 0.715 
(0.707, 0.724) 

0.748, 0.764 
(0.759, 0.770) 

0.768, 0.788 
(0.781, 0.795) 

0.781, 0.800 
(0.789, 0.810) 

210 genes 0.551, 0.571 
(0.564, 0.578) 

0.647, 0.664 
(0.658, 0.670) 

0.683, 0.694 
(0.689, 0.699) 

0.701, 0.719 
(0.713, 0.724) 

0.713, 0.726 
(0.721,  0.733) 

G.c.      

20 genes 0.809, 0.840 
(0.827, 0.855) 

0.875, 0.902 
(0.882, 0.922) 

0.902, 0.916 
(0.898, 0.933) 

0.918, 0.941 
(0.919, 0.964) 

0.928, 0.953 
(0.932, 0.974) 

70 genes 0.724, 0.756  
(0.745, 0.770) 

0.806, 0.830 
(0.821, 0.841) 

 0.839, 0.850 
(0.838,0.861) 

 0.856, 0.884 
(0.875,0.893) 

0.867, 0.878 
(0.867,0.889) 

140 genes 0.650, 0.682 
(0.676, 0.689) 

0.734, 0.785 
(0.776, 0.793) 

 0.765, 0.782 
(0.776,0.789) 

 0.782, 0.802 
(0.793,0.810) 

0.792, 0.805 
(0.794,0.816) 

210 genes  0.591, 0.623 
(0.618, 0.629) 

 0.670, 0.714 
(0.708,0.719) 

 0.699, 0.720 
(0.715, 0.726) 

 0.714, 0.747 
(0.740,0.753) 

0.723, 0.739 
(0.729,0.751) 
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The left-hand upper entries in the cells show the predicted values of B1, the ratio of 

the mean synonymous site diversity with BGS (but no sweeps) to its value in the 

absence of BGS  (using Equations S1, S2a, S2b, S3, and S5), and integrating over 

the truncated gamma distribution. The right-hand entries are the corresponding 

observed mean values.   

The lower entries are the lower and upper 2.5 percentiles of the observed values of 

B1, obtained from the means of the synonymous site diversities over the entire 

region for each replicate simulation. 

The rows labelled ‘Xover rate’ refer to the results for rates of crossing over with 

ratios of 0.5, 1, 1.5, etc. with respect to the standard rate of 5.32 x 10-6 used in the 

simulations. 

Cases with no gene conversion are denoted by ‘No g.c.’ and cases with the standard 

gene conversion parameters by ‘G.c.’  
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Table S2   BGS predictions with a linear map, and simulation results with the 
Haldane mapping function.  Autosomal values of B1 = π /θ  are shown. 

   

 

 

The first entries in the upper portions of each cell are the values of B1 obtained from 

the theoretical predictions for E from the integrals in Equation S2c, S2d, S4a, S5d 

and S5e, integrated over the truncated gamma distribution.  

The second entries are the values of B1 from the expectation of E given by Equation 

S4b using the variance from the full gamma distribution, plus the additive variance 

term in Equation S6. The entries in the lower portions are the mean values from the 

simulations.  

The rows labelled ‘Xover rate’ refer to the results for rates of crossing over with 

ratios of 0.5, 1, 1.5, etc. with respect to the standard rate of 5.32 x 10-6 used in the 

simulations. 

The sections labelled ‘No g.c.’ and ‘G.c.’ refer to cases with no gene conversion and 

gene conversion with the standard parameters, respectively.	
  

Xover Rate        0.5       1.0      1.5      2.0       2.5 
No g.c      

20 genes 0.684, 0.584  
      0.723 

0.802, 0.758  
     0.838 

0.851, 0.828 
       0.861 

0.878, 0.864 
    0.861 

0.898, 0.887 
     0.913 

70 genes  0.609, 0.567 
       0.643 

 0.740, 0.732 
      0.737 

0.794, 0.798 
      0.790 

0.823, 0.833 
       0.818 

0.841, 0.855 
     0.830 

140 genes  0.549, 0.538 
      0.543 

 0.677, 0.695 
      0.655 

0.727, 0.756 
     0.701 

0.754, 0.789 
      0.723 

0.777, 0.810 
     0.731 

210 genes 0.501, 0.510 
     0.489 

0.621, 0.658 
      0.582 

0.666, 0.717   
      0.620 

0.690, 0.748 
     0.642 

0.704, 0.767 
     0.654 

G.c.      

20 genes 0.763, 0.656 
       0.796 

0.847, 0.804 
      0.883 

0.883, 0.836 
     0.905 

0.903, 0.890 
      0.907 

0.916, 0.908 
      0.924 

70 genes  0.679, 0.636 
      0.686 

0.782, 0.756 
     0.782 

 0.823, 0.829 
     0.816 

 0.845, 0.857 
      0.820 

0.859, 0.875 
   0.838 

140 genes 0.612, 0.603 
      0.594 

0.715, 0.736 
     0.687 

 0.754, 0.786 
      0.719 

 0.775, 0.812 
      0.725 

0.787, 0.829 
    0.736 

210 genes   0.558,0.571 
      0.5250.525 

 0.655, 0.697 
      0.605 

 0.691, 0.745 
      0.640 

 0.709, 0.770 
      0.639 

0.719, 0.785 
    0.657 
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Table S3 The effect of selective sweeps on the mean number of segregating 

nonsynymous and UTR site mutations (autosomal 70 gene model) 

 
 
Xover Rate 0 0.5 1.0 1.5 2.0 2.5 

No g.c. 
0.987 

0.934 

0.740 

0.715 

0.833 

0.811 

0.844 

0.794 

0.881 

0.789 

0.867 

0.757 

G.c. 
1.028 

1.110 

0.861 

0.791 

0.833 

0.781 

0.914 

0.773 

0.898 

0.839 

0.921 

0.839 

 
The upper entries in each cell are the ratios of the mean numbers of segregating 

deleterious NS mutations per individual in the presence of SSWs to the mean numbers 

without SSWs. The lower entries are the corresponding ratios for segregating UTR 

mutations. The estimates were obtained from the means over genes at the ends of the 

simulations. 

 

  



	 22	

Table S4     The effect of BGS on the numbers of fixations of selectively 

favorable mutations  

 

Autosomal mutations 

  
Gene	No.	 Xover	

Rate	

No	BGS	 With	BGS	 		Ratio	

					(B2)	

B1	

70 0 1.23 (1.17,1.27) 
1.58 (1.53,1.62) 

0.32 (0.30,0.35) 
0.45 (0.42,0.48) 

0.263±0.012 
0.285±0.017 

0.086 

 0.5 1.83 (1.77,1.89) 
2.94 (2.87,3.02) 

1.38 (1.34,1.43) 
2.14 (2.08,2.20) 

0.754±0.018 
0.726±0.014 

0.686  

 1.0 1.97 (1.87,2.08) 
3.10 (2.95,3.26) 

1.57 (1.46,1.70) 
2.28 (2.13,2.45) 

0.797±0.019 
0.735±0.021 

0.782 

 1.5 1.96 (1.88,2.04) 
2.94 (2.84,2.99) 

1.63 (1.52,1.74) 
2.47 (2.26,2.47) 

0.831±0.023 
0.838±0.021 

0.816 

 2.0 1.88 (1.82,1.94) 
2.92 (2.80,3.04) 

1.59 (1.53,1.65) 
2.49 (2.37,2.57) 

0.844±0.021 
0.820±0.018 

0.820 

 2.5 1.89 (1.83,1.96) 
3.04 (2.97,3.11) 

1.60 (1.53,1.67) 
2.44 (2.37,2.52) 

0.845±0.024 
0.803±0.015 

0.838 

140 0 0.90 (0.88,0.93) 
1.16 (1.12,1.19) 

0.10 (0.09,0.11) 
0.13 (0.12,0.14) 

0.111±0.006 
0.112±0.004 

0.043 

 0.5 1.87 (1.83,1.92) 
2.88 (2.82, 2.99) 

1.24 (1.20,1.28) 
2.49 (2.42,2.56) 

0.659±0.013 
0.865±0.017 

0.594 

 1.0 1.97 (1.90,2.03) 
2.95 (2.86,3.05) 

1.41 (1.35,1.47) 
2.10 (2.02,2.16) 

0.717±0.020 
0.712±0.017 

0.687 

 1.5 1.91 (1.85,1.96) 
3.01 (2.92,3.09) 

1.39 (1.32,1.47) 
2.22 (2.15,2.30) 

0.728±0.023 
0.734±0.017 

0.719 

 2.0 1.88 (1.84,1.92) 
2.95 (2.90,3.00) 

1.42 (1.37,1.46) 
2.20 (2.15,2.26) 

0.752±0.015 
0.746±0.012 

0.725 

 2.5 1.96 (1.92,2.01) 
2.98 (2.92,3.05) 

1.42 (1.37,1.47) 
2.15 (2.10,2.21) 

0.723±0.015 
0.722±0.012 

0.736 

210 0 0.75 (0.73,0.77) 
0.95 (0.92,0.97) 

0.05 (0.04,0.06) 
0.07 (0.06,0.08) 

0.072±0.007 
0.076±0.005 

0.029 

 0.5 1.86 (1.81,1.90) 
2.86 (2.80,2.91) 

1.09 (1.06,1.13) 
1.66 (1.62,1.70) 

0.587±0.012 
0.591±0.009 

0.525 

 1.0 1.87 (1.84,1.91) 
2.90 (2.84,2.97) 

1.18 (1.10,1.25) 
1.85 (1.80,1.91) 

0.631±0.021 
0.638±0.012 

0.605 

 1.5 1.85 (1.80,1.90) 
2.91 (2.86,2.98) 

1.22 (1.17,1.26) 
1.89 (2.86,2.98) 

0.659±0.015 
0.679±0.011 

0.640 

 2.0 1.89 (1.84,1.93) 
2.98 (2.93,3.03) 

1.27 (1.25,1.30) 
1.95 (1.92,1.99) 

0.676±0.008 
0.655±0.008 

0.639 

 2.5 1.92 (1.88,1.96) 
2.94 (2.89,2.99) 

1.26 (1.23,1.29) 
2.01 (1.97,2.05) 

0.655±0.010 
0.684±0.009 

0.657 
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 X- linked mutations with low s  

 
	

	

   

  

 

 

 

 

 

Gene No. Xover 

Rate 

No BGS With BGS    Ratio 

    (B2) 

B1 

70 0 1.34 (1.29,1.38) 
1.83 (1.79,1.86) 

0.62 (0.58,0.66) 
0.86 (0.83,0.90) 

0.461±0.017 
0.473±0.011 

0.111 

 0.5 2.04 (1.97,2.12) 
3.24 (3.16,3.33) 

1.69 (1.64,1.76) 
2.67 (2.61,2.74) 

0.832±0.022 
0.824±0.015 

0.756  

 1.0 2.12 (2.08,2.17) 
3.31 (3.20,3.43) 

1.82 (1.75,1.90) 
2.89 (2.82,2.95) 

0.858±0.020 
0.872±0.018 

0.830 

 1.5 2.13 (2.06,2.21) 
3.31 (3.22,3.41) 

1.93 (1.87,1.98) 
2.89 (2.81,2.96) 

0.904±0.021 
0.871±0.017 

0.850 

 2.0 2.14 (2.04,2.23) 
3.34 (3.26,3.40) 

1.86 (1.81,1.91) 
3.03 (2.96,3.12) 

0.871±0.023 
0.912±0.016 

0.884 

 2.5 2.16 (2.03, 2.29) 
3.40 (3.31,3.49) 

1.93 (1.80, 2.07) 
3.02 (2.93,3.10) 

0.895±0.042 
0.889±0.017 

0.878 

140 0 1.04 (1.02,1.07) 
1.31 (1.28,1.34) 

0.27 (0.25,0.29) 
0.35 (0.34,0.37) 

0.269±0.011 
0.269±0.007` 

0.054 

 0.5 2.08 (2.03,2.14) 
3.21 (3.16,3.26) 

1.51 (1.48,1.54) 
2.10 (2.32,2.41) 

0.725±0.012 
0.735±0.009 

0.682 

 1.0 2.10 (2.05,2.15) 
3.33 (3.25,3.40) 

1.73 (1.69,1.77) 
2.60 (2.54,2.67) 

0.823±0.014 
0.781±0.014 

0.785 

 1.5 2.07 (2.06,2.17) 
3.30 (3.25,3.35) 

1.67(1.62,1.72) 
2.63 (2.58,2.67) 

0.792±0.016 
0.796±0.009 

0.782 

 2.0 2.17 (2.10,2.25) 
3.29 (3.24,3.34) 

1.73 (1.67,1.78) 
2.73 (2.68,2.77) 

0.794±0.019 
0.830±0.009 

0.802 

 2.5 2.16 (2.09,2.23) 
3.42(3.32,3.51) 

1.77 (1.72,1.82) 
2.70 (2.64,2.76) 

0.820±0.018 
0.788±0.014 

0.805 

210 0 0.85 (0.83,0.87) 
1.05 (1.02,1.07) 

0.14 (0.13,0.15) 
0.16 (0.15,0.18) 

0.160±0.003 
0.155±0.008 

0.042 

 0.5 2.02 (1.98,2.05) 
3.22 (3.16,3.27) 

1.40 (1.36,1.43) 
2.16 (2.11,2.21) 

0.692±0.011 
0.670±0.010 

0.623 

 1.0 2.13 (2.09,2.17) 
3.28 (3.22,3.33) 

1.58 (1.54,1.61) 
2.42 (2.38,2.45) 

0.739±0.010 
0.737±0.009 

0.714 

 1.5 2.12 (2.08,2.16) 
3.22 (3.19,3.26) 

1.55 (1.50,1.59) 
2.42 (2.39,2.46) 

0.731±0.013 
0.751±0.007 

0.720 

 2.0 2.12 (2.08,2.16) 
3.33 (3.26,3.41) 

1.61 (1.57,1.65) 
2.48 (2.45,2.51) 

0.761±0.012 
0.744±0.010 

0.747 

 2.5 2.13 (2.07,2.18) 
3.25 (3.17,3.34) 

1.59 (1.53,1.65) 
2.44 (2.37,2.50) 

0.745±0.017 
0.749±0.014 

0.739 
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  X- linked mutations: with high s and 70 genes 

 
 

 

 

 

 

 

 

 

 

 

 

 

The upper and lower entries in the cells in the 2nd and 3rd columns show the ratios 

of the mean numbers of fixations (over the final 20,000 generations) to the number 

of simulated genes, for selectively favorable NS and UTR mutations, respectively.  

The 4th column shows the ratios of these values for simulations with and without 

BGS, respectively, with approximate standard errors calculated from the upper and 

lower 2.5 percentiles of the numerator and denominator.  

The B1 values in the last column were obtained from the simulation results. 

The standard gene conversion parameters are assumed. 

  

Xover 

Rate 

No BGS With BGS    Ratio 

     (B2) 

B1 

0 1.72 (1.65,1.80) 
2.23 (2.17,2.30) 

0.95 (0.91, 0.99) 
1.24 (1.19,1.29) 

0.548±0.018 
0.557±0.014 

0.111 

0.5 2.69 (2.63,2.75) 
4.27 (4.16,4.37) 

2.25 (2.18,2.31) 
3.42 (3.34,3.50) 

0.837±0.016 
0.800±0.013 

0.756  

1.0 2.67 (2.58,2.75) 
4.35 (4.22,4.48) 

2.37 (2.27,2.46) 
3.76 (3.70,3.82) 

0.888±0.023 
0.864±0.015 

0.830 

1.5 2.84 (2.72,2.94) 
4.49 (4.35,4.61) 

2.47 (2.40,2.55) 
3.82 (3.73,3.91) 

0.872±0.021 
0.851±0.016 

0.850 

2.0 2.81 (2.71,2.90) 
4.40 (4.29,4.53) 

2.49 (2.40,2.57) 
3.91 (3.82,4.01) 

0.889±0.022 
0.887±0.013 

0.884 

2.5 2.85 (2.78, 2.92) 
4.39 (4.31, 4.48) 

2.51 (2.45, 2.57) 
3.98 (3.88, 4.07) 

0.886±0.015 
0.905±0.014 

0.878 
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Table S5   Analyses of the dispersion of the distribution of numbers of substitutions 

 

 

 
The entries in the table were obtained by summing individual χ2 values and d.f. for 

the variance to mean ratios for simulations with 70, 140 and 210 genes, for each 

parameter set, including simulations with and without BGS and using data on both 

NS and UTR sites.  The z statistic is Fisher’s normal deviate transformation of χ2, 

√(2χ2) – √2(d.f.–0.5) .  

 

  

Xover rate 0.5 1.0 1.5 2.0 2.5 Pooled 

Autosome       

χ2; d.f. 440; 456 236; 216 316; 336 422; 456 391; 456 1806;1920 

χ2;d.f. 0.965 1.094 0.941 0.925 0.858 0.940 

z – 0.513 0.929 – 0.761 – 1.14 – 2.22 – 1.87 

X; low s       

χ2; d.f. 405; 456 272; 336 407; 456 397; 456 383; 395 1864;2099 

χ2;d.f. 0.888 0.818 0.893 0.872 0.969 0.873 

z – 1.73 – 2.58 – 1.65 – 2.00 – 0.434 –3.72 

X; high s       

χ2; d.f. 293; 304 270;304 149; 152 152; 152 104; 152 969; 1064 

χ2;d.f. 0.964 0.888 0.983 1.01 0.681 0.911 

z – 0.433 – 1.41 – 0.136 0.0710 – 3.03 – 2.10 

Pooled       

χ2; d.f. 1138;1216 778; 856 873; 944 972; 1064 877; 1003 4639; 5083 

χ2;d.f. 0.936 0.909 0.825 0.914 0.875 0.913 

z – 2.11 – 2.42 – 2.17 – 2.53 – 2.89 – 4.50 
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Table S6    Observed and predicted values of neutral diversity (π /θ)for a  

 70 gene region, relative to the values without hitchhiking effects  

	
Autosomes 

 

 

  

Xover 
Rate 

Observed Integral, 
NC 

Sum., 
NC 

Integral, 
C 

Sum., 
C 

No 
g.c. 

     

0.5 0.516 (0.500,0.528) 
0.430 (0.419,0.441) 

0.582 
0.487 
0.461 

0.612 
0.530 
0.479 

0.471 
0.450 
0.409 

0.507 
0.469 
0.432 

1.0 0.655 (0.637,0.671) 
0.555 (0.536,0.573) 

0.713 
0.597 
0.592 

0.733  
0.610 
0.606 

0.633 
0.545 
0.534 

0.659 
0.562 
0.553 

1.5 0.735 (0.727,0.743) 
0.631 (0.621,0.643) 

0.786 
0.669 
0.664 

0.801 
0.680 
0.676 

0.726 
0.620 
0.621 

0.745 
0.633 
0.635 

2.0 0.772 (0.763,0.781) 
0.675 (0.666,0.683) 

0.832 
0.716 
0.712 

0.843 
0.724 
0.721 

0.784 
0.676 
0.676 

0.799 
0.687 
0.688 

2.5 0.820 (0.812,0.828) 
0.715 (0.706,0.724) 

0.862 
0.744 
0.740 

0.871 
0.750 
0.748 

0.823 
0.711 
0.711 

0.835 
0.720 
0.720 

G.c.      
0.5 0.685 (0.674,0.695) 

0.544 (0.534,0.552) 
0.753 
0.585 
0.578 

0.740 
0.582 
0.575 

0.684 
0.554 
0.539 

0.668 
0.550 
0.535 

1.0 0.767 (0.763,0.771) 
0.648 (0.626,0.660) 

0.821 
0.684 
0.682 

0.813 
0.681 
0.679 

0.771 
0.643 
0.643 

0.761 
0.638 
0.639 

1.5 0.815 (0.809,0.821) 
0.703 (0.690,0.717) 

0.858 
0.731 
0.729 

0.855 
0.729 
0.728 

0.818 
0.697 
0.697 

0.814 
0.695 
0.696 

2.0 0.850 (0.834,0.856) 
0.724 (0.713,0.736) 

0.882 
0.749 
0.748 

0.881 
0.749 
0.748 

0.849 
0.721 
0.721 

0.847 
0.721 
0.721 

2.5 0.863 (0.858,0.869) 
0.753 (0.744,0.761) 

0.899 
0.774 
0.773 

0.899 
0.774 
0.773 

0.871 
0.750 
0.750 

0.871 
0.750 
0.751 
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X chromosome 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

The entries for the observed values are the mean synonymous site diversities from the 

simulations with 70 genes, relative to the corresponding values in the absence of selection at 

linked sites. The upper and lower entries in each cell are the values with SSWs alone and with 

SSWs and BGS, respectively.  

The upper entries in each cell for the predictions are the reductions with SSWs alone; the middle 

entries use only the BGS effects estimated from neutral sites (B1); the lowest entries also 

include the BGS effects on adaptive substitution rates obtained from the simulations (B2).  

 

Xover 
Rate 

Observed Integral, 
NC 

Sum., 
NC 

Integral, 
C 

Sum., 
C 

Small s 
     

0.5 0.570 (0.562,0.580) 
0.498 (0.488,0.508) 

0.648  
0.567 
0.547 

0.647 
0.570 
0.550 

0.562 
0.493 
0.498 

0.560 
0.497 
0.502 

1.0 0.685 (0.674,0.694) 
0.635 (0.626,0.645) 

0.734 
0.657 
0.647 

0.732 
0.658 
0.648 

0.668 
0.598 
0.599 

0.665 
0.599 
0.600 

1.5 0.742 (0.733,0.750) 
0.673 (0.663,0.683) 

0.785 
0.704 
0.655 

0.785 
0.706 
0.697 

0.732 
0.657 
0.657 

0.732 
0.658 
0.659 

2.0 0.781 (0.773,0.789) 
0.723 (0.713,0.734) 

0.820 
0.749 
0.741 

0.821 
0.751 
0.743 

0.775 
0.708 
0.708 

0.776 
0.710 
0.711 

2.5 0.797 (0.792,0.804) 
0.744 (0.732,0.758) 

0.845 
0.762 
0.768 

0.847 
0.765 
0.770 

0.806 
0.733 
0.733 

0.809 
0.736 
0.736 

Large s 
     

0.5 0.443 (0.431,0.456) 
0.413 (0.405,0.421) 

0.525 
0.487 
0.474 

0.532 
0.495 
0.483 

0.434 
0.405 
0.411 

0.443 
0.416 
0.422 

1.0 0.568 (0.558,0.578) 
0.528 (0.518,0.539) 

0.617 
0.572 
0.570 

0.623 
0.579 
0.577 

0.542 
0.499 
0.504 

0.549 
0.508 
0.513 

1.5 0.631 (0.620,0.642) 
0.585 (0.573,0.598) 

0.680 
0.626 
0.625 

0.686 
0.632 
0.631 

0.617 
0.566 
0.570 

0.624 
0.574 
0.577 

2.0 0.685 (0.673,0.697) 
0.625 (0.611,0.639) 

0.725 
0.674 
0.673 

0.732 
0.681 
0.680 

0.671 
0.622 
0.626 

0.679 
0.630 
0.633 

2.5 0.717 (0.708,0.726) 
0.672 (0.663,0.681) 

0.760 
0.701 
0.700 

0.766 
0.708 
0.707 

0.712 
0.656 
0.659 

0.720 
0.664 
0.666 
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The columns labelled ‘Integral’ use the approximate integral formulae for SSW effects 

(Equations S24-33); those labelled ‘Sum.’ use the summation formulae, Equations 5 and 6.  

‘NC’ denotes predictions without correcting for sweep duration (Equation 5). ‘C’ denotes 

predictions that correct for sweep duration (Equations 12).  

For the summation predictions, corrections for multiple recombination events during the sweep 

(Equation S20) and for the variance in sweep time (File S1, section 3) were applied. 

  



	 29	

 
Table S7   Predicted values of autosomal relative neutral diversity for a 70 gene 

autosomal region using the summation formula with no correction for interference.  

 
Xover 

Rate 

All three 
corrections  
 

Sweep duration 
correction only 
 

Sweep 
duration + 
multiple rec. 
corr. 

Sweep  
duration + 
sweep coal. 
time corr. 

No g.c.     
0.5 0.494, 0.457 0.475, 0.451 0.468, 0.447 0.501, 0.461 
1.0 0.648, 0.549 0.641, 0.547 0.630, 0.539 0.659, 0.556 
1.5 0.736, 0.628 0.733, 0.627 0.722, 0.620 0.746, 0,635 
2.0 0.791, 0.682 0.790, 0.682 0.780, 0.675 0.800, 0.689 
2.5 0.828, 0.715 0.828, 0.716 0.819, 0.709 0.836, 0.721 
G.c.     
0.5 0.657, 0.541 0.653, 0.540 0.640, 0.532 0.670, 0.547 
1.0 0.752, 0.633 0.752, 0.634 0.739, 0.625 0.764, 0.641 
1.5 0.806, 0.690 0.807, 0.692 0.796, 0.684 0.817, 0.698 
2.0 0.841, 0.717 0.842, 0.718 0.833, 0.711 0.850, 0.723 
2.5 0.865, 0.747 0.866, 0.748 0.858, 0.742 0.873, 0.754 

 
The first entries in each cell are for the case of no BGS; the second entries are for BGS, using the 

simulation estimate of B1 for all relevant parameters. 
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Figure S1.    Trajectories of mean synonymous site diversity (πS) and mean nonsynymous 

site diversity (πN) in simulations with the standard rate of crossing over (rec = 1) and with 

one-half the standard rate (rec = 0.5). Results are shown with BGS alone (BGS), selective 

sweeps alone (SSW) and with both (SSW+BGS). 
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